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Abstract. Concrete fracture behavior is predicted by one of multi-scaling methods, called the 
virtual internal bond (VIB) model. The VIB model describes the microscopic interactions 
between the cement pastes and aggregates using the concept of homogenization. The 
microscopic behavior is connected to macroscopic behavior by the Cauchy-Born rule, which 
results in the strain energy function. From the macroscopic strain energy function, the VIB 
model represents both elastic and fracture behavior within the framework of continuum 
mechanics. In this study, a modified Morse functional potential is introduced for material 
particles interactions so that the potential is independent of the length scale lattice parameter. 
The other parameters in the potential function are determined on the basis of macroscopic 
fracture parameters, i.e. the fracture energy and the cohesive strength. Moreover, the fracture 
energy is evaluated in conjunction with the J-integral. Finally, the VIB model with the modified 
Morse potential is verified by the double cantilever beam test and validated by three-point 
bending tests. 
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INTRODUCTION 

Classical linear elastic fracture mechanics (LEFM) has limitations to simulate crack 
initiation and propagation, especially for quasi-brittle materials such as concrete [1]. 
To characterize a nonlinear fracture process zone, a cohesive surface element [2, 3] is 
introduced, based on the concept of cohesive zone model. The cohesive surface 
element describes fracture behavior while the bulk element captures, for example, 
elastic behavior. 

Based on a multiscale interpretation of a cohesive law, a virtual internal bond (VIB) 
model was presented by Gao and Klein [4, 5]. The VIB model describes the 
microscopic interactions between particles with the concept of homogenization. The 
microscopic behaviors are connected to macroscopic behaviors by the Cauchy-Born 
rule, which results in the strain energy function [6]. Therefore, the VIB model 
represents both elastic and fracture behaviors within the framework of continuum 
mechanics. Moreover, Gao and Ji [7] implemented the VIB modeling in nanomaterials 
illustrating transitions of the fracture mechanism from classical LEFM to one of 
homogeneous failure near the theoretical strength of solids. Afterwards, Thiagarajan et 
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al. [8] investigated dynamic fracture behavior for a brittle material under impact 
loading. 

This paper investigates fracture behavior of concrete by introducing a modified 
Morse potential. The potential is independent of a lattice parameter, and represents 
two basic fracture parameters, i.e. cohesive strength and fracture energy. 

THE VIRTUAL INTERNAL BOND (VIB) MODEL 

The macroscopic strain energy function is characterized by the bond potential 
function via the Cauchy-Bom rule. Based on the Cauchy-Bom rule, continuum 
behavior is described by a single mapping function, i.e. deformation gradient F. 
Therefore, the bonding potential, U{£), is defined by a deformed virtual bond length, 

e = eJ^-rF^, (i) 
along a bond direction ^, where £„ is an undeformed virtual bond length. Based on 
the bonding potential, a strain energy function is represented by the summation of the 
bonding potential with a bond density, D^, over domain Q, 

O = j U{£)D^dQ = {U{£)), (2) 

where (•••) = { •••D^dQ. 

In this study, the two dimensional constant bond density function, D^=D^, is 
considered, which illustrates an isotropic sohd, and has the same initial bond length 
{£„) over the domain. The constant bond density function and two dimensional bond 
direction, ^= {cosi/>,smi/>), simplify the strain energy function as follows 

(S) = D^fy(i)d^, (3) 

which is also suitable for the numerical investigation of fracture parameters. 
From the determination of the strain energy function (3), the constitutive relation is 

formulated on the basis of continuum mechanics. The Lagrangian strain, E, and the 2"'' 
Piola-Kirchhoff stress tensor, S, are used for the calculation of the stress and the 
material tangential modulus. The derivative of the strain energy with respect to the 
Lagrangian strain provides the second Piola-Kirchhoff stress, 

where the superscript prime denotes the derivative with respect to the virtual bond 
length. The material tangent modulus is obtained by the second derivative of the strain 
energy function with respect to the Lagrangian strain. 

^,^AKU, (5) 

which satisfies the Cauchy symmetry, C,j^_^ = C,^_j^, as well as the usual major and 
minor symmetries of elasticity. Because of these symmetries, only one elastic property 
is necessary. Therefore, the Cauchy symmetry is satisfied by the fourth order isotropic 
elasticity tensor whose Lame parameters {n ,^) are the same [8]. 
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Virtual Bond Potential: Modified Morse Potential 

The focus of the VIB model is the determination of the virtual bond potential U(l). 
Previous researchers [4, 5, 8, 9, 10] have utilized the two-parameter phenomenological 
cohesive law, 

[/W = ^(^-^„)exp(-(^-^„)/B), (6) 
for the bonding potential. The constant A is related to the initial Young's modulus 
while the constant B can be determined by the cohesive strength or by the fracture 
energy. Thus, this potential function can only characterize the initial elastic properties 
and one fracture parameter. 

This study modifies the generalized Morse potential proposed by Milstein [11], an 
atomistic pair bond potential, so that the proposed potential is independent of the 
initial bond length, and characterizes two fracture parameters, i.e. the fracture energy 
and the cohesive strength. Additionally, the modified Morse potential satisfies the 
general physical properties of an atomistic potential stated by Girifalco and Weizer 
[12]. The modified Morse functional potential is expressed as 

[/(^) = —!—[exp(-OTQ;(^/^„-l))-OTexp(-Q;(^/^„-l))] (7) 
m — \ 

SO that the potential function is independent of the lattice parameter (^„) because the 
particle distance (^) is normalized with respect to the lattice parameter. However, the 
Morse potential by Milstein [11] is dependent on the lattice parameter. The two 
exponents {m, a) in the potential characterize two fracture parameters: the cohesive 
strength and the fracture energy. 

Elastic Properties at Infinitesimal Strains 

Elastic material properties of the VIB model are evaluated at the state of small strain 
by defining the material tangential modulus in two different ways [4]. Either the strain 
energy function (3) of the VIB model or the linear elastic strain energy function 
represents the material tangential modulus. Then, from the Cauchy symmetry relation, 
by equating the tangential modulus from the strain energy function of the VIB model 
with the tangential modulus from the linear elastic strain energy function, one obtains 
the relationship between the shear modulus (M) and the bond potential, 

^ = ^|>:DJJ"(l>,), (8) 

for a two dimensional problem. The elastic properties are also represented by the 
Poisson's ratio (v) and Young's modulus {E) whose relationship is 

v='^2inAE = ^i>:DJJ"(i>,). (9) 

Elastic Fracture Properties and Mesh Dependence 

The essential fracture characteristic of the VIB model is that the fracture energy 
depends on the element size [13], which can be explained by the path independent J-
integral [14]. Because of the path independence, a contour is selected along the upper 
and lower bound of a localization zone QIL) where stress softening occurs for a mode I 
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fracture [13]. The selected contour results in the symmetric stress and displacement 
field, and then we obtain J for mode 1, 

J = h,[p,,dX,=G, (10) 

where P22 is the 1st Piola-Kirchhoff stress along the X2 direction. Therefore, the J-
integral introduces a length scale (hi) which is proportional to the fracture energy. 

Moreover, because the fracture energy depends on the locahzation zone size (hi), 
which is related to the VIB element size, the reference fracture energy (Gpo) is defined 
as corresponding to the reference localization zone size {hio}- If the size of the 
locahzation zone (hi) grows in the finite element mesh, the numerical result of the 
fracture energy (Gp) also increases with the same ratio as that of the locahzation zone. 

NUMERICAL VERIFICATION AND VALIDATION 

Numerical simulations of the VIB model are implemented by using a commercial 
software, i.e. ABAQUS, with the application of the user material (UMAT) subroutine 
capability. In this section, the element size dependence is verified by simulating the 
double cantilever beam (DCB) test. Furthermore, the VIB model is validated with the 
three-point bending (TPB) tests of Roesler et al. [15]. 

Verification of Fracture Properties and Element Size Dependence 

The numerical simulations of the DCB test verify the relationship between the 
fracture energy and the size of the locahzation zone, derived by the J-integral, because 
the DCB test provides the analytical solution of the energy release rate. The DCB 
geometry has an initial notch (ao) of 0.1 m, height (2/z) of 0.1m, and length (Z) of 1 m. 
The localization zone is defined by the VIB element along the direction of crack 
propagation. The exponents (m, a) in the bond potential are determined by numerical 
simulations of the pure tension test with the reference localization zone size (hio = 
0.0005m) because numerical results of the test provide the cohesive strength and the 
fracture energy. The peak stress corresponds to the cohesive strength (ft' = 4.15 MPa). 
The fracture energy of numerical results is the area under the stress-displacement 
curve (Gpo =164N/m). Additionally, the bond density is calculated by the equation (9) 
with the initial Young's modulus of 32GPa. 

Analytical solution (LEFM : 0 ^ = 164 N/m) 

Analytical solution (Beam theory : a = 0.1 m) 

Numerical simulation (VIB model) 

A/9 (mm) 

(a) 

Analytical solution (LEFM : G^ = 82 N/m) 

Analytical solution (Beam theory : a =0.1 m) 

^ ^ Numerical simulation (VIB model) 

A / 2 

A/2 (mm) 

(b) 
FIGURE 1. Numerical simulation results of DCB test using the VIB model with the localization zone 
size, (a) h^^ = 0.0005m and (b) /;i=0.00025m. 
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The numerical simulations of the DCB are implemented with two different VIB 
element sizes {hi = 0.0005m, 0.00025m), with the same geometry and with the same 
constants in the bond potential. For the size of 0.0005m, the numerical result is plotted 
in Figure 1(a) with the LEFM analytical solution whose fracture energy is 164 N/m. 
Figure 1(b) illustrates the agreement of the numerical result and the analytical 
solution. The localization zone size is 0.00025m for the numerical simulation and the 
fracture energy is 82 N/m for the analytical solution of LEFM. These numerical results 
illustrate that the fracture energy is proportional to the localization zone size. 

Experimental Validation: Three-Point Bending Tests 

In order to validate the VIB model for concrete, the authors compare numerical 
results with the previous experimental results from the TPB tests, performed by 
Roesler et al. [15]. The geometry of the specimens is described in Figure 2, and 
experimental elastic and fracture properties are presented in Table 1. 

o 

'- \ Thickness = 80mm 

T "" 
A 

L 

L 
D (mm) L (mm) S (mm) ap (mm) 

63 
150 
250 

350 
700 
1100 

250 
600 
1000 

21 
50 
83 

FIGURE 2. Geometry of specimens 

Based on the concrete properties, the constants in the modified Morse potential are 
evaluated by the numerical simulations of the pure tension test with the locahzation 
zone size of 0.5mm. Table 1 illustrates the calculated constants in the bonding 
potential. The exponent m increases with respect to the size. This is because the 
increase of specimen size produces larger total fracture energy with the fixed cohesive 
strength, which results in the shallow long-range potential. Moreover, this feature 
corresponds to the characteristics of the Morse potential; a larger value of m results in 
the longer range of the potential [11]. Figures 3 (a), (b) and (c) illustrate the 
correspondence between the numerical predictions of the VIB model and the 
experimental results for each specimen size with respect to the normalized load versus 
crack mouth opening displacement (CMOD) curves {P/tDft' - CMODft'/Gp). 

' Numerical resutls 
• Experimental data 

f 
^ ^ Numerical resutls 

Experimental data 

V- 9 
S; 0.05 t 

^ ^ Numerical resutls 
Experimental data 

x^ 
0 5 10 0 5 10 0 5 10 

CMOD/^ ' /G^ CMOD/^ ' /G^ CMOD/^ ' /G^ 

(a) (b) (c) 
FIGURE 3. Numerical predictions of load-CMOD curves compared with experimental data: (a) 
specimen size D = 63mm, (b) specimen size D = 150mm, and (c) specimen size D = 250mm 
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TABLE 1. Material properties of each size 
with the localization zone size of 0.5mm 

D(mm) 
63 
150 
250 

^•(GPa) / / ( M P a ) 

32 4.15 

of beam and the 

GpiN/m) 
119 
164 
167 

exponents in the bond potential 

a m 
34 315 
23 480 
22 510 

CONCLUSION 

The modified Morse potential is proposed for the bond potential in the VIB model. 
The modified potential function is independent of the lattice parameter (^J, and the 
VIB model characterizes both elastic and fracture behaviors. The elastic modulus, 
cohesive strength and fracture energy, which can be experimentally obtained, 
determine the bond density function and the modified Morse potential. The elastic 
modulus is associated with the bond density; and the cohesive strength and the 
fracture energy are evaluated by numerical simulations in conjunction with the 
localization zone size. The numerical simulation of the DCB test verifies that the 
fracture energy is proportional to the localization zone size for mode I fracture. In 
addition, the VIB model is vahdated by predicting the load-CMOD curves of TPB 
experimental tests. The model parameters in the bond density potential are estimated 
by the experimental fracture parameters without any calibration. The numerical results 
of the VIB model correspond to the experimental data. Furthermore, the present 
framework could be extended to account for other physical interactions, e.g. friction or 
fiber bridging. 
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