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ABSTRACT

Functionally Graded Materials (FGMs) possess continuous variation of material properties and are characterized
by spatially varying microstructures. Recently, the FGM concept has been explored in piezoelectric materials
to improve properties and to increase the lifetime of bimorph piezoelectric actuators. Elastic, piezoelectric, and
dielectric properties are graded along the thickness of a piezoceramic FGM. Thus, the gradation of piezoceramic
properties can influence the performance of piezoactuators. In this work, topology optimization is applied to find
the optimum gradation variation in piezoceramics in order to improve actuator performance measured in terms of
output displacements. A bimorph type actuator design is investigated. The corresponding optimization problem
is posed as finding the optimized gradation of piezoelectric properties that maximizes output displacement or
output force at the tip of the bimorph actuator. The optimization algorithm combines the finite element method
with sequential linear programming. The finite element method is based on the graded finite element concept
where the properties change smoothly inside the element. This approach provides a continuum approximation
of material distribution, which is appropriate to model FGMs. The present results consider gradation between
two different piezoceramic properties and two-dimensional models with plane stress assumption.

Keywords: Micromachines, nanopositioners, piezoelectric actuators, topology optimization, finite element
analysis

1. INTRODUCTION

Piezoelectric microdevices have a wide range of applications in precision mechanics, nanopositioning and micro-
manipulation fields. Functionally Graded Materials (FGMs) are advanced materials that possess continuously
graded properties and are characterized by spatially varying microstructures created by nonuniform distributions
of the reinforcement phase as well as by interchanging the role of reinforcement and matrix (base) materials in a
continuous manner.1 The smooth variation of properties may offer advantages such as local reduction of stress
concentration and increased bonding strength. Recently, this concept has been explored in piezoelectric mate-
rials to improve properties and to increase the lifetime of bimorph piezoelectric actuators.2 These actuators
have attracted significant attention due to their simplicity and reliability. Usually, elastic, piezoelectric, and
dielectric properties are graded along the thickness of an FGM bimorph piezoactuator. This gradation can be
achieved by stacking piezoelectric composites of different compositions on top of each other.3 Each lamina can
be composed by a piezoelectric material or a composite made of piezoelectric material and a non-piezoelectric
material. Many studies have been conducted on FGM bimorph actuators.4–8 Previous studies8 have shown
that the gradation of piezoceramic properties can influence the performance of bimorph piezoactuators, such as
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generated output displacements. This suggests that optimization techniques can be applied to take advantage of
the property gradation variation to improve FGM piezoactuators.

Thus, in this work, topology optimization is applied to find the optimum gradation variation in FGM piezo-
ceramics to improve piezoactuator performance measured in terms of output displacements (see Figure 1). A
bimorph type actuator design is considered. Accordingly, the optimization problem is posed as finding the op-
timized gradation variation of piezoelectric properties that maximizes output displacement or output force at
the tip of the bimorph actuator while minimizing the effects of movement coupling. The optimization algorithm
combines the finite element method (FEM) with sequential linear programming (SLP). The FEM is based on the
graded finite element concept where the material properties change smoothly inside the element. The material
model is implemented based on the solid non-piezoelectric material with penalization (SIMP)9 where fictitious
densities are interpolated at each finite element. This approach provides a continuum approximation of material
distribution (CAMD),10 which is appropriate to model FGMs. The alternative FGM modelling using traditional
FEM formulation and discretizing the FGM into layers gives a discontinuous stress distribution,8 which is prob-
lematic.11 The present results consider gradation between either two different piezoceramic properties or gold
and piezoceramic properties, and consider two-dimensional models with plane stress assumption. Potentially,
the practical use of the proposed approach can dramatically broaden the range of application of functionally
graded piezoelectric actuators in the field of smart structures.

layer

?
property

Figure 1. Finding the optimum gradation variation in piezoceramics FGMs.

2. FUNCTIONALLY GRADED PIEZOELECTRIC FINITE ELEMENT MODEL

In this work, FGM piezoelectric actuators considered for design operate in quasi-static or low-frequency (inertia
effects are neglected). Thus the FEM matrix formulation of the equilibrium equations for the piezoelectric
medium is given by12:

[
Kuu Kuφ

Kt
uφ −Kφφ

]{
U
Φ

}
=

{
F
Q

}
=⇒ [K] {U} = {Q} (1)

where Kuu, Kuφ, and Kφφ are the stiffness, piezoelectric, and dielectric matrices, respectively, and F, Q, U,
and Φ are the nodal mechanical force, nodal electrical charge, nodal displacements, and nodal electric potential
vectors, respectively.12 The material properties continuously change inside the piezoceramic domain, which
means that they can be described by some continuous function of position (x) of the piezoceramic domain, that
is:

cE = cE (x) ; e = e (x) ; εS = εS (x) (2)

where cE , e, and εS are the stiffness, piezoelectric and dielectric properties, respectively. As a consequence,
according to the mathematical definition of Kuu, Kuφ, and Kφφ , these material properties remain inside the
matrices integrals and are integrated using the graded finite element concept11 where properties are continuously
interpolated inside each finite element based on property values at each finite element node. Approximation of
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the continuous change of material properties by a stepwise function, where a property value is assigned for each
finite element, results in undesirable discontinuity of the stress field.11

Because a non-piezoelectric conductor material and a piezoceramic material may be distributed in the piezo-
ceramic domain, the electrode positions are not known “a priori”, as discussed ahead. Thus, the electrical
excitation will be given by an applied electric field.13 In this case, all electrical degrees of freedom are prescribed
in the FEM problem, and thus, Eq. (1) becomes:

[
Kuu Kuφ

Kt
uφ −Kφφ

] {
U
Φ

}
=

{
F
Q

}
=⇒

{
[Kuu] {U} = {F} − [Kuφ] {Φ}[
Kt

uφ

]
{U} = {Q} + [Kφφ] {Φ} (3)

where {Φ} is prescribed. Thus, the mechanical and electrical problems are decoupled, and only the upper
problem of Eq. (3) needs to be directly solved. In this case, the optimization problem is essentially based on the
mechanical problem. As a consequence the dielectric properties will not influence the design.

3. TOPOLOGY OPTIMIZATION FORMULATION

Topology optimization is a powerful structural optimization technique that combines the FEM with an optimiza-
tion algorithm to find the optimal material distribution inside a given domain (extended fixed domain), bounded
by supports and applied loads, that contains the unknown structure.9, 14

The basic topology optimization formulation used in this work follows the formulation described in detail by
Carbonari et al..15 It is a continuous topology optimization formulation in which a continuous distribution of the
design variable inside the finite element is interpolated using some continuous function. In this case, the design
variables are defined for each element node instead of each finite element as usual. This formulation, known as
CAMD (“Continuous Approximation of Material Distribution”)10 is robust and it is also fully compatible with
the FGM concept and philosophy.15

We are interested in a continuous distribution of piezoelectric materials in the design domain, and thus, the
following material model is proposed based on a simple extension of the well-known SIMP model9:

CH = ρC1 + (1 − ρ)C2 (4)
eH = ρe1 + (1 − ρ) e2 (5)

where ρ (ρ = 1.0 denotes piezoelectric material type 1 and ρ = 0.0 denotes piezoelectric material type 2) are
pseudo-density functions describing the amount of material at each point of the domain. The design variables can
assume different values at each finite element node. CH and eH are stiffness and piezoelectric tensor properties,
respectively, of the homogenized material. C1 and e1 are tensors related to the stiffness and piezoelectric
properties for piezoelectric material type 1, respectively, and C2 and e2 are the corresponding properties
for piezoelectric material type 2. These are the properties of basic materials that will be distributed in the
piezoceramic domain to form the FGM piezocomposite. The dielectric properties are not considered because
a constant electric field is applied to the design domain as electrical excitation. As explained in Section 4,
this decouples the electrical and mechanical problems eliminating the influence of dielectric properties in the
optimization problem. Eventually, the piezoelectric material type 2 can be substituted by a non-piezoelectric
material (elastic material, such as Aluminum, for example), and in this case e2 = 0. For a discretized domain
into finite elements Eqs. (4) and (5) are considered for each element node, and the material properties inside each
finite element are given by a function ρ = ρ (x), according to the CAMD concept. This formulation leads to a
continuous distribution of material along the design domain which is ideal for the FGMs. Thus, by finding nodal
values of the unknown ρ function, we obtain indirectly the optimum material distribution functions, described
in Eq. (2).

The theoretical formulation for piezoelectric actuator design optimization using topology optimization was
developed by Carbonari et al.15 and it will be briefly presented here. It allows us to design a device that
generates the maximum output displacement, considering a fixed piezoceramic domain. However, in this work,
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the piezoceramic domain is not fixed and the piezoceramic electrodes are not known “a priori”. Thus, to surround
this problem an electric field is applied to the domain as electrical excitation. Essentially, the objective function
is defined in terms of generated output displacements (u1) for a certain applied electric field to the design
domain. The mean transduction (L2(u1, φ1)) concept is related to the electromechanical conversion represented
by the displacement generated in region Γt2 (see Figure 2) along a specified direction due to an input electrical
excitation in the medium. The subscripts are related to the load cases described in Figure 2 in which Ei = −∇φi

denotes the electrical field associated with load case i. Thus, the larger L2(u1, φ1), the larger the displacement
generated in this region in the traction t2 direction due to an applied electric field to the medium. Considering
di and φi the electrical displacement and electrical potential, respectively, the mean transduction is defined by16:

L2(u1, φ1) =
∫

Γt2

t2u1dΓ +
∫

Γd2

d2φ1dΓ =
∫

Γt2

t2u1dΓ (6)

as d2 = 0 in this problem. Therefore, the maximization of output displacement generated in a region Γt2 is
obtained by maximizing the mean transduction quantity (L2(u1, φ1)). The load cases considered for calculation
of mean transduction are shown in instances (a1) and (a2) of Figure 2.

E1 = cte

S

Γu

1

3

E2 = (x)

S

Γu

t2

Γt2

1

3

Case (a1) Case (a2)

E3 = 0.0

S

Γu

t3

Γt2

1

3 E4 = (x)

S

Γu

t4

Γt21

3

Case (b) Case (c)

Figure 2. Load cases used for calculation of the mean transduction and coupling constraint (cases a1, a2, and c), and
mean compliance (case b). Here, Ei = −∇φi denotes the electrical field associated with load case i.

The piezoactuator must resist to reaction forces (in region Γt2) generated by a body that the piezoactuator
is trying to move or grab. Therefore, the mean compliance must be minimized to provide enough stiffness (see
Figure 2b). The mean compliance is calculated by considering the load case described in case (b) of Figure 2
where traction t3 = −t2 is applied to region Γt2 , and the electric field is kept null inside the medium. Thus, the
mean compliance is defined by16:

L3(u3, φ3) =
∫

Γt2

t3u3dΓ (7)
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The displacement coupling constraint is obtained by minimizing the absolute value of the corresponding mean
transduction related to undesired generated displacement. This will minimize an undesired displacement gener-
ated when an electric field is applied. Therefore, the mean transduction L4(u1, φ1) related to the displacement
normal to the desired displacement at Γt2 must be minimized (see Figure 2c), and it is calculated by using Eq.
(6), however, considering a traction t4, normal to t2, on region Γt2 instead,15 as described in case (c) of Figure
2.

To properly combine the mean transduction, mean compliance maximization, and coupling constraint mini-
mization, a multi-objective function is constructed to find an appropriate optimal solution that can incorporate
all design requirements. The following multi-objective function is proposed to combine all these optimization
aspects:

F (ρ) = w ∗ ln [L2(u1, φ1)] − 1
2

(1 − w) ln
[
L3(u3, φ3)2 + βL4(u1, φ1)2

]
(8)

0 ≤ w ≤ 1

where w is a weight coefficient (0 ≤ w ≤ 1). The coefficient w allows control of the contributions of mean
transduction (Eq. 6), mean compliance (Eq. 7), and displacement coupling in the design. Accordingly, the final
optimization problem is defined as:

Maximize : F (ρ)
ρ(x)
subject to : Equilibrium equations for different load cases

0 ≤ ρ(x) ≤ 1
Θ(ρ) =

∫
S

ρdS − Θ1 ≤ 0

where S is the design domain, Θ is the volume of piezoceramic type 1 material in the design domain, Θ1 is the
upper-bound volume constraint defined to limit the maximum amount of material type 1. The other constraints
are equilibrium equations for the piezoelectric medium (see Section 2) considering different load cases. These
equations are solved separately from the optimization problem. They are stated in the optimization problem to
indicate that, whatever topology is obtained, it must satisfy this equilibrium equations. Our notation follows
the work of Bendsøe and Kikuchi.14

4. NUMERICAL IMPLEMENTATION

In this work, the continuous distribution of design variable ρ (x) is given by function10, 17

ρ (x) =
nd∑

I=1

ρINI (x) (9)

where ρI is a nodal design variable, NI is the finite element shape function, and nd is the number of nodes at
each finite element. The design variable ρI can assume different values at each finite element node. Due to the
definition of Eq. (9), the material property functions (Eqs. 4 and 5) will also have a continuous distribution inside
the design domain. Thus, considering the mathematical definitions of the stiffness and piezoelectric matrices of
Eq. (1), the material properties must remain inside the integrals and be integrated together by using the graded
finite element concept.11

The FEM matrix formulation of equilibrium Eq. (1), the mean transduction (Eq. 6) and mean compliance
(Eq. 7) can be calculated numerically through the expressions16:

L2(U1,Φ1) = {U1}t {F2} + {Φ1}t {Q2} = {U1}t {F2} (10)
= {U1}t [Kuφ]1 {Φ2} − {Φ1}t [Kφφ]1 {Φ2}

L3(U3,Φ3) = {U3}t {F3} + {Φ3}t {Q3} = {U3}t {F3} (11)
= {U3}t [Kuu]3 {U3} + {U3}t [

Kt
uφ

]
3
{Φ3}
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since {Φ1}t {Q2} = 0 (since {Q2} = 0) and {Φ3}t {Q3} = 0 (since {Φ3} = 0). The expression for L4(U1,Φ1)
is equal to Eq. (10) substituting {F2} by {F4} and {Q2} by {Q4}. The finite element equilibrium Eq. (1) is
solved considering 4-node isoparametric finite elements under either plane stress or plane strain assumption.

A relevant problem to be solved is how to define the piezoceramic electrodes. In previous design optimization
problems for piezoelectric actuators15, 16 the piezoceramic domain remains fixed and only the coupling structural
domain (elastic material) is changed. Thus, the position of electrodes surface is known. However, if non-
piezoelectric (such as Aluminum) and piezoelectric material are distributed in the design domain we cannot
define a priori the position of the piezoceramic electrodes because we do not know where the piezoceramic is
located in the design domain. To circunvent this problem, we consider the electrical problem independently for
each finite element by defining a pair of electrodes at each finite element, that is, each finite element has its
own electrical degrees of freedom, as described in Figure 3, in which ui and vi denote the node i horizontal and
vertical displacement, respectively, and φij denotes the j-th potential at the i-th node.

Figure 3. Finite elements with their corresponding electrical degrees of freedom. Here, ui and vi denote the node i
horizontal and vertical displacement, respectively, and φij denotes the j-th potential at the i-th node.

Thus, each finite element has 4 electrical degrees of freedom given by [φa, φb, φc, φd] (nodes are ordered
counterclockwise starting from the upper right corner of each finite element) considering that one of the electrodes
is grounded. Electrical voltage φ0 is applied to the two upper nodes, and thus, the four electrical degrees of
freedom will be specified at each finite element ([φ0, φ0, 0, 0]).13 This is equivalent to applying a constant
electrical field along the 3-direction in the design domain (see Figure 3).

Thus, the discretized form of the final optimization problem is stated as:

Maximize : F (ρI)
ρI

subject to : {F3} = −{F2} (Γt3 = Γt2)
{F4}t {F2} = 0 (Γt4 = Γt2)
[K1] {U1} = {Q1} [K2] {U2} = {Q2}
[K3] {U3} = {Q3} [K2] {U4} = {Q4}
0 ≤ ρI ≤ 1 I = 1..Ne∑Ndes

I=1 ρIVI − Θ1 ≤ 0

where VI is the volume associated with each finite element node and is equal to finite element volume. Ndes is
the number of nodes in the design domain. [K1] and [K3] are reduced forms of matrix [K2] considering non-zero
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and zero prescribed voltage degrees of freedom in the domain, respectively. The initial domain is discretized by
finite elements and the design variables are the values of ρI defined at each finite element node.

The boundary conditions for the piezoceramic domain for load cases (a1), (a2), (b), and (c) of Figure 2 are
shown in Figures 4(a), (b), (c) and (d), respectively.

~ ~ ~ ~

~ ~ ~ ~

F2

a1) a2)

F3 = -F2 F4

b) c)

Figure 4. Electrical boundary conditions for the design domain: a1) and a2) mean transduction; b) mean compliance;
c) coupling constraint function.

A flow chart of the optimization algorithm describing the steps involved is shown in Figure (5). The software
was implemented using the C language.

The mathematical programming method called Sequential Linear Programming (SLP) is applied to solve the
optimization problem since there are a large number of design variables, and different objective functions and
some constraints are considered.18, 19 The linearization of the problem (Taylor series) at each iteration requires
the sensitivities (gradients) of the multi-objective function and constraints. These sensitivities will depend on
gradients of mean transduction and mean compliance functions in relation to ρI .

Suitable moving limits are introduced to assure that the design variables do not change by more than 5–
15% between consecutive iterations. A new set of design variables ρI are obtained after each iteration, and the
optimization continues until convergence is achieved for the objective function.

5. RESULTS

The design of a bimorph piezoactuator will be presented to illustrate the FGM piezoelectric actuator design
using the proposed method. The idea is to simultaneously distribute two types of piezoelectric material or a
non-piezoelectric (in this case, Gold) and piezoelectric material. The design domain for this problem is shown in
Figure 6 and it has 5500 finite elements (rectangle discretized by a 500×11 mesh). The bimorph is essentialy a
piezoelectic cantilever type actuator. The design domain is divided into 11 horizontal layers and a design variable
(pseudo density ρI) is considered for each layer interface, as described in Figure 8. Thus, there are 12 design
variables. The center layer is made of Gold and it is kept fixed during optimization (non-optimized region). The
mechanical and electrical boundary conditions are shown in the same figure.

Proc. of SPIE Vol. 6166  616607-7

Downloaded from SPIE Digital Library on 19 Nov 2009 to 192.17.145.10. Terms of Use:  http://spiedl.org/terms



Initialization and
Data Input

Calculation of Mean Transduction,
Mean Compliance and Coupling

Constraint Functions

Calculation of Objective Function and Constraints

Converged?

Calculate Sensitivities

Solved LP problem 
with respect to ρI

Update ρI

Plotting results
Y

N

F2

Figure 5. Flow chart of optimization procedure.
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Figure 6. Bimorph design domain.
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Figure 7. Standard bimorph.

Table (1) presents the piezoelectric material properties used in the simulations for all examples. cE and e
are the elastic and piezoelectric properties, respectively, of the medium. The Young’s modulus and Poisson’s
ratio of Gold are equal to 83 GPa and 0.44, respectively. Two-dimensional isoparametric finite elements under
plane-stress assumption are used in the finite element analysis.
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ρ
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ρ
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ρ
I

Figure 8. Bimorph design domain divided in horizontal layers. A design variable is defined for each layer interface.

Table 1. Material Properties of PZT5A.

cE
11 (1010 N/m2) 12.1 e13 (C/m2) -5.4

cE
12 (1010 N/m2) 7.54 e33 (C/m2) 15.8

cE
13 (1010 N/m2) 7.52 e15 (C/m2) 12.3

cE
33 (1010 N/m2) 11.1

cE
44 (1010 N/m2) 2.30

cE
66 (1010 N/m2) 2.10

The electric field applied to the design domain is equal to 2200 V/mm (see Figure 6). Two designs were
obtained considering the value of w coefficient equal to 0.5 and 1.0, respectively. The displacement coupling
constraint was not activated, thus, the coefficient β is equal to zero in both cases. The volume constraint for
piezoelectric material Θ1 is set equal to 50%. The initial value for design variables (ρI) is equal to 0.15 in both
cases. Thus, the optimization problem starts in the feasible domain (all constraints satisfied). The results are
shown by plotting the pseudo-density gradation variation along the layers. Through material models described
in Eqs. (4) and (5) the property gradation variation can be obtained. The topology optimization results are
shown in Figure 9.
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a) b)

Figure 9. Bimorph optimal topology designs; a) w = 0.5; b) w = 1.0.

The optimization algorithm concentrates the piezoceramic in the upper and lower layers of the design domain.
The property gradation variation is symmetric in both cases. The optimization finished with the constraint Θ1

active in both designs. Table 2 describes X and Y displacement (ux and uy) at point A (see Figure 6) considering
2200V/mm electric field applied to the piezoceramic and coupling factors (Ryx = ux/uy) for obtained bimorph
designs. Notice the weak coupling between horizontal and vertical displacements.
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Table 2. Vertical displacement at point A (2200V/mm applied) and coupling factor (Ryx).

Bimorph ux(mm) uy(mm) Ryx(%) w β Θ1

Fig.9a 2.02 -0.02 0.99 0.5 0.0 0.5
Fig.9b 2.11 -0.02 0.95 1.0 0.0 0.5
Fig.7 2.02 -0.02 0.99 - - 0.5

From Table 2, comparing with the output displacement generated by the standard bimorph, the result from
Figure 9b presented some improvement. The low improvements are due to the fact Gold is very stiff in relation
to piezoceramic. A design considering a second material with stiffness 10 times lower than piezoceramic will be
considered in a next paper.

6. CONCLUSIONS

A topology optimization formulation was proposed which allows the search for an optimal gradation of piezo-
electric material properties in the design of FGM piezoelectric actuators, to achieve certain specified actuation
movement. The optimization problem allows the simultaneous distribution of two piezoelectric materials or
a non-piezoelectric (such as Gold) and piezoelectric materials in the design domain. In addition, a displace-
ment coupling constraint that minimizes undesired actuated displacements is also considered in the design. The
adopted material model in the formulation is based on the density method and it interpolates fictitious den-
sities at each finite element based on pseudo-densities defined as design variables for each finite element node
providing a continuous material distribution in the domain. The design of an FGM bimorph actuator is pre-
sented to illustrate that the actuator performance can be improved by finding the optimal gradation of FGM
piezoelectric material properties in the actuator. Considering the maximization of output displacement, the opti-
mization algorithm comes up with an optimized gradation variation of properties which consists of a distribution
of piezoceramic material in the upper and lower layers and gold in the central layers.

Other performance criterias can be considered and other FGM piezoactuators can be optimized using the
proposed approach help broadening the range of application of functionally graded piezoelectric actuators in the
field of smart structures.
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