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ABSTRACT

This paper presents a computational framework appropriate for dynamic crack branching and fragmentation
processes investigation. The finite element method incorporates special interface elements based on a cohesive
zone model (CZM) to characterize the fracture process. A novel topology-based data structure is employed
to facilitate fast and robust manipulation of evolving mesh information when extrinsic cohesive elements are
inserted adaptively. To illustrate the application of the method, a set of “quasi-steady-state” crack propaga-
tion experiments exhibiting micro-branching phenomena in Polymethylmethacrylate (PMMA) are numerically
simulated. The simulation results compare reasonably well with experimental observations both globally and
locally, and demonstrate certain advantageous features of the extrinsic CZM with respect to the intrinsic CZM.

1 INTRODUCTION

Dynamic fracture instability in brittle materials has been a field of much interest and research during the past
decades [1]. Experiments have been performed on various amorphous brittle materials to investigate dynamic
fracture behavior; for instance, Homalite-100 [6, 7, 8, 9], PMMA [11, 10], Solithane-113 and polycarbonate [10].
Two phenomena remained the focus of interest among these observations: first, crack surface roughens as crack
speeds up, as the “mirror-mist-hackle" stages described in [8]; second, the onset of instability occurs at a speed
well below the theoretical limiting speed predicted by classical linear elastodynamics. Although crack instability
at high speed is predicted by the conventional linear elastodynamic theory, these experimental observations
reveal significant deviation of fracture behavior in the brittle material from those conditions suggested by the
linear theory.

This work investigates dynamic crack microbranching processes by incorporating a cohesive zone model
(CZM) in the finite element method to characterize the fracture process. One major challenge in simulating
branching and fragmentation phenomena is how to allow multiple cracks to form “freely” in a finite discretization.
Among the set of numerical schemes in the literature, the CZM has the advantage of allowing multiple crack
formation. Between the two classes of CZMs, i.e., “intrinsic” and “extrinsic” models, the latter is adopted
in the study as this approach avoids a number of disadvantages of the former, including the so-called “artificial
compliance”, which may result in significant reduction of stiffness of the modelled specimen. The extrinsic
CZM employed in the finite element scheme is characterized by a finite cohesive strength at onset of material
weakening and work to fracture. The implementation of the extrinsic CZM approach is facilitated by a novel
data structure that allows convenient and robust access to adjacency information as well as adaptive insertion
of cohesive elements during the course of the simulation [2, 3].
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2 INTRINSIC VERSUS EXTRINSIC COHESIVE ZONE MODEL

The concept of “cohesive failure” is illustrated in Figure 1 (a) for tensile (mode I) case. At the immediate
vicinity of crack tip, the material cannot sustain infinitely high stress, and material softens, which results, for
example, from void growth and microcrack formation. This status is simulated with the traction-separation
relationship law inside the cohesive zone, which is along the plane of potential crack propagation. Within the
extent of the cohesive zone, the material points which were identical when the material was intact, separate
to a distance ∆ due to the influence of the stress state at the crack tip vicinity. The cohesive zone surface
sustains a distribution of tractions T which are function of the displacement jump across the surface ∆, and the
relationship between the traction T and separation ∆ is defined as the constitutive law for the cohesive zone
surface.
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Figure 1: Cohesive zone concept and extrinsic CZM; (a) CZM considers material softening and separation using
distributed cohesive tractions along a cohesive surface at the crack tip vicinity. Circled numbers ¬ and  denote
the corresponding positions on the cohesive zone and cohesive law curves where material begins to soften (¬)
and where material completely loses fracture resistance capacity (); (b) initially-rigid extrinsic cohesive zone
model [5] in pure tension; (c) initially-rigid extrinsic cohesive zone model [5] in pure shear.

CZMs can be categorized into two major groups: intrinsic CZMs and extrinsic CZMs. The main distinction
between intrinsic and extrinsic CZMs is the presence of the initial elastic curve, as shown in Figure 1 (a). Intrinsic
CZMs assume that, e.g. in pure tension case, traction Tn first increases with increasing interfacial separation
∆n, reaches a maximum value Tmax

n , then decreases and finally vanishes at a characteristic separation value δn,
where complete decohesion is assumed to occur. On the other hand, extrinsic CZMs assume that separation
only occurs when the interfacial traction reaches the finite strength Tmax

n , and once the separation occurs, the
interfacial cohesion force monotonically decreases as separation increases.

In the present study, the model by Ortiz and Pandolfi [5] is employed, as shown in Figure 1 (b) and (c). This
model eliminates the artificial softening effect due to elastic deformation of cohesive interface present in intrinsic
models such as Xu and Needleman’s [14]. In the implementation stage, the cohesive elements are adaptively
inserted into the mesh, i.e. the initial topology of the mesh does not contain any cohesive elements. When a
certain fracture criterion is met, a cohesive element is inserted at the proper location of the mesh, which allows
the crack to propagate.

This model defines effective traction Teff and effective displacement ∆eff as

Teff =
√

T 2
n + η−2T 2

t , ∆eff =
√

∆2
n + η2∆2

t for Tn ≥ 0, (1a)

Teff = (|Tt|) /η, ∆eff = η (|∆t|) for Tn < 0 (1b)

where Tn and Tt are the cohesive tractions in normal and tangential direction, respectively; η is the shear
stress factor, which represents the mode mixity effect. When the fracture initiation condition Teff ≥ Tmax

n is
met, a new surface is introduced into the mesh by doubling nodes and creating interface cohesive elements.
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The cohesive force that resists the opening and sliding of the new surface is assumed to weaken irreversibly
with increasing crack opening. Irreversibility is retained by keeping track of the maximum displacement in the
simulation history and by using it as the indicator for loading or unloading.

Under loading condition, when the current effective opening displacement ∆eff is larger than that in the
history ∆eff(max)

, the cohesive traction ramps down linearly as displacement jump increases, and reduces to
zero as opening reaches critical opening displacement ∆n = δn. The decohesion is complete at this point and
cohesive force vanishes thereafter. Thus

Tn = Tmax
n

(

1− ∆eff

δn

)

∆n

∆eff
; Tt = ηTmax

t

(

1− ∆eff

δn

)

∆t

∆eff
(2)

If unloading occurs, the crack begins to close, and the traction obeys the linear unloading relation, assuming
unloading towards the origin:

Tn = Tmax
n

(

1− ∆effmax

δn

)

∆n

∆eff(max)

; Tt = ηTmax
t

(

1− ∆effmax

δn

)

∆t

∆eff(max)

(3)

as shown in Figure 1 (b) and (c). If the crack reopens, the reloading path follows the unloading path in the
reverse direction until ∆eff(max)

and then follows the original ramp-down relation (2).

3 FINITE ELEMENT SCHEME INCORPORATING COHESIVE ELEMENTS

To incorporate a CZM into the numerical scheme for dynamic fracture simulation, the cohesive element is
developed and implemented as part of the finite element scheme, which follows a cohesive traction-separation
relationship. In contrast, the conventional volumetric finite element, which is now called “bulk element”, follows
conventional stress-strain relationships (continuum description).

To model fracture initiation and propagation, cohesive elements are inserted “on-the-fly” to the existing
mesh, positioned along the predicted crack path, and attached to the bulk elements. Once inserted, the cohesive
elements produce cohesive traction that resists opening, depending on the interface separation by the cohesive
law. When interface opening exceeds critical value, the element loses all capacity against separation and crack
advances. The constitutive law of cohesive elements is inherently embedded in the finite element model, so
that the presence of cohesive elements allows spontaneous crack propagation, and thus it is very promising in
the investigation of bifurcation and/or of impact dynamic loading, where multiple crack paths are possible.
The difficulty of employing extrinsic cohesive model in finite element method, however, resides in the extensive
updating of mesh and topological information as crack advances, which is discussed in Section 4.

The FEM formulation incorporating cohesive elements is derived from the principle of virtual work, and
discretized using the explicit central difference time stepping scheme to update displacements u, accelerations
ü and velocities Úu as follows:

un+1 = un +∆t Úun +
1

2
(∆t)2ün (4)

ün+1 = M−1(F−Rint(n+1)) +Rcoh(n+1)
) (5)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (6)

where ∆t denotes the time step, M is the lumped mass matrix, F is the external force vector, Rint and Rcoh are
the global internal and cohesive force vectors, which are obtained from the contribution of bulk and cohesive
elements, respectively. Large deformation formulation is employed [15].

4 FRAMEWORK USING THE TOPOLOGICAL DATA STRUCTURE (TOPS)

Topological Framework for Cohesive Element Insertion. Extrinsic CZMs require modifications of the
mesh during the course of the simulation for the adaptive insertion of new cohesive elements along bulk element
interfaces. In order to efficiently handle such modifications, the mesh has to be described by means of a
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topological data structure, thus acquiring efficient access to the topological adjacency relationships among the
defined topological entities. In this work, the adjacency-based topological data structure (TopS) presented in
our previous work [3] is used. In this data structure (TopS), only nodes and elements are explicitly stored. All
other defined topological entities are implicit, and their representations are retrieved, as required, “on-the-fly”.
As a consequence, the memory space required to store the mesh is reduced, thus being appropriate for large
models.

Besides node and element, the data structure defines (and implicitly represents) three topological entities:
facet, edge, and vertex. The topological data structure provides support for the insertion of cohesive elements
along any facet that represents the interface between two bulk elements. The insertion of a cohesive element may
require the duplication of nodes, thus changing the connectivity of neighboring elements. Whether a node has
to be duplicated or not depends on the topological classification of the fractured facet. All mesh modifications
due to the insertion of a new cohesive element are based on local topological operations, thus being performed
very efficiently: the time needed to insert a new cohesive element is proportional to the number of topological
entities adjacent to the fractured facet [3].

Criteria to Insert Cohesive Elements The topological data structure (TopS) is a modular computational
layer which can be interfaced with any analysis code. In the present work, the insertion of new cohesive elements
along the interfaces between bulk elements is performed by the following procedure at chosen time intervals:

• Calculate the stress along each facet: for each facet between two bulk elements in the entire domain,
compute the traction components along the outer normal of the facet, and the effective stress Teff.

• Flag fractured facets: when criterion Teff ≥ Tmax
n is satisfied, the facet is flagged to be the site of cohesive

element insertion.

• Insert cohesive elements: call the topological data structure (TopS) functions to insert new cohesive
elements along fractured facets, updating the attributes of elements and nodes.

Topological Operations to Insert Cohesive Elements Once identified the facet along which a new
cohesive element has to be inserted, the data structure performs a set of topological operations in order to
update the mesh. Considering a triangular mesh, the set of operations is given by:

• Classify the facet against the mesh boundary: for each bounding vertex of the edge associated to the
fractured facet, the data structure checks whether it lays on the mesh boundary. This checking is done
by retrieving all adjacent facets around the vertex and verifying if any of them represents the interface
between a bulk element and the external boundary or between a bulk element and an existing cohesive
element.

• Duplicate the mid-side nodes: for quadratic (or higher order) elements, duplicate the mid-side nodes
along the edge associated to the fractured facet.

• Duplicate the corner nodes, if necessary: for each vertex on the boundary, duplicate the associated
element-corner node.

• Update the element incidences: for each duplicated node, update the incidence of adjacent elements.
The data structure identifies which elements must have their incidence updated.

• Insert a new cohesive element in the model: insert a new cohesive element with incidence given by the
new set of nodes along the fractured facet.

5 NUMERICAL EXAMPLE

Sharon and his co-workers [12, 11, 13] investigated “quasi-steady-state crack propagation”, i.e. the crack runs
at a relatively constant speed throughout the strip. The study focuses on characterization of the relationship

4



between microcrack pattern, crack surface characteristics and crack speed. Due to the large dimension of original
specimen, the numerical investigation uses a geometry of reduced dimension in comparison with the original
experiment, however, most of the features of the experiment are well reproduced.

5.1 Problem Description

Figure 2 (a) shows the geometry and boundary conditions used in the study. The strip is initially stretched
uniformly by imposing an initial displacement field

u(x, y; t = 0) = 0, v(x, y; t = 0) = εy (7)

which results in a uniform strain field at the initial time. The upper and lower surfaces are held fixed and a
small crack length a is introduced at the left edge at time t = 0. The material used is Polymethylmethacrylate
(PMMA) [14], and its properties are given in Table 1. In the numerical simulations GIIc is assumed to be equal
to GIc (GIIc = GIc).
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Figure 2: (a) Schematic representation of the geometry and boundary condition for the 2-D steady-state crack
propagation problem, using reduced dimension based on Sharon and Fineberg [11]; (b) Mesh discretization of
grid 16 × 64 and characteristic length h=250µm. Other meshes with grid 32 × 128 (h=125µm), grid 48 × 192
(h=83µm) and grid 64× 256 (h=62.5µm) use the same mesh pattern with different levels of refinement.

Table 1: Properties of PMMA [14] strip subjected to initial stretch.

E ν ρ GIc Tmax
n = Tmax

t δn = δt η cR

(GPa) (kg/m3) (N/m) (MPa) (µm) (m/s)

3.24 0.35 1190 352.3 129.6 5.44 1 939

In the experiment, the initial load results in an amount of stored strain energy per unit length of approxi-
mately 800− 5000Nm/m2 [11], and a stretch of approximately ε = 0.0027 to 0.0049 along the vertical direction
at initial time. To maintain the same energy stored per unit length in the numerical analysis as in the experi-
ment, the stress and strain applied at the initial time are much higher in the former case (numerics) than the
latter (experiments). The applied load in the experiment (10 to 18MPa) is much lower than material tensile
strength (62.1MPa), while in numerical analyses the initial uniform stress (37 to 96MPa) is close or even higher
than material tensile strength. Therefore, to avoid unwanted fracture at locations without stress concentration,
the cohesive strength used in the present study (E/25=129.6MPa) is chosen to be higher than the boundary
loading. This value does not match the real material tensile strength (62.1MPa), and the difference between
the actual and reduced dimension must be considered in interpreting the numerical results.

The domain is uniformly discretized by T6 elements of various element sizes as typically shown in Figure 2 (b).
Time step ∆t is chosen as a fraction (around 10%) of that required by the Courant condition for explicit updating
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scheme, to ensure stable computation when cohesive elements are present. Cohesive elements are adaptively
inserted in the finite element mesh, which allow crack to spontaneously grow and branch.

5.2 Numerical Results for Various Loading Cases

Driven by the strain energy stored in the pre-stretched strip, the crack propagates towards right edge of the
strip. In actual experiments, unless the crack path is constrained, the crack tip speed can hardly reach 50%
of Rayleigh wave speed due to energy dissipation mechanisms, for example, from micro crack formation at the
immediate crack tip vicinity. The energy dissipation mechanism is simulated by the formation of microbranching
at crack tip.
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Figure 3: Comparison of branch patterns for various
loading cases considering different applied strains (ε)
and using an initial mesh discretization consisting of
a 48 × 192 grid. (a) ε = 0.0085; (b) ε = 0.009; (c)
ε = 0.010; (d) ε = 0.012; (e) ε = 0.015.

V < Vc V ≈ Vc V > Vc

Figure 4: Experimental observation of branch-
ing instability as crack propagates in PMMA.
Figure reproduced from Figure 4 of Sharon and
Fineberg [11]. The critical crack speed at which
microbranch appears is denoted as Vc. (a) the ve-
locity of the crack transits from smooth function
of time at low velocity (left) to oscillatory function
at high velocity (right); (b) fracture surface tran-
sits from smooth surface (left) to coarse texture
(right); (c) A single crack is observed (left), while
microbranches appear at V≈ Vc (center), and in-
crease in length at higher velocities (right).

Experiments [11] indicate that with increasingly stored energy, the crack runs at higher velocity and generates
longer and more noticeable microbranches. Figure 3 demonstrates the transition from smooth crack to more
roughened crack with significant microbranches as initial stretch increases. The branches plotted in the figure
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consist of all the completely separated cohesive surfaces. The condition for cohesive element failure is defined
such that all three Gauss points of the elements have experienced complete decohesion (in terms of separation
∆eff). Therefore, some cohesive surfaces that are still active (i.e. not all Gauss points have reported decohesion),
are not included. Consequently, a “smooth” crack in the plot does not indicate non-existence of any microbranch,
rather, it means that even though microbranch may occur, they arrest before running more than one element
length.

Table 2: Comparison of crack initiation time and average crack
speed for different loading cases as shown in Figure 3.

Initial stretch ε Mesh grids
Crack initiation Average crack

time (µs) velocity (m/s)

0.0085 48× 192 1.61 518
0.009 48× 192 1.23 558
0.010 48× 192 0.98 572
0.012 48× 192 0.71 597
0.015 48× 192 0.47 642

Figure 3 indicates that for ε = 0.0085 case, the main crack runs smoothly through the entire strip, while
more microbranches appear for ε = 0.009 and ε = 0.01 cases (Figure 3 (b) and (c), respectively). As applied
loading increases, the microbranches also extend longer, as shown in Figure 3(d). This overall trends are in
agreement with the experiments by Sharon and Fineberg [11] (Figure 4). The crack initiation time and average
crack velocity for these loading cases are reported in Table 2. Apparently, crack initiates earlier and runs faster
at higher loading.

Other investigations which are conducted but not reported in the current paper include mesh convergence,
influence of applied load on crack velocity, as well as energy balance study.

6 CONCLUSIONS

In this study, the dynamic microbranching in brittle materials is investigated. A research code is developed
using explicit dynamic scheme and employing extrinsic cohesive zone element to model fracture behavior at the
crack tip. This finite element framework is supported by a newly proposed [3] adjacency-based topological data
structure (TopS), which provides efficient access to the geometrical and topological information necessary for
the adaptive insertion of extrinsic cohesive element.

Extrinsic CZM is employed in the investigation, which eliminates the unwelcome artificial compliance asso-
ciated with intrinsic CZM. The extrinsic model poses challenge both at the implementation stage and at the
interpretation of simulation results. The numerical framework is carefully designed to interact with the data
structure (TopS) so as to provide robust insertion of cohesive elements.

Numerical simulation is carried out based on a reduced dimension model of a dynamic fracture experiment
on PMMA. The numerical results reveal increased roughness of fracture surface, longer microbranches and
higher crack speed for increased energy input, which is in accordance with those observed in the experiment.
Various numerical issues are discussed in detail, including mesh convergence, cohesive element insertion check
time intervals, as well as energy evolution. Apparently, the extrinsic model is successful in reproducing the
numerous crack microbranching occurrence. Compared to Miller et al.’s work [4], which employs a potential-
based intrinsic CZM for the same problem, the present approach produces simulation results that resemble the
experiment better in both the microbranch angle and propagation length. This study thus reveal the importance
of adopting extrinsic CZM approach when cohesive elements are inserted extensively in a large region.
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