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Abstract. Traditionally, standard Lagrangian-type finite elements, such as quads and triangles, 
have been the elements of choice in the field of topology optimization. However, finite element 
meshes with these elements exhibit the well-known "checkerboard" pathology in the solution of 
topology optimization problems. A feasible alternative to eliminate this long-standing problem 
consists of using hexagonal elements with Wachspress-type shape functions. The features of the 
hexagonal mesh include 2-node connections (i.e. 2 elements are either not connected or 
connected by 2 nodes), and 3 edge-based symmetry lines per element. In contrast, quads can 
display 1-node connection, which can lead to checkerboard; and only have 2 edge-based 
symmetry lines. We explore the Wachspress-type hexagonal elements and show their advantages 
in solving topology optimization problems. We also discuss extensions of the work to account 
for material gradient effects. 
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INTRODUCTION 

Topology optimization is a powerful tool that aims at finding the optimal layout of 
material in a structural system. Despite much advancement and numerous apphcations 
using topology optimization methods, a handful of issues have remained unresolved to 
this date. One such issue is the presence of checkerboard layouts or regions with 
alternating void and material elements in the final solution. 

Diaz and Sigmund [1] demonstrated that the stiffness of checkerboard patches in 
the Q4 implementation is overestimated, making them favorable in minimum 
comphance problems. Jog and Haber [2] also addressed the root causes of 
checkerboard and investigated the stability of various finite element implementations. 
In both works, it was discovered that higher order finite elements such as 8 or 9-node 
quadrilateral elements are less susceptible to the checkerboard problem but do not 
eliminate it completely. Depending on the severity of the penalization scheme and the 
convergence criteria used, patches of checkerboard may still appear in the solution of 
Q8 and Q9 topology optimization implementation. Additionally, these elements suffer 
from "one-node hinges," which appear in some topology optimization problems such 
as compliant mechanism design [3]. "One-node hinge" refers to the case where two 
structural elements are connected at one node in the final topology. This issue is 
inherent to quadrilateral elements as a result of their geometry. Due to these 
drawbacks and also the higher computational cost, the use of these elements (i.e. Q8, 
Q9) is not practical. Thus an alternative approach is needed. 
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In this work, the use of hexagonal finite element with Wachspress basis functions is 
proposed for topology optimization. The geometry of this hexagonal element only 
allows for 2-node cormections, which makes the occurrence of checkerboard patterns 
impossible. Furthermore, this eliminates the need to impose any density gradients or 
local constraints to overcome the checkerboard problem. In the following sections, the 
properties of this element and its implementation are discussed and numerical results 
are provided to demonstrate its performance. 

(a) 

FIGURE 1. (a) Q4 mesh can display one-node connections, (b) In a hexagonal mesh, two connected 
elements always share two nodes. 

v ^ FIGURE 2. Edge-based symmetry lines: while the Q4 element has two symmetry lines, the hexagonal 
element has three symmetry lines. 

HEXAGONAL ELEMENT 

The proposed element in this work is a regular hexagon with Wachspress shape 
functions. Hexagons, along with quadrilaterals and triangles, are the only polygons 
that can form a regular tessellation or tiling [4]. Unlike triangular and rectangular 
grids, however, a hexagonal mesh does not allow for single points of contact and 
therefore can eliminate the "one-node hinge" problem in topology optimization 
solutions (Figure 1). As mentioned before, the 2-node cormections, which are 
characteristic of the hexagonal geometry, also ehminate the possibility of 
checkerboard formation. Furthermore, a regular hexagon has three edge-based lines of 
symmetry compared to two lines for a square (Figure 2). Therefore, a hexagonal mesh 
provides less directional constraint and allows for more flexible formation of the final 
solution in the optimization process. 

The hexagonal element proposed here utihzes Wachspress shape functions. These 
rational interpolation functions were constructed for general convex polygons using 
concepts from projective geometry [5, 6]. The construction of first order shape 
functions and their properties for the hexagonal element are discussed below. 
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Letfldenote the hexagonal domain (See Figure 3(a)). The shape functionf ;̂ 

corresponding to node /, is given by: 

A+2 (x)A+3 (X) A+4 (X) A+5 (X) ,(x) = cr 
<?(x) 

(1) 

where /l̂ +j = 0 represents the straight line going through nodes " / + 1 " and " / " 

while g'is the equation of the circle encompassing the points of intersection of 

extensions of the edges. It is understood thatl , =/li,/l5j =/I2and so on. The 

coefficient C; is a normahzing factor that forces the interpolated value at the node to be 

identical to the nodal data and is given by: 

c.= ''-^ , (2) 
^,+2 (X,- )^,+3 (X,- )^,+ 4 (X,- )^,+5 (X,- ) 

whereX,represents the coordinates of node/. A typical shape function is shown in 

Figure 3(b). 
Wachspress rational shape functions satisfy the necessary conditions for 

conforming Galerkin approximations. First, these shape functions are bounded, non-
negative and form a partition of unity. In other words, they satisfy the discrete 
maximum principle: 

X(^,(x) = l, 0<(^,.(x)<I (3) 

Furthermore, they exhibit the Kronecker-delta property which is required to impose 
necessary boundary conditions: 

fO for/ ^ I 
M^j) = l . . . (4) 

[1 for/ = J 
Also, these shape functions can exactly reproduce a hnear function and therefore 
satisfy linear precision, the sufficient condition for convergence of second-order 
partial differential equations: 

t^M^)^ (5) 

Jl2(x^,X2) - 0 

-%fe>^2) = 0 ^ 

Af(r^,r.2) = 0 -^ ^(r-i,y.2)^0 

(a ) ^^(x i ,X2)=0 ( b ) 

FIGURE 3. (a) Construction of Wachspress shape functions for a hexagonal domain, (b) Typical shape 
function for the hexagonal element (values along the edges have been raised to enhance visualization). 
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Finally, these shape functions are continuous throughout the domain £2 and are 
hnear on the edges, allowing for necessary linear boundary conditions. This implies 
that the Wachspress hexagonal element is a conforming element. 

NUMERICAL IMPLEMENTATION 

The performance of the proposed element is assessed through a standard minimum 
compliance problem. The minimum compliance problem in discretized form is 
formulated as: 

minf^u 

s.t. Ku=f (6) 

e=\ 

where f anduare the global force and displacement vectors andK represents the 
global stiffness matrix. The parameter V is the specified volume of material, p^ is the 

density design variable assigned to each element, andF^is the element volume. The 

topology of the structure is determined through the element densities: p^ =Q indicates 

a void element, while p^ =1 corresponds to a material point. To avoid numerical 

singularities, however, the problem is generally relaxed by allowing/?^to continuously 

vary so that: 
0</7„„</7 , <1 (7) 

The standard SIMP (Sohd Isotropic Material with Penalization) method [7] is used 
here to penalize the intermediate values of density: 

K , = / 7 / K 0 (8) 

where K^ is the element stiffness matrix, K° represents the stiffness of a solid element, 
and p is the penalization factor. Through this power-law relation, the stiffness of the 
elements with intermediate densities is small compared to their contribution to total 
volume of the structure. This makes the intermediate densities unfavorable and leads 
to 0-1 (void-solid) type solutions. The optimization problem is solved using the 
Optimality Criteria (OC) method [8] with the element sensitivities given as: 

^ = PPe »e K,U, (9) 

Finally, in order to avoid local minima, the continuation method described by 
Petersson and Sigmund [9] is employed. The value ofp is increased from 1 to 5 with 
increments of 0.5 after the solution has converged in each step. A discussion on 
penalization and continuation schemes can be found in reference [10]. 
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Design Domain 

i Design L 

(a) iS ' ^ (b) » • ' * • ' '•» "-t^' • 

FIGURE 4. (a) Schematic representation of the design domain, loading and boundary conditions for 
MBB (Messerschmitt-Bolkow-Blohm) beam problem, (b) A rectangular domain with a 4x4 hexagonal 
grid. Notice that the non-hexagonal elements on the boundary are either triangles or quads. 

NUMERICAL RESULTS 

The benchmark MBB-beam problem [11] is solved using the hexagonal element 
with Wachspress shape functions and results are compared with the Q4 
implementation. Due to the symmetry of the problem, only half of the MBB-beam is 
considered (Figure 4(a)). The beam has an aspect ratio of 6:1, and three levels of mesh 
discretization are used. In order to obtain a rectangular domain for the hexagonal 
mesh, it is necessary to insert triangular and quadrilateral elements along the 
boundary. Linear triangular (T3) and bilinear quadrilateral elements (Q4) are used in 
this example. Note that the difference in element size must be considered when 
enforcing the volume constraint, and the parameterF^ must be adjusted accordingly. A 
typical rectangular mesh with a 4x4 grid of hexagons is shown in Figure 4(b). The 
Poisson's ratio is taken to be 0.3, while V is 50% of volume of the design domain. 

The results for the Q4 element and the hexagonal element for various levels of 
mesh refinement are compared in Figure 5. The results for the Q4 implementation 
contain patches of checkerboard while no such instabilities are observed with the 
hexagonal implementation. Note that no filtering technique or density gradient was 
imposed for the hexagonal element and thus the checkerboard-free property of this 
element must be attributed to its geometric features and interpolation characteristics. 

(c) ^ — (f) 
FIGURE 5. (a)-(c) Resuhs for MBB-beam with Q4 elements, (d)-(f) Results for MBB-beam with 
hexagonal elements. The mesh discretization is 30x10, 60x20, and 90x30 from top to bottom, 
respectively. 
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CONCLUSION AND EXTENSIONS 

In this work, the checkerboard pathology in topology optimization is addressed and 
the use of a new element is proposed. The hexagonal element with Wachspress-type 
shape functions is shown to possess advantages over conventional finite elements. 
Geometric properties of the hexagonal element such as two-node cormections and 
edge-based symmetry lines in three directions are the distinguishing features of this 
element. As discussed and demonstrated by example, the use of hexagonal elements 
eliminates the formation of checkerboard and provides a robust and stable means for 
solving topology optimization problems. The hexagonal element with the underhning 
topology optimization formulation has potential and promising extensions, such as 
comphant mechanism and functionally graded material (FGM) systems. The latter 
case can be accomplished by means of the FGM-SIMP formulation by Silva and 
Pauhno [12]. Work is in progress to address such extensions. 
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