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Abstract Natural fibers are promising for engineering applications due to their low cost. They are 
abundantly available in tropical and subtropical regions of the world, and they can be employed as 
construction materials. Among natural fibers, bamboo has been widely used for housing construction 
around the world. Bamboo is an optimized composite material which exploits the concept of 
Functionally Graded Material (FGM). Biological structures, such as bamboo, are composite materials 
that have complicated shapes and material distribution inside their domain, and thus the use of 
numerical methods such as the finite element method and multiscale methods such as homogenization, 
can help to fiirther understanding of the mechanical behavior of these materials. The objective of this 
work is to explore techniques such as the finite element method and homogenization to investigate the 
structural behavior of bamboo. The finite element formulation uses graded finite elements to capture 
the varying material distribution through the bamboo wall. To observe bamboo behavior under applied 
loads, simulations are conducted considering a spatially-varying Young's modulus, an averaged 
Young's modulus, and orthotropic constitutive properties obtained from homogenization theory. The 
homogenization procedure uses effective, axisymmetric properties estimated from the spatially-varying 
bamboo composite. Three-dimensional models of bamboo cells were built and simulated under 
tension, torsion, and bending load cases. 
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INTRODUCTION 

Biological systems such as plant and tree stems, animal bones and other biological 
hard tissues tend to be optimized for the loading conditions to which they are subjected. 
Biological stractures are usually made of composite materials which are multifunctional 
and have living organisms which provide adaptability. This occurs due to the fact that 
biological systems must be able to perform a variety of functions well, and thus, they are 
optimized for multifunctional purposes. As a consequence, biological structures are 
comphcated and non-uniform, which makes their modelling difficult and involved. 

Among biological structures, the natural fibers are very interesting for engineering 
apphcations due to their low cost and availability. They grow abundantly in tropical and 
subtropical regions of the world, and they can be usefully employed as construction 
materials [1,2,3,4]. Examples of natural fibers are bamboo, coconut fibers, sisal, etc... 

Bamboo is a tree-like plant that belongs to the subfamily Bambusoideae of the grass 
family Poaceae. Bamboo stalks are optimized composite materials that naturally exploit 
the concept of Functionally Graded Materials (FGMs) [1, 5-7]. FGMs are materials that 
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possess continuously-graded properties and are characterized by spatially-varying 
microstructures created by nonuniform distributions of the constituent phases. In these 
materials, the role of reinforcement and matrix (base) material interchanges in a 
continuous maimer [8]. The smooth variation of properties may offer advantages such as 
reduction of stress concentration and increased bonding strength [9, 10]. 

The bamboo culm is an approximately cylindrical shell that is divided periodically by 
transversal diaphragms at nodes. Between 20-30% of the cross-sectional area of the culm 
is made of longitudinal fibers that are distributed non-uniformly through the wall 
thickness, the concentration being most dense near the exterior (see Fig. 1(a)). The 
orientation of these fibers makes bamboo an orthotropic material with high strength 
along, and low strength transverse to fibers [3, 11]. 
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(a) (b) 
Figure 1. (a) Cross section of culm showing radial distribution of fibers through the thickness (photo 
courtesy of [5]); (b) An axisymmetric composite and its corresponding unit cell. 

Most work in the literature that characterizes bamboo is experimental, dedicated to 
estimating strength and stiffness properties [11-13]. Few works treating the modeling of 
natural fibers have been found in the literature, and these deal primarily with simplified 
analytical models. 

Considering that biological structures, such as bamboo, have complicated shapes and 
material distribution inside their domain, the use of numerical methods such as the finite 
element method (FEM) [14, 15] and multiscale methods, such as homogenization [17] can 
be useful tools for understanding the mechanical behavior of these materials. The objective 
of this work is to explore computational techniques, including the FEM and a multi-scale 
method based on homogenization, to investigate the structural behavior of bamboo. The 
homogenization method enables the computation of effective properties of a composite 
material. With these properties, it is possible to model the composite structure as an 
equivalent homogeneous medium, allowing the use of traditional FEM codes or simple 
analytical models for numerical modeling. 

MODELING BAMBOO WITH GRADED FINITE ELEMENTS 

When modeling a functionally graded material using the FEM, the continuous 
variation of material properties within the domain must be taken into account. In the 
traditional finite element formulation [14], the properties are assumed to be constant 
inside each element. To model an FGM material using this traditional formulation, a 
continuous material distribution is approximated by piecewise-constant elements. This 
generates an artificially discontinuous stress field, however, which may not adequately 
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simulate the trae conditions. An FEM formulation better-suited for FGMs employs 
graded elements that incorporate actual material properties at integration points [16]. 
This procedure using graded elements incorporates continuous material distribution into 
the numerical simulation, and leads to smoothly-varying and more accurate stresses 
[16]. 

HOMOGENIZATION THEORY FOR FUNCTIONALLY-GRADED 
AXISYMMETRIC COMPOSITES 

A periodic composite material is a composite whose microstructure exhibits a 
periodic repetition of a representative substructure called a unit cell [17]. The 
homogenization method enables the estimation of effective properties of a complex 
periodic composite material with a known unit-cell topology. It is a general method for 
computing effective properties and has no hmitations regarding volume fraction or 
shape of the composite constituents. The primary assumptions are that the unit cell is 
periodic and that the scale of the composite part is much larger than the microstructural 
dimensions [17]. An important consideration that arises when computing effective 
properties of composite materials is the effect of the specimen scale with respect to the 
scale of the unit cell. 

Bamboo can be considered an axisymmetric composite material. An axisymmetric 
composite and its corresponding two dimensional unit cell is illustrated in Fig. 1(b). 
Considering the standard homogenization procedure for elastic materials [17], the unit 
cell is defined as Y = [0,Yi] x [0,Y2] and the elastic property function is considered to be 
a 7-periodic function, that is, E°(x,y) = E(x,y+ Y) , and y =x/e , where e > 0 is 

the composite microstructure scale that represents the scale at which the material 
properties are changing. Coordinates x = (r, z) and y = (s, co) are associated with the 
composite macro- and micro-dimensions, respectively (see Fig. lb). The first step in the 
homogenization procedure is to expand the displacement u inside the unit cell as [17] 

u ' = { < < f =u„(x)+eui(x,y) , (1) 

where only the first-order variation (uj(x,y)) is taken into account, and Ujis Y-

periodic. Displacements u„(x) and Uj(x,y) correspond to the composite specimen 

scale and the unit cell scales, respectively [17]. 
By substituting Eq. (1) in the equilibrium equations, we obtain distinct microscopic 

and macroscopic equations, respectively. Due to the linearity of the elastic problem, 
and assuming the separation of variables for Uj (x,y), we obtain [17]: 

^i=z{x,y)e{u,{x)) and d^u,{x,y) = d^z{x,y)d^{u,{x)) (2) 

where z{x,y) is the characteristic displacement of the unit cell, which is also Y-

periodic, which corresponds to the periodicity condition in the unit cell. Then, 
substituting Eq. (2) into the unit-cell (microscopic) equations, and then into the 
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specimen (macroscopic) equations, the definition of the effective properties can be 
obtained [17] 

1 l[{l + d^z{x,y)):'E{x,y):d/u,{x,y)yY=0, ySu,eH^^^{Y,R'), (3) 

E" = \^M^+^x{x,y))-M^,y):{l+d^z{x,y))yY, (4) 

FINITE-ELEMENT ANALYSES OF BAMBOO 

In geometry, bamboo is essentially a hollow cylinder with periodic stiffeners called 
diaphragms, located at positions called nodes (see Fig. 2(a)). A bamboo cell is the section 
of culm between two diaphragms. In addition, the diameter of the culm is tapered, being 
largest near the ground. Figure 2(b) illustrates the geometry of the modeled cell. The 
angle of taper is neglected. For the load cases of tension and torsion, one bamboo cell 
was modeled. For bending, two cells were modeled in order to include one diaphragm in 
the interior of the domain away from applied loads and support conditions. 
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(b) 
Figure 2. (a) Cross section of bamboo culm showing internal structure (photo courtesy of [5]); (b) 
Section view of one-half of cell showing dimensions adopted for finite-element meshes. 

The elastic properties considered in this study employ the Young's moduli obtained by 
Nogata and Takahashi through detailed experiments [1]. The estimated variation of 
Young's modulus through the bamboo thickness is given by the expression [1] 

E{& :3.75e' (2.2r/<) 
(5) 

where r denotes position through the thickness of the cell wall starting at the irmer 
surface, and t is the thickness of the cell wall. 

To study bamboo behavior using different material models, three types of material 
models were considered for each of the load cases of tension, torsion and bending. The 
first model considers a homogeneous isotropic structure with a bulk Young's modulus 
determined by integrating Eq. (5) from 0 to / which yields Eb = 13.68 GPa. The second 
material model considers the continuous gradation of Young's modulus through the 
thickness of the cell wall as described by Eq. (5). Finally, the third material model studied 
here is a homogeneous orthotropic material whose elastic stiffness matrix is obtained 
using the homogenization method described in Section 3. 
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These properties will be considered in a homogeneous orthotropic FEM model of tiie 
bamboo structure. The objective of comparing these material models is to illustrate the 
differences in displacements and stresses that are caused by material gradation. 

As example, the mesh employed to simulate the bending load case is shown in Fig. 
3(a), and Fig. 3(b) shows a detailed view of the mesh in the region of the interior node. 
A schematic of the boundary conditions for bending is shown in Fig. 3(c). 

(a) (b) (c) 
Figure 3. Bamboo discretization for the bending load case: (a) Cross section of two-cell FEM model. 
Full mesh includes 14,760 20-noded brick finite elements and 6,417 nodes; (b) Detail of mesh at interior 
bamboo node region; (c) Schematic of boundary conditions and applied load for bending case. 

The simulations showed that the second material model is stiffer than the first model. 
The axisymmetric model based on homogenized orthotropic material is the stiffest of the 
three cases. There is close agreement between axial deformations in the FGM and 
homogeneous isotropic model indicating that the use of averaged (or bulk) properties is 
consistent for estimating elongation. The homogenized orthotropic material model leads 
to displacements that differ from the other two models, thus indicating that the presented 
homogenization procedure affects the axial stiffness of the cell wall. For torsion and 
bending loading, comparison between the FGM and homogeneous material models 
indicates that the homogeneous approximation leads to a more flexible structure. This is 
expected because the FGM model places the stiffest material farthest away from the 
neutral axis. 

.0.011 

(a) (b) 
Figure 4. Von Mises stress distributions for bending, (a) Homogeneous isotropic; (b) FGM material. 
Stresses are normalized by the maximum stress value that occurs among the two models. 

Simulations showed that stresses near the interior of the wall are much lower in the 
actual material as represented by the FGM, than they are in the homogeneous case. 
Stresses near the outside of the cell wall are much higher in the FGM case than in the 
homogeneous case. Thus, the FGM leads to a remarkable stress redistribution in the 
bamboo and the stress response of (inhomogeneous) FGMs differs substantially from 
those of their homogeneous counterparts (c.f [16]). Figure 4 show fringe plots of the 
von Mises stress in the model under bending loads. The highest stresses appear near 
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support boundary conditions or applied nodal loads. The plots demonstrate that material 
gradients through the cell wall have a strong influence on local cell-wall stresses. 

CONCLUSIONS 

By using the graded finite element concept the continuous change of bamboo 
properties along the thickness could be taken into account, and its influence in the 
bamboo mechanical behavior was shown. By using the homogenization method for 
graded material, the effective properties of an axisymmetric bamboo composite were 
computed. By means of these homogenized properties it is possible to model bamboo 
as a homogeneous orthotropic medium. Given the additional computational effort of the 
homogenization procedure, it seems that a simple averaged elastic modulus obtained 
from a rule of mixtures or an averaged modulus obtained from the FGM variation will 
provide suitable numerical accuracy for capturing the "global" deflection/response of a 
bamboo stmcture. To estimate local features, however, such as stresses near supports, 
pin cormections or holes etc., it is necessary to employ a numerical procedure that 
accurately models material gradients through the cell wall. This work illustrates modem 
numerical analysis techniques that lend special insight into the structural and 
mechanical response of bamboo as a naturally-graded fiber composite. 
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