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Abstract. This work employs the self-consistent method to investigate the effective thermal 
conductivity distribution in functionally graded materials (FGMs) considering the Kapitza 
interfacial thermal resistance. A heat conduction solution is first derived for one spherical 
particle embedded in a graded matrix with a prefect interface. The interfacial thermal resistance 
of a nanoparticle is simulated by a new particle with a lower thermal conductivity. A novel self-
consistent formulation is developed to derive the averaged heat flux field of the particle phase. 
Then the temperature gradient can be obtained in the gradation direction. From the relation 
between the effective flux and temperature gradient in the gradation direction, the effective 
thermal conductivity distribution is solved. If the gradient of the volume fraction distribution is 
zero, the PGM is reduced to a composite containing uniformly dispersed nanoparticles and a 
explicit solution of the effective thermal conductivity is provided. Disregarding the interfacial 
thermal resistance, the proposed model recovers the conventional self-consistent model. 
Mathematically, effective thermal conductivity is a quantity exactly analogous to effective 
electric conductivity, dielectric permittivity, magnetic permeability and water permeability in a 
linear static state, so this method can be extended to those problems for graded materials. 
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I N T R O D U C T I O N 

In recent years, functionally graded particulate nanocomposites have been proposed 
to reduce the thermal stress in thermal barrier coatings simultaneously carrying the 
benefits of hght weight of the structure and excellent physical properties of 
nanomaterials [1-4]. In the literature, most traditional works have considered the 
ideahzed case of perfect interface so that continuous boundary conditions along the 
interface between particles and matrix are employed in the calculation of averaged 
fields [5, 6]. As a result, the size effect of particles has no contribution to the effective 
material behavior. 

However, with decrease of particle size, the surface-to-volume ratio of the particles 
increases. Therefore the interface between a particle and the surrounding matrix plays 
an important role in the effective materials behavior, especially for nanocomposites. It 
has been observed that the Kapitza interfacial thermal resistance greatly changes the 
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effective thermal conductivity for nanocomposites [7, 8]. When particle radius is 
smaller than a certain value, the contribution of the particles to the effective thermal 
conductivity is dominated by interfaces instead of the particle's conductivity. 
Hasselman and Johnson [9] and Benveniste [10] respectively obtained the same 
formulation [11] for the effective thermal conductivity of uniformly dispersed 
particulate composites. However, for nanoFGMs, no applicable model exists in the 
literature. 

This work proposes a multi-scale model to investigate the effective thermal 
conductivity distribution in FGMs considering the Kapitza interfacial thermal 
resistance. A fundamental solution for one spherical particle embedded in a graded 
matrix is derived with the interfacial thermal resistance. Consider a two-phase FGM 
placed between two parallel platens (Figure 1(a)). The platens have different fixed 
temperatures, so a steady state heat flux is induced in the FGM. In microscopic scale, 
discrete particles embedded in a continuous matrix can be observed. For an arbitrarily 
chosen particle, because particle is much smaller than the size of the FGM, using the 
self-consistent method, one can obtain the particle averaged heat flux from the 
solution of one particle in an unbounded FGM. From the relation between the 
averaged heat flux and temperature gradient, the effective thermal conductivity 
distribution is derived in the gradation direction of the FGM. Some special cases of 
the model are discussed and validated with experimental data. 
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(a) (b) (c) 

FIGURE 1. Illustration of a self-consistent model for FGMs. (a) An FGM at the macroscale; (b) one 
particle embedded in the FGM itself with an interfacial thermal resistance, and; (c) a new particle 
embedded in the FGM with a perfect interface and a lower thermal conductivity. 

FORMULATION 

Consider an FGM containing two phases, discrete particle A and continuous matrix 
B, whose volume fractions gradually change in the gradation direction X^ (Figure 

1(a)). To test the effective thermal conductivity distribution in the X^ direction, two 
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different temperatures (T^ > r ' l a r e applied in the lower and upper platens, so that a 

steady state heat flux field is induced. Macroscopically, because the material is 
homogeneous at each Xj - X^ layer and the heat flux is conservative for each layer, 

the averaged heat flux should be uniform, written as q". Microscopically, because the 
microstructure of the material is represented by discrete particles dispersed in 
continuously graded matrix, the local field is severely inhomogeneous. 

For an arbitrary material point X° in Figure 1(a), the effective material behavior 
can be represented by the averaged response of two material phases. Under steady 
conditions and without the presence of heat sources, the overall averaged heat flux and 
temperature gradient can be written as [11]: 

(q) .(^3)=(^(x°)(q) ,(x»)+[l-^(x»)](q)„(x»), (1) 

(H)JX»)=^(X»I(H)JX») + J(X»)]+[1-^(X»)][(H)^(X»)], (2) 

where the angle brackets with subscripts D, D., andM denote the volume averages 
over the whole RVE, particle phase, and matrix phase of the material point; q and H 
represent the heat flux and temperature gradient. It is noted that because the normal 
heat flux across the interface between particle and matrix dD. is continuous, the 
averaged heat flux only includes two terms from two material phases; whereas due to 
a temperature discontinuity existing across the interface, an additional term J 
represents the contribution of the temperature jump across dD.. 

The temperature jump is proportional to the normal heat flux across the interface as 
the following relations: 

AT = -R,,q" (3) 

where R^j denotes the interfacial thermal resistance [7]. Because Kapitza [12] first 

quantitatively measured the interfacial thermal resistance between helium and some 
solids, the physical quantity is also named as Kapitza resistance. 

To solve averaged the heat flux field in particle phased, the self-consistent method 
[13, 14] is used as follows: 
• For a given point X° in the global FGM system as seen in Figure 1(a), we build 

up a local coordinate system with a particle centered at the origin as seen in 
Figure 1(b). The thermal conductivity of the graded matrix is assumed to be the 
same the FGM itself at the global system; 

• Because the particle is essentially contacted with the continuous matrix phase B, a 
constant interfacial thermal resistance exists along the interface between the 
particle and the matrix as seen in Figure 1(b); 

• To simplify the solution for the particle's averaged field, the particle with 
interfacial thermal resistance is replaced by a new particle with perfect thermal 
interface as seen in Figure 1(c). Therefore, the particle's averaged heat flux field 
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is solved by one particle embedded in an unbounded graded matrix under a 
uniform heat flux at far field. 

Although the heat flux field for one particle embedded in an FGM with an 
interfacial thermal resistance is fairly complex, in a sense of volume average, the 
inhomogeneous heat flux field over the particle can be replaced by the averaged one 
written as q. Observing from the outside of the particle surface, one can write the 
averaged temperature gradient as 

( H ) „ = ^ f - - ^ ^ x + f AT(x)nclS 
Jn z-i Jan ^ ' 

_ q / ^ i _ : ? M i . (4) 

where k^ denotes the thermal conductivity of the particle, and a the radius of the 
particle. Therefore, no matter how complex the local heat flux field is in the particle 
domain, observed from the outside of the particle, it is equivalent to a new particle 
with a perfect interface but a lower thermal conductivity as. 

P =k'/{[ + Rj,jk'/a). (5) 

Therefore, using the equivalent particle, the averaged temperature gradient in Equation 
(2) can be written as 

(H),(X°)=^(X°^H)„(X°)+[1-^(X°)I(H)^(X°)], (6) 

with the constitutive law as 

(H)„=(q )„ /^~ ' , (HL(x° )=(q )^ /^ - (x° ) . (7) 

The particle's averaged heat flux can be obtained from the solution for one particle 
embedded in an unbounded FGM with a perfect interface [15], written as: 

^^'^"^ '' 3k' -2{l-a'a'\k' -k{x",f^''''^ '' 

where k denotes the effective thermal conductivity, which is a function of the 
coordinate X3; and 

a =^ , (9) 
2k dX, • 3 

which reflects the effect of the material gradation. 
Using Equations (1), and (6)-(8), one can derive the relation between the averaged 

heat flux and temperature gradient as 
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iilD ixl)- 3(P-^") 
' 3k^ -li^-a'a')^^ -k[xl)) {H.)M)- (10) 

Thus, the effective thermal conductivity can be obtained as 

k[xl)- 3(P-A:") 
' 3P -2(l-fl 'a ')(P -k[xl)) 

(11) 

Notice that the above expression is imphcit because the right side includes k\Xl) 

itself Equation (11) can be ultimately simplified into a quadratic equation with two 
roots. One of them that is in the range between k ^ and k^ should be the physical 
solution for k\Xl). However, because a is still unknown, we need solve the above 
equation in a recursive method, in which a boundary condition is typically imphed as: 

k{})) = k' (12) 

because the volume fraction of the particle phase A is zero. For particle volume 
fraction does not start from 0%, the modified boundary condition of ^(o) can be still 
obtained with the aid of the uniform composite model as seen in Equation (13). 

RESULTS AND DISCUSSION 

Equation (11) provides a prediction for the effective thermal conductivity 
distribution in an FGM. When the material gradation is zero, the effective thermal 
conductivity will only depend on the volume fraction, so Equation (11) will be 
reduced to 

k=r 
-ik' 

3(P -
-2 (P ~W^. 

(13) 

Every et al. [7] tested the effective thermal conductivity for diamond/ZnS composites 
with two radii, i.e. a = 250nm and 2.0/Mn . The other material constants are used as: 
j^diamond = 600^ //w^ , k^"-' = 11 AW I MK , aud Rg^ =6xlQ-''m^KIW . In Figure 
2(a), for the case of a = 2.0/Mn, the effective thermal conductivity increases with the 
volume fraction of the diamond particles due to the reinforcement of the particles with 
much higher thermal conductivity; whereas for the case of a = 250nm, the effective 
thermal conductivity decreases because the interfacial thermal resistance plays a 
dominant role at this size. The present model predicts the tendency of the experimental 
data well though some difference is found for the case of a = 250mn due to the 
irregular particle shape and nonuniform size of particles. 
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k*"™'=600W/mK, k™=17.4W/mK, R =6X10'm'Kfl/V 
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FIGURE 2. Effective thermal conductivity versus volume fraction for (a) uniform diamond/ZnS 
composites, and (b) FGMs with different particle sizes 

Figure 2(b) shows the effective thermal conductivity distribution for linearly 
distributed FGMs. Here the thickness of the FGMs is set as 1mm. Four particle sizes 
are illustrated as a = 10,1, 0.1, O.Ol/ro. It is found that the particle size has dramatic 
effect on the effective thermal conductivity behavior of FGMs. 
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