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ABSTRACT

The micro-tools considered in this work consist essentially of multi-flexible structures actuated by two or more
piezoceramic devices that must generate different output displacements and forces at different specified points of
the domain and on different directions. The multiflexible structure acts as a mechanical transformer by amplifying
and changing the direction of the piezoceramics output displacements. Micro-tools offer significant promise
in a wide range of applications such as cell manipulation, microsurgery, and micro/nanotechnology processes.
Although the design of these micro-tools is complicated due to the coupling among movements generated by
various piezoceramics, it can be realized by means of topology optimization concepts. Recently, the concept
of functionally graded materials (FGMs) has been explored in piezoelectric materials to improve performance
and increase lifetime of piezoelectric actuators. Usually for an FGM piezoceramic, elastic, piezoelectric, and
dielectric properties are graded along the thickness. Thus, the objective of this work is to study the influence
of piezoceramic property gradation in the design of the multiflexible structures of piezoelectric micro-tools using
topology optimization. The optimization problem is posed as the design of a flexible structure that maximizes
different output displacements or output forces in different specified directions and points of the domain, in
response to different excited piezoceramic portions: while minimizing the effects of movement coupling. The
method is implemented based on the solid isotropic material with penalization (SIMP) model where fictitious
densities are interpolated in each finite element, providing a continuum material distribution in the domain. As
examples, designs of a single piezoactuator and an XY nano-positioner actuated by two FGM piezoceramics
are considered. The resulting designs are compared with designs considering homogeneous piezoceramics. The
present examples are limited to two-dimensional models because most of the applications for such micro-tools
are planar devices.

Keywords: Micro-/nano-positioners, MEMS, FGM, piezoelectric actuators, topology optimization, finite ele-
ment analysis

1. INTRODUCTION

Micro-tools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, and
micro/nanotechnology processes.1–3 The micro-tools considered in this work essentially consist of multi-flexible
structures actuated by two or more FGM (“Functionally Graded Material”) piezoceramic devices that must
generate different output displacements and forces at different specified points of the domain and on different
directions (see Figure 1). The multiflexible structure acts as a mechanical transformer by amplifying and
changing the direction of the piezoceramics output displacements.4 Thus, the development of these piezoelectric
micro-tools requires the design of actuated compliant mechanisms5 that can perform detailed specific movements.
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Although the design of these micro-tools is complicated due to the coupling between movements generated by
various piezoceramics, it can be realized by means of the topology optimization method.6

FGMs are advanced materials that possess continuously graded properties and are characterized by spatially
varying microstructures created by nonuniform distributions of the reinforcement phase as well as by interchang-
ing the role of reinforcement and matrix (base) materials in a continuous manner.7 The smooth variation of
properties may offer advantages such as local reduction of stress concentration and increased bonding strength.
Recently, the concept of FGMs has been explored in piezoelectric materials to improve the properties and increase
the lifetime of piezoelectric actuators.8 Usually in an FGM piezoceramic, elastic, piezoelectric, and dielectric
properties are graded along the thickness. Previous studies8, 9 have shown that the gradation law of piezoce-
ramic properties can influence the performance of piezoactuators, such as generated output displacements. This
suggests that optimization techniques can be applied to take advantage of the property gradation variation to
improve the FGM piezoactuator. Figure 1 illustrates the concept of multi-actuated flextensional piezoelectric
devices.
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Figure 1. Concept of multi-actuated flextensional FGM piezoelectric devices. (a)XY nanopositioner; (b) Piezoceramics
are responsible for XY displacements, rotation, and open/close movement of jaw.

The objective of this work is to study the influence of the piezoceramic property gradation variation in the
design of multiflexible structures of piezoelectric micro-tools using topology optimization. The optimization
problem is posed as the design of a flexible structure, as well as, each piezoceramic property gradation variation,
that maximizes different output displacements or output forces in different specified directions and points of
the domain, in response to different excited piezoceramic portions, while minimizing the effects of movement
coupling. The method is implemented based on the solid isotropic material with penalization (SIMP) model
where fictitious densities are interpolated at each finite element, providing a continuous material distribution
in the domain. As examples, design of a single piezoactuator and an XY nano-positioner actuated by two
FGM piezoceramics are considered. The resulting design is compared with design considering homogeneous
piezoceramics.

2. FINITE ELEMENT FGM PIEZOELECTRIC MODELING

The micro-tools considered here operate in quasi-static or low-frequency (inertia effects are neglected). The linear
finite element method (FEM) matrix formulation of the equilibrium equations for the piezoelectric medium is
given by10:

[
Kuu Kuφ

Kt
uφ −Kφφ

]{
U
Φ

}
=

{
F
Q

}
=⇒ [K] {U} = {Q} (1)

where Kuu, Kuφ, and Kφφ are the stiffness, piezoelectric, and dielectric matrices, respectively, and F, Q, U,
and Φ are the nodal mechanical force, nodal electrical charge, nodal displacements, and nodal electric potential
vectors, respectively.10
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In the case of FGM piezoceramics, all properties change continuously inside the piezoceramic domain, which
means that they can be described by some continuous function of position (x) in the piezoceramic domain, that
is:

cE = cE (x) ; e = e (x) ; εS = εS (x) (2)

where cE , e, and εS denote the stiffness, piezoelectric and dielectric properties, respectively. From the mathe-
matical definitions of Kuu, Kuφ, and Kφφ , these material properties remain inside the matrices integrals and are
integrated using the graded finite element concept11 where properties are continuously interpolated inside each
finite element based on property values at each finite element node. Approximation of the continuous change of
material properties by a stepwise function, where a property value is assigned for each finite element, results in
undesirable discontinuity of the stress field.11

When a non-piezoelectric conductor material and a piezoceramic material are distributed in the piezoceramic
domain, the electrode positions are not known “a priori”, as discussed in Section 4. Thus, the electrical excitation
will be given by an applied electric field.12 In this case, all electrical degrees of freedom are prescribed in the
FEM problem, and thus Eq. (1) becomes:

[
Kuu Kuφ

Kt
uφ −Kφφ

] {
U
Φ

}
=

{
F
Q

}
=⇒

{
[Kuu] {U} = {F} − [Kuφ] {Φ}[
Kt

uφ

]
{U} = {Q} + [Kφφ] {Φ} (3)

where {Φ} is prescribed. Thus, the mechanical and electrical problems are decoupled, and only the upper
problem of Eq. (3) needs to be directly solved. Essentially, the optimization problem will be based on the
mechanical problem. As a consequence, the dielectric properties will not influence the design.

3. DESIGN PROBLEM FORMULATION

The topology optimization formulation used in this work is described in detail by Carbonari et al.6 and it is
based on the continuous topology optimization concept in which a continuous distribution of the design variable
inside the finite element is considered through interpolation using a continuous function. In this case, the design
variables are defined for each element node, instead of each finite element as usual. This formulation, known as
CAMD (“Continuous Approximation of Material Distribution”)13, 14 appears more robust for designing piezo-
electric micro-tools.6 The material model is based on the SIMP (“Solid Isotropic Material with Penalization”)15

method combined with the CAMD approach, and states that at each point of the domain, the local effective
stiffness of the mixture CH as

CH = ρp
1C0 (4)

where CH and C0 are the Young’s modulus of the homogenized material and basic material that will be distrib-
uted in the domain, respectively, ρ1 is a pseudo-density describing the amount of material at each point of the
design domain, which can assume values between 0 and 1, and p ∈ [1, 4] is a penalization factor to recover the
discrete design. For ρ1 equal to 0 the material is equal to void, and for ρ1 equal to 1 the material is equal to solid
material. For a discretized domain into finite elements with continuous distribution of design variable, Eq. (4)
is considered for each element node, and the material property (e.g. Young’s modulus) inside each finite element
is given by a function ρ1 (x). This formulation allows a continuous distribution of material along the design
domain, instead of the traditional piecewise material distribution applied to previous formulations of topology
optimization, and it is ideal for the FGMs considered in the piezoceramic domain.

Because the objective is also to optimize the material gradation in the piezoceramic domain, an additional
material model must be defined for the domain. In this work, the following material model is proposed based on
an simple extension of the traditional SIMP:

CH = ρ2C1 + (1 − ρ2)C2 (5)
eH = ρ2e1 + (1 − ρ2) e2 (6)
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where ρ2 (ρ2 = 1.0 denotes piezoelectric material type 1 or ρ2 = 0.0 denotes piezoelectric material type 2)
refers to the pseudo-density function describing the amount of material at each point of the domain. The design
variables can assume different values at each finite element node. CH and eH are stiffness and piezoelectric
tensor properties, respectively, of the homogenized material. C1 and e1 are tensors related to the stiffness
and piezoelectric properties for piezoelectric material type 1, respectively; and, similarly, C2 and e2 refer to
the piezoelectric material type 2. These are the properties of basic materials that will be distributed in the
piezoceramic domain to form the FGM composite. The dielectric properties are not considered because a constant
electric field is applied to the design domain as electrical excitation. As explained in Section 2, this decouples
the electrical and mechanical problems eliminating the influence of dielectric properties in the optimization
problem. Eventually, the piezoelectric material type 2 can be substituted by the flexible structure material
(non-piezoelectric material, such as Aluminum, for example), and in this case e2 = 0. Analogous to the material
model described by Eq. (4), ρ2 does have a continuous distribution along the piezoceramic design domain, that
is, ρ2 = ρ2 (x), and so do the material properties. For a discretized domain into finite elements, ρ2 and Eqs.
(5) and (6) are considered for each finite element node. Thus, by finding the nodal values of the unknown ρ2

function, we obtain indirectly the optimum material distribution functions, described by Eq. (2).

The theoretical formulation for piezoelectric micro-tool design problem by using topology optimization was
developed by Carbonari et al.6 and it is briefly presented here. Essentially, a piezoelectric multi-actuator consists
of a coupling structure actuated by two or more piezoceramics4 where each piezoceramic is responsible for
actuating a specific multi-actuator movement. In addition, there is a coupling among actuated displacements due
to the fact that it is a flexible structure.5 When a piezoceramic is excited to generate a desired displacement, other
undesired displacements are generated. This generated undesired displacements can be decreased by decoupling
at most the actuated and undesired displacements. Figure 2 shows an example of a coupling structure multi-
actuated by piezoceramics.

Regarding the electrical excitation, when the distribution of a non-piezoelectric conductor material (such as
Aluminum, for example) and a piezoceramic material is considered in the piezoceramic domain, the electrode
positions are not known “a priori”. To circunvent this problem an electric field is applied as electrical excitation.12

When two piezoelectric materials are considered, the electrode positions are known and an electric field excitation
can be achieved by applying an electric voltage to the electrodes.

Therefore, in the formulation of the piezoelectric multi-actuator design optimization the objective is to design
a device such that when each piezoceramic is actuated, it generates an output displacement in a specified point
and direction with minimum coupling with displacements generated by other piezoceramics in other points and
directions. Thus, this design problem is related to flexible structures design theory considering multi-flexibility.16

The objective function is defined in terms of a combination of output displacements generated for a specified
applied electric field to each piezoceramic, and it must also minimize the coupling among displacements, which
can be achieved by including coupling constraints.6

Considering a specific actuation movement i, the mean transduction, or electromechanical function (Li
2(u

i
1, φ

i
1))

is related to the output displacement generated due to the applied electric field (see Figure 2). In the notation
Li

j(u
i
k, φi

k) the indices i, j, and k refer to the piezoceramic number, dummy load case, and considered load case,
respectively. u and φ are the displacement and electric field, respectively.6 To provide some stiffness to the
multi-flexible structure the mean compliance Li

3( ui
3, φ

i
3) must also be minimized. The coupling constraint is

obtained by minimizing the absolute value of the corresponding mean transduction Li
4(u

i
1, φ

i
1) between actuated

piezoceramic and generated undesired displacement. Finally, a multi-objective function which properly combines
these three functions is constructed to find an appropriate optimal solution that can incorporate all design re-
quirements, considering actuation movement i. The optimization problem has a volume constraint of material
in the design domain, and we refer to Carbonari et al.6 for more details.

In the design of the multi-actuated FGM piezoelectric micro-tools, an extra optimization problem of the same
type is solved for the piezoceramic domain to find the optimum gradation of the piezoelectric material, however,
the optimization will have the nodal values of ρ2(x) as design variables.

The final optimization problem is defined as:
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Figure 2. Coupling structure multi-actuated by FGM piezoceramics. Load cases for calculation of: mean transduction
and coupling constraint (case (a)), mean compliance (case (b)) (only for piezoceramic “1”). Here, Ej

i = −∇φi denotes
the electrical field associated with load case i applied to piezoceramic “j”.

Maximize : F (ρ1, ρ2)
ρ1, ρ2

subject to : Equilibrium equations for different load cases
0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ 1
Θ1(ρ) =

∫
S ρ1dS − Θ1S ≤ 0

Θ2(ρ) =
∫

SPZT
ρ2dS − Θ2S ≤ 0

where F (ρ1, ρ2) is a multi-objective function defined as a function of mean transduction and mean compliance
functions in the problem as described in detail by Carbonari et al..6 S is the design domain Ω without including
the piezoceramic, Θ1 is the volume of this design domain, and Θ1S is an upper-bound volume constraint defined
to limit the maximum amount of material used to build the coupling structure. SPZT is the piezoceramic domain,
Θ2 is the volume related to ρ2 design variable, and Θ2S is an upper-bound volume constraint defined to limit
ρ2 values when optimizing the FGM gradation function. The other constraints are equilibrium equations for
piezoelectric medium considering different load cases. The equilibrium equations are solved separately from the
optimization problem. They are stated in the problem to indicate that, whatever topology is obtained, it must
satisfy the equilibrium equations. Our notation follows the work of Bendsøe and Kikuchi.17

4. NUMERICAL IMPLEMENTATION

The continuous distribution of design variables ρ1 (x) and ρ2 (x) are given by the functions13, 14

ρ1 (x) =
nd∑

I=1

ρ1INI (x) ; ρ2 (x) =
nd∑

I=1

ρ2INI (x) (7)

where ρ1I and ρ2I are nodal design variables, NI is the finite element shape function, and nd is the number of
nodes at each finite element. The design variables ρ1I and ρ2I can assume different values at each node of the
finite element. Due to the definition of Eqs. 7, the material property functions (Eqs. 5 and 6) will also have a
continuous distribution inside the design domain. Thus, considering the mathematical definitions of the stiffness
and piezoelectric matrices of Eq. (1), the material properties must remain inside the integrals and be integrated
together by means of the graded finite element concept.11 The finite element equilibrium equation (1) is solved
considering 4-node isoparametric finite elements under either a plane stress or plane strain assumption. The
numerical expressions for mean transduction and mean compliance as a function of FEM matrices, described in
Eq. (1), are provided in detail in references.6, 18
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When non-piezoelectric conductor material (usually metal, such as, Aluminum) is considered in Eqs. (5)
and (6), a relevant problem to be solved is how to define the piezoceramic electrodes. If only different types
of piezoelectric materials are considered in these equations, the position of electrodes surface is known and is
defined by the piezoceramic domain geometry. However, if a non-piezoelectric conductor material (for example,
Aluminum) is also distributed in the piezoceramic design domain, we cannot define “a priori” the position of
the piezoceramic electrodes because we do not know where the piezoceramic is located in the design domain.
To circunvent this problem, we consider the electrical problem independently for each finite element of the
piezoceramic domain by defining a pair of electrodes at each finite element, that is, each finite element has its
own electrical degrees of freedom as described in Figure 3.

Figure 3. Finite elements with their corresponding electrical degrees of freedom. The notation is defined as follows, ui

and vi denote the node i horizontal and vertical displacement, respectively, and φij denotes the j-th potential at the i-th
node.

Thus, each finite element has 4 electrical degrees of freedom given by [φa, φb, φc, φd] (nodes are ordered
counterclockwise starting from the upper right corner of each finite element) considering that one of the electrodes
is grounded. Electrical voltage φ0 is applied to the two upper nodes, and thus, the four electrical degrees of
freedom are prescribed at each finite element, as follows ([φ0, φ0, 0, 0]).12 This is equivalent to applying a
constant electrical field along the 3-direction in the design domain (see Figure 3). In this case, all electrical
degrees of freedom are prescribed in the FEM problem, as already mentioned in Section 2.

The discretized form of the optimization problem is stated as:

Maximize : F (ρ1I , ρ2J)
ρ1I , ρ2J

subject to : Equilibrium equations for different load cases
0 ≤ ρ1I ≤ 1; 0 ≤ ρ2J ≤ 1 I = 1..Ne; J = 1..Np∑Ne

I=1 ρ1IVI − Θ1S ≤ 0∑Np

I=1 ρ2IVI − Θ2S ≤ 0

where VI is the volume associated with each finite element node, which is equal to finite element volume; and Ne

is the number of nodes in the non-piezoceramic design domain and Np is the number of nodes in the piezoceramic
design domain .

The boundary conditions for the piezoceramic domain for load cases (a) and (b) of Figure 2 are shown in
Figures 4(a) and (b), respectively. They represent constant and null electric field, respectively, applied to the
domain.
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Figure 4. Boundary conditions for the piezoceramic domain: (a)mean transduction and coupling constraint function
(∇φ = cte.); (b)mean compliance (∇φ = 0).
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Figure 5. Flow chart of optimization procedure.

A flow chart of the optimization algorithm describing the steps involved is shown in Figure (5). The software
was implemented using the C language.

The mathematical programming method called Sequential Linear Programming (SLP) is applied to solve the
optimization problem since there are a large number of design variables, and different objective functions and
constraints.18–20 The linearization of the problem at each iteration requires the sensitivities (gradients) of the
multi-objective function and constraints. These sensitivities will depend on gradients of mean transduction and
mean compliance functions in relation to ρ1I and ρ2J . The derivations are given by Carbonari et al..6

Suitable moving limits are introduced to assure that the design variables do not change by more than 5–15%
between consecutive iterations. A new set of design variables ρ1I and ρ2J are obtained after each iteration, and
the optimization continues until convergence is achieved for the objective function. The results are obtained
using the continuation method where the penalization coefficient p varies from 1 to 4 along the iterations. The
continuation method alleviates the problem of the multiple local minimum (or maximum).15

5. EXAMPLE AND RESULTS

5.1. Single Piezoactuator Design

Examples are presented to illustrate the design of piezoelectric micro-tools with FGM piezoceramics using the
proposed method. The design domains used for the examples are shown in Figure 6. They consist of regions
of piezoceramic whose shape remains unchanged during the optimization, and a domain S of Aluminum. The
objectives of optimization are to find the optimum material property gradation variation in the piezoceramic
domain, and the flexible structure optimum topology in the domain S. The piezoceramic design domain is
divided in horizontal layers and a design variable (pseudo density ρ2J ) is considered for each layer interface as
described in Figure 7.
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Figure 6. Design domains: (a) single piezoactuator; (b) XY piezoelectric nanopositioner.
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Figure 7. Piezoceramic design domain divided in horizontal layers. A design variable is defined for each layer interface.

Table (1) presents the piezoelectric material properties used in the simulations for all examples. Here, cE and
e are the elastic and piezoelectric properties of the medium, respectively. The Young’s modulus and Poisson’s
ratio of Aluminum are equal to 70 GPa and 0.33, respectively. Two-dimensional isoparametric finite elements
under plane-stress assumption are used in the finite element analysis.

Table 1. Material Properties of PZT5A.

cE
11 (1010 N/m2) 12.1 e13 (C/m2) -5.4

cE
12 (1010 N/m2) 7.54 e33 (C/m2) 15.8

cE
13 (1010 N/m2) 7.52 e15 (C/m2) 12.3

cE
33 (1010 N/m2) 11.1

cE
44 (1010 N/m2) 2.30

cE
66 (1010 N/m2) 2.10

The amount of electric field applied to any of the piezoceramics is 2000 V/mm (see Figure 6). For all
examples, the value of w coefficient is equal to 0.5. Values of other optimization parameters not described here
are adopted equal to the values presented by Carbonari et al..6 The initial values of design variables (ρ1I and
ρ2J) are set equal to 0.15. The optimization problem starts in the feasible domain (all constraints satisfied). The
designs are shown by plotting the average density value.

In the first example, the design of a single type piezoactuator is considered and the influence of the displace-
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ment coupling constraint is shown. The design domain for this problem is shown in Figure 6(a) and it has 3750
finite elements (rectangle discretized by a 75×50 mesh). The piezoceramic domain was discretized into 15 layers,
thus, 16 design variables. The mechanical and electrical boundary conditions are shown in Figure 6(a). The
volume constraint Θ1S is equal to 25% of the volume of the whole domain Ω without piezoceramic domain, the
volume constraint of the piezoceramic material Θ2S is equal to 50%. The piezoactuator is designed by both tak-
ing and not taking into account the displacement coupling constraint function. Thus, the topology optimization
problem is solved considering coefficient β equal to 0.0 and 0.1, respectively. The topology optimization results
are shown in Figure 8.

a) b)

Figure 8. Optimal topology results considering the influence of displacement coupling constraint; (a) β = 0.0; (b) β = 0.1.

In both designs, the optimization finished with the constraint Θ2 active, which means that half of the
piezoceramic domain is made of piezoceramic material. Table 2 describes X and Y displacements at point A (ux

and uy) (see Figure 8(a)) considering 2000V/mm electric field applied to the piezoceramic and coupling factors
(Ryx = ux/uy) for the piezoactuator designs. It is noticed that the displacement coupling is reduced when the
coupling constraint function is activated, however, this decrease is due to a change in the coupling structure
topology rather than the piezoceramic property gradation variation. In addition, the generated displacement is
decreased with the increase of β as already noticed by Carbonari et al..6

Table 2. Vertical displacement at point A and coupling factor (Ryx = ux/uy).

Piezoactuators ux(nm) uy(nm) Ryx(%) w β
Fig.8a 425.12 -409.94 96.4 0.5 0.0
Fig.8b 431.64 -172.90 40.1 0.5 0.1
Fig.9a 505.3 -183.4 36.3 0.5 0.0
Fig.9b 446.8 -169.4 37.9 0.5 0.0

5.2. XY Piezoelectric Nanopositioner

In the second example, the design of a XY piezoelectric nanopositioner is considered and the influence of
piezoceramic property gradation variation is analyzed in the design. The design domain for this problem is
symmetric and it has two piezoceramic domains as shown in Figure 6(b). The FEM discretization consists of
8100 finite elements (rectangle discretized by a 90×90 mesh). Each piezoceramic domain is discretized into 5
layers, thus, 6 design variables, with a total of 12 design variables. The mechanical and electrical boundary
conditions are shown in Figure 6(b). Two XY nanopositioner designs were obtained. In both of them the
volume constraint Θ1S is equal to 25% of the volume of the whole domain Ω without piezoceramic domain,
however, the volume constraint of the piezoceramic material Θ2S is set equal to 100% and 50%, respectively.
The displacement constraint function was not considered, thus, the coefficient β was set equal to zero for both
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results. The penalization coefficient p was varied from 1 to 3 along the iterations. The topology optimization
designs are shown in Figure 9.
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Figure 9. Optimal topology results considering the influence of piezoceramic property gradation variation; (a) Θ2S =
100%; (b) Θ2S = 50%; (c) ρ2I distribution in piezoceramic domain for Θ2S = 50%.

The optimization finished with the constraint Θ2 active in both designs. The first result is equivalent to
a design considering an homogeneous piezoceramic (non-FGM). Notice that the coupling structure topology is
slightly changed. Table 2 describes X and Y displacements at point A (ux and uy) (see Figure 6(a)) considering
2000V/mm electric field applied to the piezoceramic and coupling factors (Ryx) for obtained nanopositioner
designs. We conclude that even though the piezoceramics of the first nanopositioner (Figure 9(a)) has double
amount of piezoelectric material with respect to the piezoceramics of second nanopositioner (Figure 9(b)), it
generates a displacement only 13% larger. The displacement coupling was not changed.

6. CONCLUSIONS

The optimized design of piezoelectric micro-tools actuated by FGM piezoceramics is obtained by means of the
topology optimization method. The coupling structure topology and the piezoceramic property gradation are
simultaneously optimized. The designs are compared with these considering homogeneous piezoceramics (non-
FGM) and the influence of using FGM piezoceramics is analyzed. Based on the results obtained, we conclude
that almost the same values of displacement could be obtained, however smaller amount of piezoceramic are
used by applying the FGM concept. The optimum topologies of coupling structures are also slightly changed
when FGM piezoceramics are considered.
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