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Abstract. Large-scale topology optimization problems demand the solution of a large number of 
linear systems arising in the finite element analysis. These systems can be solved efficiently by 
special iterative solvers. Because the linear systems in the sequence of optimization steps change 
slowly from one step to the next, we can significantly reduce the number of iterations and the 
runtime of the linear solver by recycling selected search spaces from previous linear systems, 
and by using preconditioning and scaling techniques. We also provide a new implementation of 
the 8-node brick (B8) element for the continuous approximation of material distribution 
(CAMD) approach to improve designs of functionally graded materials. Specifically, we develop 
a B8/B8 implementation in which the element shape functions are used for the approximation of 
both displacements and material density at nodal locations. Finally, we evaluate the 
effectiveness of several solver and preconditioning strategies, and we investigate large-scale 
examples, including functionally graded materials, which are solved with a special version of the 
SIMP (solid isotropic material with penalization) model. The effectiveness of the solver is 
demonstrated by means of a topology optimization problem in a functionally graded material 
with 1.6 million unknowns on a fast PC. 
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INTRODUCTION 

The desired result of topology optimization is a domain where each element either 
is void or contains material. However, it is mathematically difficult to work with 
integer variables, thus relaxation is usually applied. By allowing intermediate material 
density between 0 and 1, we can compute the desired sensitivities. To obtain a final 
solution without intermediate densities, an intermediate density is penalized and made 
uneconomical in terms of the stiffness as a function of density or volume. At an early 
stage, the homogenization method [1] was used to derive the stiffness of intermediate 
densities from certain configurations of microstructures. However, the final solution is 
not supposed to contain microstructures. Therefore, the derivation of the stiffness for 
intermediate material density based on the homogenization approach only serves as a 
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means of penalization. Later the Solid Isotropic Material with Penalization (SIMP) 
approach [2] was proposed as a simpler way to derive the stiffness for intermediate 
material density (by interpolation). In the finite element setting, we use the nodal 
approach with continuous approximation of material distribution (CAMD). The 
CAMD approach is then extended to model functionally graded materials (FGMs) 
with the so-called FGM-SIMP model [6]. 

Problem Statement in the Continuum Setting 

The problem formulation for topology optimization using the CAMD approach is 
given below for the minimization of compliance subject to a volume constraint. 

min f ̂ u 

K ( E J u = f 

E, =(/7,(x))-E„ 

such that \ p^(x) = J A ^ , . / ? / " 

m 

where n is the number of nodes in each element, and m is the total number of 
elements. Moreover, K denotes the stiffness matrix, which is a function of the density 
distribution p, f is the load vector, u is the displacement vector, E denotes the matrix 
of elastic properties of the material, F„ is the total volume in use, and TV, refers to the 
shape functions of the finite element being used. Further details can be found in [6] 
(addressing FGMs) and related references in [3,7]. 

Functionally Graded Material (FGM) Domain 

In case the domain is functionally graded, that is, the properties of the material in 
the domain vary in space, the elasticity tensor is a variable with respect to location. To 
handle material gradation the FGM-SIMP model is used [6]: 

E^=/7-E„(x). 

For a simple exponentially graded material in 3D, the FGM-SIMP model becomes 
E„ (x) = E„e""+''̂ +''̂ . 

The CAMD approach is recommended to capture the gradient of FGM properties 
inside each element. 

K R Y L O V SUBSPACE RECYCLING FOR SYMMETRIC 
MATRICES 

The finite element analysis in topology optimization requires the solution of a 
sequence of linear systems, which in most apphcations are symmetric. In each 
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optimization step, the algorithm updates the density of each element (the topology), 
and the changes in the design variables tend to be small from one optimization step to 
the next. This holds especially towards the end of the optimization process, when the 
topology is converging. Hence, the optimization leads to small changes from one 
hnear system to the next, and certain properties of the solution of one system, or the 
search space generated for one system, remain useful for subsequent systems. First, 
the solution of one system can be used as an initial guess of the next system to reduce 
the initial residual. Second, an approximate invariant subspace derived from the 
Krylov space generated for one hnear system can be used to improve the convergence 
rate solving the next linear system. Other subspaces may also be used for 'recycling' 
[5], and these techniques may greatly improve the convergence rate of Krylov solvers 
if an appropriate subspace is chosen. This is the basic idea of Krylov subspace 
recychng [5]. For symmetric systems, we adapt the MINRES algorithm [4] for Krylov 
subspace recycling. By exploiting the symmetry of the matrix, we make the iteration 
cheaper and the recycling scheme more effective. Further details can be found in 
reference [8]. 

PRECONDITIONING AND SCALING 

For Krylov subspace methods applied to symmetric or Hermitian systems the ratio 
between the absolute largest and smallest eigenvalues, which is the condition number 
of the matrix, governs an upper bound on the convergence rate. The linear systems 
arising from large-scale finite element simulations in physics and engineering are 
generally ill-conditioned. In topology optimization, the ill-conditioning is significantly 
exacerbated by the wide range of element densities. To remedy this ill-conditioning, 
we rescale the stiffness matrices such that the diagonal coefficients are all the same, 
which is the case for a problem with homogeneous density. We propose to rescale the 
stiffness matrices K by multiplying with a diagonal matrix on both sides, 

K = D ' K D ' \ 
where D is the diagonal of K. The importance of such scaling and why it helps is 
explained for an idealized ID problem in [8]. To further improve the conditioning and 
reduce iterations, we apply an incomplete Cholesky preconditioner with zero fill-in to 
the explicitly rescaled system, 

K = D ' K D ' « m 
Figure 1 compares the condition numbers of four matrices, the original stiffness 

matrix K , the diagonally scaled stiffness matrix K , and both matrices multiphed 
with their respective incomplete Cholesky preconditioners. The rescaling significantly 
reduces the condition number, and also improves the effectiveness of the incomplete 
Cholesky preconditioning. Note that applying the Cholesky preconditioner to the 
stiffness matrix without first scaling leads to a condition number that is worse than 
that of the diagonally scaled system (without a Cholesky preconditioner). 
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FIGURE 1. Condition numbers for (1) the original stiffness matrices, K , (2) their incomplete 

Cholesky preconditioned forms, L K L , (3) the diagonally scaled stiffness matrices, K , and (4) 

their incomplete Cholesky preconditioned forms, L K L 

NUMERICAL RESULTS 

In this section, we give numerical results to illustrate the effectiveness of our recychng 
MINRES method and preconditioning as well as two large-scale design examples with 
the CAMD scheme. 

Krylov Subspace Recycling 

To test the effectiveness of our recychng MINRES solver, we solve a cantilever 
beam that is subject to a point load at the center of the free surface. The domain is 
discretized using 84x28x28 brick elements and continuous distribution of material 
density inside each element (B8/B8). Figure 2 shows a comparison of iteration counts 
and run times for the standard and recychng MINRES (RMINRES) solvers for several 
parameters choices (see [8]). Without recycling, the time to solve each hnear system in 
the optimization problem is roughly constant. After an initial phase, this time is about 
80% higher than the time to solve hnear systems using the RMINRES solver with the 
best parameter choice. Our recycling method exploits the slow variation of the hnear 
systems, and thus reduces the number of iterations significantly. 

Large-Scale Design with CAMD Approach 

To demonstrate the effectiveness of the iterative solver and the CAMD approach, 
we solve a design problem of approximately 1.6 milhon unknowns on a single 
processor PC. The smooth approximation of material density using the CAMD 
approach for large problems leads to a higher fidelity solution with smoother boundary 
surfaces. Figure 3 shows the final design in a homogeneous material. 
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FIGURE 2. Comparison of iteration counts and rantimes between the standard MINRES solver and 
the recycling MINRES (RMINRES) solver for several parameters choices. 

FIGURE 3. A cantilever beam design solved using the preconditioned, recycling MINRES solver and 
the CAMD approach; mesh size: 210x70x70 B8/B8 elements; total number of unknowns: 
approximately 1.6 million. Left: final design of an homogeneous material. Right: Two cross-sections 
from the final design. 

Large-Scale Design in a Functionally Graded Domain 

We also implemented the cantilever beam design for a simple exponentially graded 
material in 3D using the FGM-SIMP model, described earlier. In this example, the 
material is only graded along the height of the beam with non-homogeneity 
coefficient /? = 2/h { a = g = 0 ) , where h is the height of the beam. The 
configuration of the problem is the same as in the previous example. The results 
shown in Figure 4 refer to a non-symmetric stmctural configuration, which illustrates 
the effect of the material gradation in the design domain. 
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FIGURE 4. A cantilever beam solved in the FGM domain using the preconditioned, recycling 
MINRES solver and the CAMD approach; mesh size: 210x70x70 B8/B8 elements; total number of 
unknowns: approximately 1.6 million. Left: final design of FGM beam. Right: two cross-sections from 
the final design. 

CONCLUSIONS 

As suggested by the examples in this paper, the use of topology optimization is 
moving from conceptual designs towards final designs that can be used for fabrication. 
This evolution of the technology can be achieved by combining more accurate 
modeling (CAMD) with efficient solution schemes for large-scale problem (Krylov 
subspace recycling and preconditioning). 
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