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Abstract. Dynamic stress intensity factor (DSIF) is an important fracture parameter in 
understanding and predicting dynamic fracture behavior of a cracked body. To evaluate DSIFs 
for functionally graded materials (FGMs), the interaction integral originally proposed to evaluate 
SIFs for a static homogeneous medium is extended to incorporate dynamic effects and material 
nonhomogeneity, and is implemented in conjunction with the finite element method (FEM). To 
verify numerical implementations and to explore various dynamic fracture behaviors, both 
homogeneous and nonhomogeneous cracked bodies under dynamic loading are employed. 
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INTRODUCTION 

Static and dynamic fracture behaviors of homogeneous and nonhomogeneous 
cracked bodies can be understandable and predictable once stress intensity factors 
(SIFs) are known. Thus, an accurate evaluation of SIFs is crucial in fracture mechanics 
for both static and dynamic cases as they are closely associated with crack initiation 
and propagation. 

For homogeneous materials, Chen [I] examined a centrally cracked rectangular 
finite strip subjected to step loading using a Lagrangian finite difference method 
(FDM). DSIFs were obtained from the relation between DSIFs and stress fields in the 
vicinity of a crack tip. Several researchers have investigated dynamic fracture 
behavior using various theoretical and numerical techniques [2,3,4,5,6]. 

For nonhomogeneous materials, Rousseau and Tippur obtained DSIFs for 
functionally graded materials (FGMs) both numerically and experimentally [7]. The 
DSIFs prior to crack initiation were determined utihzing asymptotic fields of 
Williams' solution [8], which is equivalent to the stationary fields. After initiation, the 
crack tip fields for steadily growing cracks in FGMs obtained by Parameswaran and 
Shukla [9] were used to obtain DSIFs. Material gradients were employed in the 
commercial software ABAQUS [10] by applying temperature, which is a function of 
material properties, and by letting the coefficient of thermal expansion be zero. As the 
distance is close to the crack tip, the DSIFs were underestimated because no singular 
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elements were used. Therefore, regression technique was employed to obtain DSIFs at 
the crack tip based on the DCT. Wu et al. [11] extended the J-integral to incorporate 
material gradients and dynamic effects. 

Although a few researchers [7,11] evaluated fracture quantities such as SIFs or J for 
nonhomogeneous cracked bodies under dynamic loading, only mode I SIF, i.e. Ki, is 
evaluated in conjunction with either the J-integral or the DCT. So, the motivation of 
this study follows: 1) The interaction integral (M-integral), which is known to be 
superior to the DCT and J-integral, is extended to incorporate material 
nonhomogeneity and dynamic effects for evaluation of DSIFs; and 2) A mixed-mode 
nonhomogeneous medium under dynamic loadings is adopted to compute dynamic Ki 
and Kii. 

INTERACTION INTEGRAL 

In this section, the interaction integral is formulated by superimposing the actual and 
auxiliary fields on the path independent J-integral. A M-integral is derived based on a 
non-equilibrium formulation. 

The J-integral is 

(1) 
•̂  = j l ĉ ff«,-.i --(^ikBikS^j \qjdA + 

jks j« , - , i +f7,j«,-,u -2'^'W^ff --(^.jByAdA. 

in which a and e denote stress and strain, respectively; 8 stands for Kronecker Delta; u 
represents displacement; and q is a function varying from 0 to 1. Superimposing the 
actual and auxiliary fields on Eq. (1), one obtains 

+ j t e + ^ . J«r+«,M)+(^r+^J«-'i; +uj}}dA n) 
A 

-*- f (/ awe , y ^aijx , „ \ , / aux , \l _aux , „ \( 14 
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which is decomposed into 
J' =J + J"^ +M, (3) 

where J is provided in Eq. (1) and J"™ is expressed as follows 
f aux., -*- aux „ aux o „ j /i J aux 

2 

, f aux aux , aux aux -*- aux „ aux -*- aux „ aux 1 A 

The resulting M integral is given by 

(4) 
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M=j|^r«u+^.«.T -\{<r^>. +a,,ery}^q.dA 

Among three formulations which are based on non-equihbrium, incompatibility and 
constant constitutive tensor, the non-equilibrium formulation is employed in this 
study. Since the actual fields adopt the quantities obtained from numerical simulations, 
the equilibrium and compatibility condition are satisfied, i.e., 

cr...=/3M-. (6) 
'J, J 

-^{^iJ+^J,)' (7) 

in which p is mass density and ii refers to acceleration. 
For the auxihary fields, the equilibrium condition is not satisfied, i.e., 

while the relation between strain and displacement is compatible: 
_aux -*- / aux , aux\ aux _aux /(\\ 
^ij = ^ i j +Uj,i)'^ijUi}j=^iji^ij,i ( 9 ) 

Note that the auxiliary fields are chosen as asymptotic fields for static homogeneous 
materials. For the superimposed actual and auxiliary fields, the following equalities 
are obtained: 

(10) 

(11) 

(12) 

(13) 

^,aC=(c.««^«),^r=(c.«4«^«+c^.«%,>r' (15) 
where C denotes the elasticity tensor. 
Using the equalities, one obtains the M-integral as follows 
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aux _ ^ (-t^c c"^ — aux 
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(16) 

J y J u. J, pii.uf^ and Q^H I^H"^^J appear due to non-equilibrium condition of the 

auxiliary fields, dynamic effect of the actual fields, and material nonhomogeneity of 
the actual fields, respectively. If dynamic effects are ignored, this equation reduces to 
the interaction integral for the static nonhomogeneous material case derived by Kim 
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and Paulino [12]. Other formulations and detailed numerical implement procedures 
can be found in the references [13, 14]. 

COMPUTATIONAL RESULTS 

Fedelinski el al. [15] used the dual BEM and J integral to determine DSIFs in a 
rectangular plate with cracks emanating from a circular hole. A decomposition 
procedure was employed for mode mixity. Various angles which range from 0° to 60° 
were adopted to investigate fracture behavior in terms of the variation of DSIFs. In 
this study, a crack angle 30° is chosen to verily DSIFs for homogeneous materials and 
to investigate the influence of material gradation on DSIFs for FGMs. Figure 1 (a) 
illustrates a rectangular finite plate with a width 2W=30 mm and a height 2H=60 mm 
containing a hole of radius r=3.75 mm. Two cracks extend from the hole, and the 
length between the two crack tips is 15mm. The cracks are inclined at 30° clockwise 
from horizontal. Figures 1 (b), (c) and (d) show the mesh configurations for the whole 
geometry, and mesh details near the hole and the crack tip. A crack tip template of 12 
sectors and 4 rings of elements provides sufficient mesh refinement around the crack 
tip regions, which is crucial for rehable numerical results. Step loading is applied to 
both the top and bottom edges. No other boundary conditions are prescribed. In this 
mesh, 1350 Q8 and 204 T6 plane strain elements are used with 3 x 3 Gauss 
quadrature. The average acceleration method is adopted with a time step of At=0.1|j,s, 
and consistent mass matrix is employed. 

Verification 

A comparison between the present numerical results and the reference solution for 
the homogeneous case is performed to verily the numerical techniques implemented in 
this study. The following material properties are used: £=199.992 GPa, p=5000 Kg/m^ 
and v=0.3. Figure 2 shows the comparison between the present numerical results and 
the reference solution [15] at the right crack tip. The reference results plotted here are 
obtained from graphical data using special-purpose software. The abscissa indicates 

time up to 20 JLLS. The DSIFs are normalized by K^ = c r „ v ^ i n which cr„ is the 
magnitude of the applied stress. The present numerical results agree well with the 
reference solution. Greater but acceptable difference is found between Ki(t) values 
than between Kii(t) values. The difference may be attributed to different numerical 
schemes, different domain discretizations, and different conservation integrals. 

Nonhomogeneous Plate 

Real nonhomogeneous material properties prepared by Rousseau and Tippur [7] are 
adopted to investigate fracture behavior. Rousseau and Tippur [7] prepared three point 
bending specimens made of epoxy and solid soda-lime glass spheres. The material 
properties of the current specimen follow the values provided in Rousseau and Tippur 
[7] and assume linear variation of material properties in the x direction, described by 

£(x) = (244x + 7471)(MPa) (17) 
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p{x) = (28.8x + 1380)(Xg//w') 
A constant Poisson's ratio of 0.3 is used. 

(18) 

P(t) 

e=30° 

2W=30mra 

P(t) 

(a) (b) 

(c) (d) 

FIGURE 1. Rectangular plate with cracks emanating from a circular hole: (a) geometry and boundary 
conditions; (b) mesh configuration for the whole geometry; (c) mesh details for both crack tip regions ; 
and (d) mesh details for the right crack tip (12 sectors and 4 rings) 

Normalized mixed-mode DSlFs versus time curves at both the right and left crack 
tip locations are plotted in Figure 3. The ordinate indicates DSlFs normalized by Ks 
and the abscissa is time up to 40 /K. Since initiation time of DSlFs depends on the 
dilatational wave speed, first the DSlFs at the right crack tip initiate, and then, the 
DSlFs at the left crack tip initiate as shown in Figure 3. At any given time of the 
transient response, the magnitude of Ki(t) at the right crack tip is higher than that at the 
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left crack tip for the nonhomogeneous case. This is due to the fact that the values of 
material properties at the right crack tip are higher than those at the left crack tip. 
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FIGURE 2. The comparison between the present numerical resuhs and the reference solutions [15]. 
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FIGURE 3. Normalized mixed-mode DSIFs at both the left and right crack tips for nonhomogeneous 
materials. 

CONCLUSIONS 

Dynamic fracture behavior for both homogeneous and nonhomogeneous materials 
is examined in this study. Due to superior features of the M-integral compared to the 
DCT and the standard J-integral, the current M-integral is extended to incorporate 
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material nonhomogeneity and dynamic effects. The M-integral consists of actual fields 
obtained from finite element analysis and auxiliary fields by Williams' solution. The 
non-equilibrium formulation of the M-integral is employed to evaluate DSlFs. The 
homogeneous rectangular plate with cracks emanating from a circular hole is 
employed to verify the numerical implementations. The predicted DSlFs are found to 
be in good agreement with the reference solutions. Material nonhomogeneity used in 
the reference is adopted to explore the influence of material nonhomogeneity and 
dynamic effects on the variation of DSlFs. 
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