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Abstract. This paper presents a Cohesive Zone Model (CZM) approach for investigating dynamic crack
propagation in homogeneous and Functionally Graded Materials (FGMs). The failure criterion is incor-
porated in the CZM using both a finite cohesive strength and work to fracture in the material description.
A novel CZM for FGMs is explored and incorporated into a finite element framework. The material gra-
dation is approximated at the element level using a graded element formulation. A numerical example is
provided to demonstrate the efficacy of the CZM approach, in which the influence of the material gradation
on the crack branching pattern is studied.

1 INTRODUCTION

Functionally graded materials or FGMs are a new generation of engineered composites characterized by
spatially varied microstructures and smooth variation of mechanical/thermal/electromagnetic properties.
This new concept of engineering the material microstructure and recent advances in material processing
science allows one to fully integrate the desirable properties of individual material phases and acquire
optimized structural performance [1].

Fracture mechanics of FGMs has been an active area of research during recent years[2]. Compared to
the classical linear elastic fracture mechanics (LEFM) and some other existing fracture models, Cohesive
Zone Models (CZMs) provide advantages of allowing spontaneous crack nucleation, crack branching and
fragmentation, as well as crack propagation without an external fracture criterion[3, 4].

CZMs incorporate a cohesive strength and finite work to fracture in the description of material behav-
ior, and allow simulation of near-tip behavior and crack propagation. The concept of “cohesive failure”
is illustrated in Figure 1, in which a cohesive zone, along the plane of potential crack propagation, is
present in front of the crack tip. Within the extent of the cohesive zone, the material points which were
identical when the material was intact, separate to a distance ∆ due to influence of high stress state at the
crack tip vicinity. The cohesive zone surface sustains a distribution of tractions T which are function of
the displacement jump across the surface ∆, and the relationship between the traction T and separation
∆ is defined as the constitutive law for the cohesive zone surface.

CZMs can be categorized into two major groups: intrinsic CZMs and extrinsic CZMs. Brief discussion
on the characteristics of each will be presented in Section 3. For intrinsic CZM as employed in this
numerical example, the traction T first increases with increasing interfacial separation ∆, reaches a
maximum value δ, then decreases and finally vanishes at a characteristic separation value δc, where
complete decohesion is assumed to occur.

The CZM approach has the promise of simulating fracture process where cracking occurs sponta-
neously. The fracture path and speed become natural outcome of the simulation rather than being spec-
ified ad hoc or a priori. In this paper, a novel cohesive zone model developed for FGMs[6] is adopted to
simulate dynamic crack growth in FGMs.

2 NUMERICAL SCHEME

This section briefly outlines the essential components of the numerical scheme, namely, the FEM
framework incorporating CZM, the dynamic updating scheme and the material gradation.

To incorporate a CZM into the numerical scheme for dynamic fracture, the cohesive element is
developed and positioned along the potential path or region of crack propagation, and attached to the
volumetric elements, which follows a cohesive traction-separation relationship as shown in Figure 1. In
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Fig. 1: Schematic representation of cohesive zone model concept; (a) A plate containing crack; At po-
tential crack propagation path e.g., as circled in (b), cohesive element is inserted, as shown in (c), which
follows the specified cohesive zone model shown in (d) for normal traction; (e) cohesive zone in Mode I
case.

contrast, the conventional finite element, which is now called “bulk element”, follows conventional stress-
strain relationships (continuum description). The constitutive law of cohesive elements is inherently
embedded in the finite element model, so that the presence of cohesive elements allows spontaneous crack
propagation.

The FEM formulation incorporating cohesive elements is derived from the principle of virtual work,
and discretized using the explicit central difference time stepping scheme to update displacements u,
accelerations ü and velocities Úu as follows:

un+1 = un +∆t Úun +
1

2
(∆t)2ün (1)

ün+1 = M−1(F−Rint(n+1)) +Rcoh(n+1)
) (2)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (3)

where ∆t denotes the time step, M is the lumped mass matrix, F is the external force vector, Rint and
Rcoh are the global internal and cohesive force vectors, which are obtained from the contribution of bulk
and cohesive elements, respectively. Large deformation formulation is employed[6].

To treat the material nonhomogeneity inherent in the problem, graded elements, which incorporate
the material property gradient at the element level, are introduced. In this investigation, the scheme
proposed by Kim and Paulino [7] is adopted. The same shape functions are used to interpolate the un-
known displacements, the geometry, and the material parameters, and thus the interpolations for material
properties (E, ν, ρ) are given by

E =
m
∑

i=1

Ni Ei, ν =
m
∑

i=1

Ni νi, ρ =
m
∑

i=1

Ni ρi (4)

where Ni are the standard shape functions.
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3 INTRINSIC AND EXTRINSIC COHESIVE ZONE MODELS

The distinction between intrinsic and extrinsic CZMs is the presence of initial elastic curve, as shown
in Fig. 3. The two models were proposed by Geubelle and Baylor[5] (Fig. 3 (a)) and Camacho and Ortiz’
model[4] (Fig. 3 (b)), respectively. Intrinsic CZMs assume that, e.g. in pure tension case, traction Tn first
increases with increasing interfacial separation ∆n, reaches a maximum value Tmax

n , then decreases and
finally vanishes at a characteristic separation value δn, where complete decohesion is assumed to occur.
On the other hand, extrinsic CZMs assume that separation only occurs when interfacial traction reaches
the finite strength Tmax

n , and once the separation occurs, the interfacial cohesion force monotonically
decreases as separation increases.
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Fig. 2: Comparison of two typical intrinsic and extrinsic CZMs: (a) bilinear intrinsic cohesive zone model[3]

in pure tension and pure shear; (b) initially-rigid extrinsic cohesive zone model[4] in pure tension and
pure shear.

Comparison of the two types of CZMs are briefly summarized as follows:

• Intrinsic model requires that all cohesive elements be embedded in the discretized structure at the
beginning of simulation, and the mesh connectivity remains unchanged during the whole simulation
process.

• Intrinsic model allows easy implementation, however, it introduces artificial compliance depending
on the area of cohesive element surfaces introduced and the cohesive element property. If the crack
grows along a pre-defined path, the adverse effect is relatively minor, while for simulations involving
cohesive element inserted in a large area, the result can be highly non-convergent for different mesh
discretizations. Moreover, this concern usually necessitates adoption of very high cohesive strength,
e.g., Tmax

n = E/10, which is not physical.

• For extrinsic model, cohesive elements are adaptively inserted into the mesh. This usually requires
complicated updating scheme for the modified mesh by renumbering nodes and elements.

• Extrinsicmodel avoids the artificial softening effect present in intrinsic models. The critical fracture
stress adopted is usually much lower than that used in intrinsic models. For example, in their work,
Camacho and Ortiz[4] used a value around Tmax

n = E/600.

The above observations are made in general regarding the intrinsic and extrinsic models, not only
confined to the two models illustrated in Fig 3. Different types of CZMs within each group are developed
based on various considerations, and one may have certain advantage over the other for specific problems.
For example, the above bilinear CZM has an adjustable initial slope, which provides the user more control
on the artificial compliance than a model with fixed initial slope. Some of these issues were addressed in
more detail in the work by the authors[6], where mesh convergence study was carried out for both cracks
along pre-defined path and cracks along arbitrary path.

4 COHESIVE ZONE MODEL FOR FGMS

We propose a new FGM cohesive zone model [6], which is a combination of the models by Xu and
Needleman[3] and Jin et al.[8]. It avoids effective quantities and thus uses the actual quantities to describe
the relationship between normal traction-separation and tangential traction-separation.
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Assume that the energy potential of each individual material phase takes the exponential form [3]:

φi(∆) = φni + φni exp

(

−∆n

δni

){[

1− ri +
∆n

δni

]

(1− qi)

(ri − 1)
−
[

qi +
(ri − qi)

(ri − 1)

∆n

δni

]

exp(−∆2
t

δ2ti
)

}

(5)

in which superscripts i (i = 1, 2) denote the two individual material phases (e.g., metal and ceramic
respectively), and parameters ∆ = [∆n,∆t] denote the displacement jump across the cohesive surface in
normal and tangential directions. Other parameters in the expressions that respectively refer to material
phase i are explained hereby without subscript notation: parameters φn and φt are the energies required
for pure normal and tangential separation, respectively; δn and δt are the critical opening displacement for
normal and tangential separation, which are related to the cohesive normal strength Tmax

n and tangential
strength Tmax

t as

φn = eTmax
n δn, φt =

√

e/2Tmax
t δt, (6)

where q = φt/φn, and r is defined as the value of ∆n/δn after complete shear separation with Tn = 0.
The cohesive traction force vectors associated with material phases 1 and 2 in the 2-D case comprise

traction in normal and tangential directions as T1 = [Tn1, Tt1] ,T2 = [Tn2, Tt2] , and can be derived
directly from the energy potentials as

T1 = −∂φ1/∂∆, T2 = −∂φ2/∂∆. (7)

The resulting normal and shear traction components are illustrated in Figure 3 (a).
Let TFGM =

[

TFGM
n , TFGM

t

]

denote the traction force vector across the cohesive surfaces of a two-
phase FGM, which comprises normal and tangential traction force components. The cohesive traction
TFGM is approximated by the following volume fraction based formula

TFGM(x) =
V1(x)

V1(x) + β1[1− V1(x)]
T1 +

1− V1(x)

1− V1(x) + β2V1(x)
T2 (8)

where the parameter V1(x) denotes volume fraction of the material phase 1, while β1 and β2 are two
cohesive gradation parameters that describe the transition of failure mechanisms from pure material phase
1 to pure material phase 2, and should be calibrated with experimental data. Figure 3 (b) compares the
normal traction-separation laws for two material constituents.
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Fig. 3: (a) Exponential cohesive zone model[3] in pure tension and pure shear; (b) cohesive zone model in
pure tension case, for two material phases with strength ratio Tmax

n2 /Tmax
n1 = 0.35, and critical displace-

ment ratio δn2/δn1 = 0.15, where δni denotes normal separation at peak normal traction for material i.

5 NUMERICAL EXAMPLE

In this section, a test example is provided to illustrate the application of the cohesive model intro-
duced above to both homogeneous and FGM systems through investigation of dynamic crack branching
phenomenon for a plane strain plate containing an initial central crack subjected to tensile velocity
loading.
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Fig. 4: Branching problem; (a) geometry and boundary conditions of a plate containing a central crack
subjected to velocity loading; (b) Mesh descretization of the dynamic branching problem with half of the
original geometry modelled due to symmetry along the y axis.

5.1 Problem Description

The computation is carried out for a center cracked rectangular plate as shown in Figure 4 (a).
Symmetric velocity loading v0 = 5m/s is applied along the upper and lower surfaces. To explore the
influence of material gradation on crack branching patterns, three material gradation profiles are studied,
as listed in Table 1: case 1: both the bulk and cohesive properties are considered for homogeneous
materials; case 2: hypothetical “FGM”, with homogeneous bulk material and linearly graded cohesive
properties along y direction. case 3: FGM with both the bulk and cohesive properties linearly graded in
y direction.

Due to symmetry of the geometry, material gradation and loading condition with respect to y axis,
only the right half of the geometry is modelled for the numerical simulation, along with proper boundary
condition to account for the symmetry at x = 0. The domain is discretized with 40 by 40 quads each
divided into 4 T3 elements, as depicted in Figure 4 (b). Cohesive elements are inserted inside a rectangular
region right to the initial crack, as shown with the thicker lines. The other material parameters for the
CZM are: q = 1, r = 0, and β1 = β2 = 1.

Table 1: Three material gradation profiles for plate containing central crack.

y position E ν ρ GIc Tmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

case 1: homog. −1/2W to 1/2W 3.24 0.35 1190 352.3 324 0.4
case 2: graded 1/2W 3.24 0.35 1190 528.4 486 0.4

Tmax −1/2W 3.24 0.35 1190 176.1 162 0.4
case 3: graded 1/2W 4.86 0.35 1190 528.4 486 0.4
E & Tmax −1/2W 1.62 0.35 1190 176.1 162 0.4

5.2 Results for Various Material Gradation Profiles

Case 1: homogeneous PMMA material. Symmetric branch pattern is obtained (Figure 5 (a)). The
crack begins to branch at abranch = 1.05mm, and further branches occur when the cracks approach the
edge. Although crack branching can only take place either parallel to the coordinate axes or at ±45◦, the
overall branching angle is less than 45◦ from the x axis. In the example, the overall branching angle is
about 29◦, calculated by approximating the main branch as a straight line.

Case 2: Variation of cohesive strength. In this example, the cohesive strength Tmax is lower at
the bottom surface and higher at the top surface, which means weaker fracture resistance at the lower
region. Therefore, the crack branching is expected to be more significant at the lower part of the plate, as
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(a) homogeneous, t = 10.6µs (b) graded Tmax, t = 10µs

(c) graded Tmax, t = 8.25µs (d) graded E and Tmax, t = 10µs

Fig. 5: Crack branch pattern for various material gradation profiles; loading velocity at v0 = 5m/s;
(a) final crack pattern at t = 10.6µs for homogeneous plate (case 1); (b) final crack pattern at t = 10µs
for graded plate (case 2); (c) attempted crack branching at t = 8.25µs for graded plate (case 2); (d) final
crack pattern at t = 10µs for graded plate (case 3).

shown in Figure 5(b). The initial crack branching location is roughly the same as the homogeneous case
(Figure 5(c)), yet it disappears in the final figure (Figure 5(b)). As the lower region of the plate is weaker
in resisting fracture, the crack branch towards the lower region dominates, and shields the upward one
from developing further.

Case 3: Graded bulk and cohesive properties. In this example, both bulk and cohesive properties
vary linearly in y direction. On one hand, the weaker cohesive resistance favors the crack branching
into the y < 0 region. On the other hand, stress developed in the stiffer region (y > 0) is higher than
that at the compliant region, which may promote the crack branching into the y > 0 region. These two
mechanisms compete with each other in influencing crack branching pattern. The final crack pattern is
plotted in Figure 5 (d).

6 CONCLUSIONS

This paper presents a numerical scheme incorporating CZM to investigate dynamic fracture behavior
of homogeneous and FGMs under dynamic loading. Two basic types of elements are employed in the
present investigation: graded elements in the bulk material, and graded intrinsic cohesive elements to
model fracture. Discussion on the pros and cons of the intrinsic and extrinsic CZMs are also presented.
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Xu and Needleman[3] model was extended to treat FGMs, which eliminates the dependence upon effective
quantities, and may provide certain advantages when mixed-mode effect is prominent.

As illustrated in the study, the cohesive element approach is promising for modeling generalized
fracture without predefined external fracture criteria. Further numerical issues, including the artificial
compliance introduced in the system by incorporating cohesive elements, are studied and related results
are reported in recent publication by the authors[6].
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