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Abstract. This presentation describes a topology optimization framework to design the material 
distribution of functionally graded structures with a tailored Von Mises stress field. The problem 
of interest consists in obtaining smooth continuous material fraction distribution that produces 
an admissible stress field. This work explores the topology optimization method for minimizing 
volume fraction of one of the phases considering stress constraints. Existence of inherent 
material microstructure requires consideration of the micro level stress field, which is computed 
through a mechanical concentration factor based on the local stress in each phase of the material. 
Thus, p-norm of the Von Mises stress in the microstructure is considered as a global constraint. 
To illustrate the method and discuss its essential features, we present engineering examples of 
axisymmetric FGM structures subjected to body forces. 
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I N T R O D U C T I O N 

Functionally graded materials (FGMs) present continuously graded properties and 
are characterized by spatially varying microstructures created by both nonuniform 
distribution of the reinforcement phase and by interchanging the role of reinforcement 
and matrix (base) materials in a continuous way. The smooth variation of properties 
may offer advantages such as reduction of stress concentration and increased bonding 
strength. A major advantage of FGMs is the possibility of tailoring its gradation to 
maximize performance. 

Due to the above features, to design the FGM gradation by optimization methods is 
a promising possibility and has been investigated by some researchers, such as Aboudi 
et al. [1] and Turteltaub [2] among others. In this sense a generic optimization method 
to tailor material property gradation was proposed by Pauhno and Silva [3], who 
applied the topology optimization method framework to solve the problem of 
maximum stiffness design. Following this work. Stump [4] applied this framework to 
solve a stress constraint problem. 
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Topology optimization method is a powerful stractural optimization method that 
seeks an optimal stractural topology design by determining which parts of space 
should be sohd and which parts should be void (i.e. no material) inside a given 
domain. 

This problem is solved by defining the extended design domain which is a large 
fixed domain that must contain the whole stracture and also by defining the concept of 
material model which is a continuous function that maps the volumetric density of 
material into the constitutive tensor of the composite material. The definition of the 
material model is necessary to transform the ill-posed discrete problem into a well 
posed continuous one, even though the aim of traditional topology optimization 
problem is to find a discrete solution. In this sense, several material models that aim to 
provide useful discrete (0-1) solutions have been developed. 

This work focuses on applying the theoretical and numerical background developed 
for the topology optimization method to solve a two-phase material distribution 
optimization problem considering stress constraints, with emphasis on the design of 
functionally graded stractures. 

A FUNCTIONALLY GRADED MATERLVL MODEL 

To apply the topology optimization framework to the design of functionally graded 
stractures it is necessary to adopt a realistic material model that given two base 
materials with constitutive tensors C^ and C , provides an effective constitutive 
tensor Ĉ -̂  that can be realized in an FGM. 

In the literature, there are several material models apphed to estimate the effective 
properties of composite materials that could be used in the topology optimization 
framework. In addition, those conventional models, such as Mori-Tanaka and self-
consistent, have been apphed to estimate the effective FGM properties in several 
works [6,7,8,9,10]. However, these models were originally developed for statistically 
homogeneous materials and are not able to capture the material gradient nature of the 
FGMs[Il]. 

Due to the continuous micro stractural changes in the FGM, the traditional concept 
of representative volume element (RVE) apphed to conventional models remains to be 
justified [12]. Thus, some specific FGMs speciahzed material models have been 
developed such as Yin et al. [13] and Aboudi et al. [12]. 

In this work, a rather simple and generic type of material model will be applied to 
estimate the effective properties of FGMs. The proposed material model was 
developed given the necessity of a closed form equation that provides the effective 
constitutive tensor Ĉ -*̂  in terms of the volumetric densities of each phase. 

As motivation to our approach, we recall the work by Reiter and Dvorak [8] in 
which they propose a combination of the Mori-Tanaka method for the matrix-particle 
zones, and the self-consistent method for the skeletal zone. 

Here we consider simply a non-linear interpolation between the upper and lower 
Hashin-Strikman (HS) bounds. To consider a continuous transition between the lower 
and the upper bound, an interpolation of both bounds is apphed and given by; 
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K'^ [p) = cp{p)K^^^„ ip) + (l - 9 ' ( p ) K w ip) (1) 

G'^{p) = cp{p)G^^Xp) + {\-cp{p)y3,^„{p) ^2) 

where K^^^^^, K,^^^^, G„̂ „̂ and G,„^„ are the bulk modulus and shear modulus 

Hashin-Strikman bounds [5], respectively; and cp{p) is given by the recursive use of a 

function (f>{p) i.e.: 

9'(/7) = (̂ ((̂ ((̂ ((̂ ((̂ (/7))))) such that (̂ (/7) = ̂ ^ ^ + ̂  (3) 

With the material model defined above, it is possible to write the material 

constitutive C -̂*̂ (/3) tensor as a closed form function of the material volumetric 

density. The material density ( T/^) is simply given by rj'^^ [p) = prj^ + (l - PYI • 
To evaluate the stress inside each phase of the FGM, the classical material model 

framework which assumes a constant macro-stress inside the RVE is applied. 
Considering the macro-stress ((o)) given by (0) = C -̂* (̂£), where (E) is the macro-
strain obtained from the analysis of the equivalent structure made of homogenous 
material with constitutive relations Ĉ -*̂ . From the relation of Ĉ -*̂ , C^, and C" the 
matrices B^ and B" can be derived such that [7], 

B"((T) , ((T-) = B-((T) (4). 

With the stress evaluated inside each phase of the microstructure it is possible to 
define the problem formulation. 

PROBLEM FORMULATION 

The topology optimization problem with stress constraints, as proposed by Duysinx 
and Bendsoe [14], presents two main problems, the stress singularity phenomenon 
(SSP), and the large number of constraints. The SSP [15] occurs in layout optimization 
problems when the material volume fraction of a region in the structure tends to 
vanish and the micro-stress in this region remains finite. This means that, if the finite 
micro-stress value is greater than the admissible stress of the problem, the stress 
constraint will become active and the optimization procedure will not be able to 
remove the material from this region, and reach the lower bound. 

To avoid SSP in this work, it is proposed to replace the stress constraint in each 
phase of the FGM, as it would be a direct extension of reference [14], by an unique 
stress index constraint given by: 

£ ( < 1 (5) 
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where a unique stress index ((fj"" ™)) is given by 

\ ) + {l-picj\) (6) 

where (cr ) and (cr ) are the squares of the VonMises stress in the microstructure 

micro plus (+) and minus (-) phase, respectively. The advantage of this unique index Y\_^2 

is that the stress for a homogenous body made of material plus or material minus is 
recovered when the density p tends to 1 or 0, respectively. Thus the SSP is avoided, 
since when one phase is vanishing the unique stress index tends to the squared Von 
Mises on the remaining phase, and thus, the constraint is still physically meaningful. 

The unique admissible stress (^^^ ) was defined based on the model of Swan and 

Kosaka [16], and it is given by the equation, 

p^la\ + (l-p'i<J-\ (7) 

provided that (cr ) ^ ( c ) , where (cr ) and (cr ) are the squares of the 
\ adm j \ adin j \ adm j \ adm j 

reference stress of plus and minus phase, respectively and where s is the penalization 

parameter that brings the unique admissible stress /cr"""™) closer to the lower strength 

bound or to the upper strength bound. This model guarantees that the admissible stress 
hes between the Reuss and Voigt model for the material strength, as the model 
proposed in Reference [16]. 

To avoid the large number of constraints necessary to discretize the local failure 
function constraint, a global constraint is considered based on the failure function p-
norm. Thus, the problem formulation is given by 

\\p{x)dQ. mm I p\x)dLl s.t. 
p nil;.- <1 (8) 

where /> is a parameter, such that in the limit when it tends to infinity, the local 
constraint is recovered. In the numerical approach p must be increased to certain 
value that is defined on a case-by-case basis. 

To solve the optimization problem proposed in Eq. 8 numerically the stress field of 
extended design domain is obtained by the Finite Element Method. The constraint 
integral is computed by considering the stress constant over each element and equal to 
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the central value. The sensitivity of the constraint is obtained by the adjoint method 
and the optimization problem is solved by Sequential Linear Programming. 

NUMERICAL EXAMPLE 

To illustrate the proposed method the conceptual design of a functionally graded 
turbine disk is presented. The geometry and boundary conditions of the disk are based 
on the reference [17] and Figure 1 depicts the section of the turbine disk structure 
which axisymmetric about the (y) axis. 

> ' A 

U O U U U U O U O U U U U O U OCT •- >-

FIGURE 1. Geometry of the turbine disk section in the (x,y) plane, and boundary conditions 
(fp=40MPa, bp=200MPa, co=2000rpm). 

The material named plus (+) has mechanical properties close to a ceramic material, 
and thus, it is called material "C". The properties of this fictitious material are: density 
4000 kg/m^ Young's modulus 350GPa, Poisson's ratio 0.25, strength 3500MPa. The 
material named minus (-) represents a fictitious metallic material, and it is called 
material "M". Its properties are the following: density 9000 kg/m^. Young's modulus 
llOGPa, Poisson's ratio 0.3, strength 300MPa. 

After applying the method, an optimized material distribution presented in Figure 
2(a) is obtained. Analyzing the material distribution, it is possible to conclude that the 
method provides a smooth material "C" distribution (blue) inside mostly a material 
"M" matrix (green). In some small regions, the volumetric density of material "C" 
reaches its upper bound (100%) by exchanging the role of inclusion with the role of 
matrix in the composite to satisfy the stress constraints. 

(a) (b) 
F I G U R E 2. Optimized material distribution and failure function of the turbine disk. 

Figure 2(b) depicts the failure function (Eq. 5) for the optimized material 
distribution. It is worth noting that the particular material distribution generated by the 
optimization method is able to yield a stress field that numerically satisfies the global 
constraint and is approximately 8 times lower than the stress field of the same disk 
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made of homogeneous material "M". In this problem, the maximum value of the 
failure function is 1.03, which means that the Von Mises stress in the micro structure is 
only 3% above the defined reference stress. This situation is numerically admissible 
for a global stress constraint such as the p-norm. 

CONCLUDING REMARKS 

This paper presented a powerful and general technique to obtain preliminary design 
of Functionally Graded Structures. The technique is based on the topology 
optimization method with stress constraint. In this framework, the two more important 
drawbacks, i.e. the stress singularity phenomenon (SSP) and the large number of 
constraints, were addressed. The numerical result has demonstrated that the method is 
able to define a material distribution that satisfies the adopted stress constraint. 
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