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Abstract. The present paper aims to develop a micromechanics-based effective elastic model of 
functionally graded composites. At the macroscopic scale, effective material properties of the 
composites are uniform in the same graded layer while gradually changing along the grading 
direction. Microstructurally, infinite particles are randomly dispersed in the matrix with gradual 
transitions. Particles are assumed to be spherical and nonintersecting. They are perfectly bonded 
with the matrix. A micromechanical framework is proposed to investigate effective mechanical 
properties along the grading direction. Within the context of the representative volume element 
(RVE), the effect of pair-wise interactions between particles is taken into account for the local 
stress and strain fields by using the modified Green's function method. Homogenization of the 
local field renders relations between the averaged strain, strain gradient and external loading. 
The effective elastic modulus tensor of the functionally graded composites is further constructed 
by numerical integration. The model prediction is compared with available experimental data. 
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INTRODUCTION 

Functionally graded materials (FGMs) have attracted much attention from 
engineers and researchers due to their unique thermomechanical performance [1, 2]. 
Several FGMs are manufactured by two phases of materials with different properties. 
Since the volume fraction of each phase gradually varies in the gradation direction, the 
effective properties of FGMs change in this direction. While FGMs have been 
designed and fabricated by diverse methods to achieve unique microstructures, very 
hmited analytical investigations are available to tackle the spatial variation of 
microstructure [3]. Conventional composite models such as the Mori-Tanaka method 
[4] and the self-consistent method [5, 6] are directly applied to estimate the effective 
elastic responses of FGMs [2]. Because they were originally developed for 
homogeneous mixtures with constant particle concentration, those models are not able 
to capture the material gradient nature of FGMs. Furthermore, no direct interactions 
between particles are taken into consideration [7]. 

Experimental observations [2, 8] show that the typical microstructure of FGMs, 
illustrated in Fig. 1(a) towards the gradation direction, contains a particle-matrix zone 
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with discrete particles filled in continuous matrix, followed by a skeletal transition 
zone in which the particle and matrix phases cannot be well defined because the two 
phases are interpenetrated into each other as a connected network. The transition zone 
is further followed by another particle-matrix zone with interchanged phases of 
particle and matrix. Hirano et al. [8] applied the fuzzy logic approach to estimate the 
effective elastic behavior in the transition zone by using a transition function to 
combine the two solutions obtained fi'om the particle-matrix zones. Reiter and Dvorak 
[9] also adopted the transition functions combined with the Mori-Tanaka model in the 
particle-matrix zone and self-consistent model in the skeletal transition zone. 

X. 

zone III 

zone II 

zone I V y^^^ti 
X, 

(a) (b) 

FIGURE 1. Schematic illustration of a two-phase FGM sample: (a) three zones in macroscopic scale 
and (b) RVE in the microscopic scale. 

The above-mentioned FGMs models did not include the local interactions between 
particles, so they could not take into account the graded particle distribution for FGMs. 
Some studies have suggested the need for higher order theory in the modeling of 
FGMs [3, 10-12]. In this paper a micromechanical fi-amework is proposed to 
investigate the effective elastic behavior of FGMs. Given a uniform loading on the top 
and bottom boundaries of FGMs, a microscopic representative volume element (RVE) 
is constructed to refiect the microstructure of the particle-matrix zone in FGMs (Fig. 
1(b)), and averaged strains in particles are derived by integrating pair-wise interaction 
contributions of all particles. Finally the effective stress and strain fields can be solved 
as differentiable functions in the gradation direction. 

FORMULATION 

Let us consider a typical FGM microstructure (Fig. 1) containing two phases A and B 
with isotropic elastic stiffiiess C^ and C^, respectively. The global coordinate system 
of the FGM is denoted by {X^,X^,X^) with X^ being the continuous gradation 

direction. The overall grading thickness of the FGM is t. The volume fi'action of 
phase A ox B (for convenience, we use ^ to denote the volume fi-action of phase A) is 
gradually changed in the gradation direction X^. Microscopically, the particle and the 
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matrix zones could be well defined when (̂  is close to 0 or 1 [e.g., Zone I and Zone III 
in Fig. 1(b)]. However, a skeletal transition zone (Zone II) normally exists in middle 
area (e.g., d^<X^<d^) in which it is difficult to identify the particle or matrix phase. 

Apply a uniform stress tensor 0° on the FGM X^ boundary. Based on the 

equilibrium condition, the averaged stress in any X^ - X^ layer is still 0°, so we can 

write: 
(T°=C(X3):(£)(X3) (I) 

where C is the effective elasticity of that layer. The averaged strain and stress in the 
Xj - X^ layer can be further written as 

{^){x,)=^{x,){^Y{x,y\i-^{x,)\{^Y{x,). (2) 
and 

<^^=^{X,)C^:{^Y{X,) + [l-^{X,)\C^:{^Y{X,). (3) 

For any macroscopic material point X° [Fig. 1(a)] in the range of Q<X^<d^ 

(Zone I), the corresponding micro structural RVE [Fig. 1(b)] contains a number of 
micro-particles of the phase A embedded in a continuous matrix of the phase B so that 
the overall volume fraction of particle phase A and its gradient should be consistent 
with the macroscopic counterparts (p ix^) and d(l> I dX, | „ . The microscopic 

coordinate system (Xj, x ,̂ and x^) is constructed with the origin corresponding to X°. 

The whole RVE domain is denoted as D and the /* micro-particle (/ =I,2,3,---,oo) 

domain is denoted as Q, centered at x'. The particle centered at the origin is assumed 

and denoted as Q„. 

By considering the pair-wise particle interactions from all other particles, the 
averaged strain in the central particle Q„ can be written in two parts: the elastic-
mismatch interaction between the central particle and the matrix and the pair-wise 
interaction between the central particle and other particles [II]: 

{^Y (0) = (I-P„ -AC)-': {^Y (0) + Z,;AC-' •L(0,x')(£)^ (x^), (4) 

where AC = C-^-C^ , {P,\j„={S,S„-{^-5v,){S,,S.,+S,S.,)y{3Q/u,{\-v,)\ , 

(E) (0) is the averaged matrix strain in the layer with X3 =0 , (E) ix'A is the 

averaged matrix strain tensor in the X3 -th layer, and L (0, x' 1 describes the interaction 

of the particle centered at x' on the averaged strain of the central particle. The pair-

wise interaction tensor (d)(0) [i.e., the second term of the right hand side of Eq. (4)] 

can be further integrated over all possible particle positions as: 

(d)(0) = Z: ,AC- ' .L(0,x ' ) : (£)^(x;) = j^P(x|0)AC-'.L(0,x):(£)^(x3)Jx.(5) 
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For the FGM considered, since the micro-particles in RVE are distributed in a 
continuously increasing manner in the gradation direction, the particle density 
function is proposed as 

where g(x) is the radial distribution function of particles proposed by Percus and 
Yevick [13] to estimate the particle non-uniformity effect in the radial direction. The 
expression enclosed by square brackets is constructed on the basis that the averaged 

volume fraction of particle in the RVE is (p {^X^ 1, the gradient of particle volume 

fraction is (p^ V^l\ ^^'^ ^^ the far field the particle concentration must not be beyond 

the range of zero to the maximum particle concentration. Thus, an exponential 
function is introduced to attenuate the gradation term exponentially. The parameter d, 
which controls the attenuating rate, will be determined under the condition that the 
maximum volume fraction of particles in the RVE should not be greater than the 
maximum volume fraction in particle-matrix zone. Those particles in the neighboring 
domain of the central particle should contribute the majority part for the averaged 
strain of the central particle. 

Similarly to Ju and Chen [7], the Taylor expansion of (E) (X3) is applied to 

analytically integrate Eq. (5). It is noted that the average strain (E) (X3) varies along 

the grading direction. It is differentiable and bounded, and thus is approximated by the 
Taylor expansion. In the chosen RVE, the elastic interaction between the central 
particle and the particles far away from it is negligible; only the particles in the close 
neighborhood of the central particle may have noticeable interaction on the central 

particle. As a first order approximation, we truncate the Taylor expansion of (E) (X3) 

to linear term in terms of X3 so that Eq. (5) can be analytically integrated and rewritten 

as 

(d)(0) = ̂ (X3°)AC-'.D(0):(E)^(0) + ̂ ,(X3°)AC-'.F(0):(E);(0) (7) 

where 

D= f M M L ( 0 , X ) J X ; F = f e-^' ' 'MML(0,x)x3^Jx. (8) 
•'•" 47ra •'•" 47ra 

Substituting Eq. (7) into Eq. (4) and recognizing that the origin of the local 
coordinates in the RVE corresponds to the global coordinate point X" of FGM, we 
can obtain the averaged particle strain tensor in terms of the arbitrary material point 

(Er(X3) = ( l - P „ . A C r : ( E r ( X 3 ) + ̂ (X3)AC-'.D(X3):(Er(X3) ^̂ ^ 

+ ^ , ( X 3 ) A C - ' . F ( X 3 ) : ( E ) ' 3 ( X 3 ) 

With the combination of Eqs. (3) and (9), the averaged particle strain tensor 

(E) (X3) and the averaged matrix strain tensor (E) (X3) in the FGM gradation 
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direction X^ can be solved in terms of the far-field stress 0°. Since Eq. (9) is a set of 
ordinary differential equations, we also need the appropriate boundary conditions. In 
the particle-matrix zone with 0 < X3 < 4 , the boundary at X3 = 0 corresponds to the 

100% matrix material (i.e., (̂ (O) = 0). The corresponding boundary conditions can be 

proposed as 

( £ ) ' ( 0 ) = C " ' : ( T " . (10) 

Therefore, the averaged strain tensors in both phases can be numerically solved on 
the basis of standard backward Eulerian method. Similarly, in the other particle-matrix 
with the range of d^<X^<t (zone III), we can also calculate the averaged strain 
fields by the switch of matrix and particle phases. 

For the transition zone II {d^<X^< d^), the particle and matrix phases caimot be 

well defined because the two phases are interpenetrated into each other as a 
cormected network. As a consequence, the averaged elastic fields carmot explicitly be 
determined through the micromechanics framework. Similarly to Reiter and Dvorak 
[9], a phenomenological transition function is introduced as 

fix,)-
^ j{X,)-^{d,) 

<p{d^)-<p{d^) 

<t>{X,)-<t>{d,) 

<p{d^)-<p{d^) 
(11) 

so that the averaged strain of each phase {A or B) in the transition zone II can be 
approximated as a cubic Hermite function appropriately contributed by the averaged 
strain of the same phase {A or B) from two particle-matrix zones (zones I and III). 
Namely, 

(cr.(^3)=/(X3)(.)r.(^3)+[i-/(^3)](^)r.(^3) (12) 
The overall averaged strain tensor at each layer in the transition zone can be further 

obtained from Eq. (2). It is noted that the proposed transition function makes the 
effective FGM elastic fields bounded, continuous, and differentiable. 

RESULTS AND DISCUSSION 

When a uniformly distributed stress is apphed on the top and bottom boundaries of 
the FGM, the proposed model can be used to determine the averaged elastic fields as a 
function of X,. Since two-phase FGMs are fabricated to gradually change material 

phases from one end to the other, the effective strain fields strongly depend on the 
individual performance of constituent phases. In the following simulation, the material 
selected is the C/SiC system (Reiter et al. [12]) with the carbon as phase A 
{E^ =28GPa,v^ =0.3) and the silicon carbide as phase B {E^ =320GPa,v^ =0.3). 
The volume fraction distribution function of silicon carbide is assumed as 
(piX,) = X^lt with the thickness of the FGM t = \. The transition zone is taken from 

(j){d^) = 48% to (j){d^) = 52% to be consistent with FEM simulation [12]. 
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First we study the elastic fields of the FGM under a uniform shear crj3 = l.OMPa 

on the top and bottom boundary. Fig. 2(a) illustrates the overall averaged strain and 
compares the proposed model with the self-consistent method and finite element 
method (FEM) both performed by Reiter et al. [12]. It is shown that averaged shear 
stress on the carbon phase estimated by the current model is much closer to the 
numerical FEM results than the one estimated by the self-consistent method. 

When the FGM is subjected to a uniform compression 0-33 = l.OMPa, we can also 
determine the averaged strain distribution as illustrated in Fig. 2(b). In the loading 
direction, the strain is negative; whereas it is positive in the direction normal to the 
loading. From these two figures we can see a continuous and differentiable jump in the 
transition zone. It can be predicted that a larger transition zone made during FGM 
fabrication is desirable to prevent the significant jump of effective elasticity when the 
elastic contrast ratio is big. 

E =320GPa, V =0.3, E =28GPa, V =0.3 E =320GPa, V =0.3, E =28GPa, V =0.3 

O 2 0x̂  

\> 
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ss\ 
•^ 

o* 

FEM simulation [12] 
Seif-consistent method [12] 
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FIGURE 2. Schematic illustration of a two-phase F G M sample: (a) three zones in macroscopic scale 

and (b) RVE in the microscopic scale. 

Due to a uniformly distributed stress apphed on the FGM top and bottom 
boundaries, from the equilibrium condition the averaged stress can be easily obtained 
as the applied stress. Once we solve the averaged strain distribution in the gradation 
direction, we can further solve the elasticity distribution [I I]. 
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