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Abstract. This study develops a micromechanical damage model for two-phase functionally 
graded materials considering the interfacial debonding of particles and pair-wise interactions 
between particles. Given an applied mechanical loading, in the particle-matrix zones, the 
interactions from all other particles over the representative volume element are integrated to 
calculate the homogenized elastic fields. The progressive damage process is dependent on the 
applied loading and is represented by the debonding angles which are obtained from the relation 
between the particle stress and the interfacial strength. In terms of the elastic equivalency, the 
debonded, isotropic particles are replaced by the perfectly bonded, orthotropic particles. The 
effective elasticity distribution in the gradation direction is correspondingly solved. Numerical 
simulations are implemented to illustrate the capability of the proposed model. 
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INTRODUCTION 

Since the mechanical behavior of functionally graded materials (FGMs) depends on 
microstructures including the heterogeneous constituents, their deformation and 
damage failure mechanisms are different from each of the monolithic constituents. 
One of the predominant damage mechanisms is the interfacial debonding between the 
particles and the matrix [1]. Prader and Degisher [2] observed particle debonding 
when the composites were subjected to an external loading. In Figure 1, a particle is 
initially perfectly bonded to a continuous matrix [Figure 1(a)]. When the normal 
interfacial stress exceeds the interfacial strength due to the external loading in the 
direction, the particle starts to debond from the matrix [Figure 1(b)]. Then, the 
interfacial stress relaxes and the interfacial debonding may be stabilized. Thus, the 
damage results in the reduction in the effective stiffness of the overall material. 
Several investigations of the interfacial debonding in homogeneous composites have 
been proposed in the literature [3-6]. However, the effects of the interfacial debonding 
on the effective behavior of FGMs have not been addressed yet. 

Due to the graded microstructure, the local field in FGMs not only greatly changes 
between two phases, but also spatially varies in the gradation direction. Thus, the 
interfacial debonding may only occur in some specific particles, and the magnitude of 
the damage also spatially depends on the location in the gradation direction. The 
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debonding further changes the local field through particle interactions, so the damage 
evolution is fully coupled with the mechanical response in the gradation direction. 
Therefore, the interfacial debonding of particles provides a significant effect on both 
the local fields in the microscopic scale and effective material properties in the 
macroscopic scale. 

FIGURE 1. Schematic illustration for interfacial debonding of a spherical particle embedded in 
continuous matrix: (a) initially the particle perfectly bonded to the matrix, (b) the particle partially 
debonded from the matrix in the X̂  direction, and (c) projections of the debonded area. 

This paper is the very first step toward investigating damage of functionally graded 
particulate materials by means of a multiscale approach based on micromechanics 
principles. Essentially, it combines the techniques of Yin et al. [7] and Liu et al. [6]. 
Although this prehminary investigation has several limitations, it offers a promising 
approach with room for further improvements. 

FORMULATION 

Consider an FGM containing two phases A and B with isotropic elastic stiffness C^ 
and C* , respectively. The global coordinate system of the FGM is denoted by 
{X^,X^,X^) with X3 being the continuous gradation direction. The overall grading 
thickness of the FGM is t. Three material zones exist in the gradation direction: Zone 

I (0 < X3 < 4 ) including phase A particles with phase B matrix, the Zone III 

{d^<X^<t) including phase B particles with phase A matrix, and the transition Zone 

II ((ij < X3 < d^). When the FGM is subjected to a uniform far-field stress 0° applied 

on the X3 boundary, the averaged stress in each X^ -X^ layer should be the same as 

0°, based on the equilibrium condition. The averaged stress and strain in the X^ -X^ 

layer are defined as the volume average of the stress and strain on the two phases, and 
are expressed as 

c^=Hx,)C^:{^Y{X,) + [l-^{X,)]C^:{^Y{X,), (I) 

{.){X,) = ^{X,){.f{X,) + [l-^{X,)]{.y{X,). (2) 
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Using Yin et al. [7], we can obtain the averaged particle strain in terms of the 
arbitrary material point X^ 

+ <P,{X,)^C-'-¥{X,):{z)l{X,) 

where (?„),« = [<5,.<5«-(4-5v„)(<5;,<5.,+<5,,<5.,)/[30/^„(l-v„)] , AC = C , - C „ , and D 

and F represent the contributions of interactions from all other particles. Their 
explicit forms can be found in Yin et al. [7]. 

In the particle-matrix zone with Q<X^<d^, the boundary at X3 = 0 corresponds to 

the 100% matrix material (i.e., (̂  (O) = 0). The corresponding boundary conditions can 

be proposed as 

(£)^(0) = C - ' : a ° . (4) 

With the combination of Eqs. (1), (3), and (4), the averaged strain tensors in both 
phases can be numerically solved on the basis of standard backward Eulerian method. 
Similarly, in the other particle-matrix with the range of d^<X^<t (zone III), we can 

also calculate the averaged strain fields by the switch of matrix and particle phases. 
For the transition zone ll{d^<X^< d^), a phenomenological transition function [7] 

is introduced as 

~'<t>{x,)-<t>{d,) 
fix,)-

^ j{X,)-^{d,) 
<p{d^)-<p{d^) (t>{d,)-(t>{d^) 

(5) 

so that the averaged strain of each phase {A or B) in the transition zone II can be 
approximated as a cubic Hermite function appropriately contributed by the averaged 
strain of the same phase {A or B) from two particle-matrix zones (zones I and III). 
Namely, 

{-rZn (̂ 3)=/(X3)(.)r. {x.w-f{x.mzL i^^ • i^ 
The overall averaged strain tensor at each layer in the transition zone can be further 

obtained from Eq. (2). However, because the micro structure of the transition zone is 
not truly characterized, this treatment only provides a phenomenological 
approximation for the averaged strain in the transition instead of a rigorous solution. 

When the applied loading 0° is small, the particles are perfectly bonded to the 
matrix. However, with increase of applied load, the interfacial normal stress can reach 
the interfacial debonding strength so that particles start to debond from the matrix. The 
stress on the debonded surface area is released with extra deformation allowed. Thus, 
the effective stiffness of the particles reduces as a result of the increase of debonding 
area. In the present damage model, when partial interfacial debonding occurs, the 
equivalent stiffness method [6] is introduced; i.e., the partially debonded isotropic 
particles are replaced by fictitious orthotropic yet perfectly bonded particles. 
Consequently, the above micromechanical analysis is still apphcable. 

For simplicity, the averaged stress of particles is assumed to represent the 
interfacial stress so that the interfacial normal stress is expressed as 
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normal ^T -— . /^\ 

where t is the outward normal vector at any point at the interface. By comparing the 
interfacial normal stress with the interfacial debonding strength cr̂ „ at any surface 
point, we can solve the debonding area on the surface of the particle as a function of 
debonding angles to the directions of the three principal stresses {a^,a^,a^^ in the 

particles. Initially, the loading is small so that all the principal stresses are less than the 
interfacial strength. With further increase of the far-field loading, following Liu et al. 
[6] for composite materials, the interfacial debonding spreads in the following three 
categories. In each category, for one-eighth of a particle with structural symmetry, the 
debonding area is described by two debonding angles, which are defined in terms of 
the principal stresses and the interfacial strength and vary in the range of 0 to ;?• / 2 
[6]. Three damage parameters!), (/= 1,2,3), projections of the debonding area in 

three principal directions normahzed by the total projected area, are derived to 
evaluate the loss of the particles' tensile load-transfer capacity for each category as: 

Category 1 CTJ > cr^^ > cr̂  > cr. 

Only the first principal stress is greater than the interfacial strength cr̂ „ . The 

interfacial debonding initiates from the first principal direction, which is 
corresponding to the white area on the surface of the particle in Figure 1(b), and 
propagates towards the other two principal directions. Figure 1(c) shows one eighth of 
the debonded particle. Here, A^, B^, and Q denote the projections of the debonded 

area onto the three mid-planes of x^-x^, x^-x^, and x^-x^, respectively; and A^, 

5j , and Q denote the corresponding projections of the undebonded area. Therefore, 

A^+A^ = B^+B^ = C^+C^ = Tta^ I \ . The three damage parameters are expressed as 

A, a, - /j„, 

a 
^2 

na^ir^^ 

n ^2 2 ^ 
D^ = —;r— = — arcsm Tra / 4 n 

A = —^— = — arcsm 
TTO^ I 4 71 

i^l 

b 
u. 
h 

-^3J 

- O " . 
en 

-C^3 

- O " . 
en 

V V ^ l ^3 \ ^ 1 ^ 3 \ | ^ 1 '^2 ) 
(8) 

Ci -cr„ , o" 

V V ^\-^2 V ^\-^2 V '^1-^3 ) 

Category 2 CTJ > cr̂  > a^^. > a^ 

Two principal stresses are greater than the interfacial strength cr̂ „ . The 

interfacial debonding propagates around the particle, which is corresponding to the 
gray area on the surface of the particle in Figure 1(b), but still bond to the matrix along 
two ends in the other principal direction. In Figure 1(c), A^, B^, and Q denote the 

projections of the debonded area onto the three mid-planes of x^-x^, x^-x^, and 

Xj - x^, respectively. As a result, the three damage parameters are obtain as 
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A = ^ 7 T = - a r c s i n J ^ ^ ^ ^ ^ + J ^ 7 ^^iy- ^{' . (9) 

Category 3 CTJ > cr̂  > cr, > cr^^. 

In this case, all principal stresses exceed the interf"acial strength. Thus, the entire 
interface is debonded as a void and the particle cannot transfer any tensile loading. 
The damage parameters are written as 

D^=D^=D,=1. (10) 

With the increase of the damage of particles, a larger deformation is permitted and 
thus the overall composite becomes more compliant. To simulate the stiffness 
softening, the damaged particle is replaced by the fully bonded one, but with reduced 
stiffness in certain directions corresponding to the damage parameters. Thus, the 
anisotropic, equivalent stiffness tensor of the damaged particle reads: 

A^;"=^rv«+'"/'°"k'5.v+'5-A*)' (11) 
where the two second-rank tensors related to damage parameters are 

1 - - = 1 - - ( 1 - D , ) ( 1 - D , ) , Mf/''=M'°''{l-D,){l-D,). (12) 

with the particle as either phase A or phase B. 
To test the effective elasticity at any loading condition, an extra infinitesimal 

testing stress is applied on the lower and upper FGM boundaries, and then the 
averaged strain distribution in the gradation direction is calculated from the above 
formulation. From the relation between the testing stress and the increment of the 
averaged strain, we calculate the effective elasticity distribution. For instance, given a 
small uniaxial testing loading ACT,, on the lower and upper FGM boundaries, we solve 

the increment of the averaged strain as A£(X3). Then, the effective Young's modulus 

and the Poisson's ratio at any material layer can be derived as: 

/ \ Acr„ . . Ae,,(XA 

^ " Ae,,{X,) ^ " Ae,,{X,) 

RESULTS AND DISCUSSION 

To demonstrate the capability of the proposed model, two loading types are 
illustrated: uniaxial loading and shear loading, which correspond to FGMs subjected 
to negative pressure and frictional loading, respectively, in their apphcations. The 
sample FGM is the C/SiC FGM with the silicon carbide as phase A 
(E^ =320GPa,v^=0.3 ) and the carbon as phase B {E^ =28GPa,v^ =0.3 ). The 

806 

Downloaded 18 Nov 2009 to 192.17.145.10. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



interfacial debonding strength is assumed as cr̂ „ = 100 MP a .The lower and upper 

bounds d^ and d^ are selected where the corresponding volume fractions are 40% 

and 60%, respectively. The volume fraction distribution is assumed to be linear. 

GPa, v=0.3, a =100MPa E =320GPa, V =0.3, E =28 GPa, v =0.3, a =100MPa 
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FIGURE 2. Results for the uniaxial tensile loading: (a) effective Young ' s modulus distribution; and 

(b) effective shear modulus distribution. 

Figures 2(a) and 2(b) demonstrate the elastic modulus distributions in the gradation 

direction changing with the uniaxial tensile loading. For a°^ = 65MPa , particles 

debond in the range of 0 < X, < 0.24/ in the zone I, and in this range the effective 

Young's modulus decreases along with the value of X^ and rapidly increases to the 

value for 0-33 = 50MPa at X^ = 0.24/ due to no debonding; whereas the effective 

shear modulus still increase and is almost the same as that for cr3°3 = 50MPa. The 

above observation is due to the fact that the debonding angles are small and the 
debonding area is along two caps of particles in the loading direction, having a larger 
projection in the loading direction but much smaller projections in the other two 
directions. Thus the effective Young's modulus is reduced much faster than the shear 
modulus comparing with those for the fully bonded condition. For cr3°3 = 15MPa, the 
debonding range in the FGM becomes larger asO<X3 <0.51/ and the debonding 
angles also increase comparing with those for cr3°3 = 65MPa . 
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