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Abstract. This paper presents a Cohesive Zone Model (CZM) approach for investigating 
dynamic crack propagation in homogeneous and Functionally Graded Materials (FGMs). The 
failure criterion is incorporated in the CZM using both a finite cohesive strength and work to 
fracture in the material description. A novel CZM for FGMs is explored and incorporated into a 
finite element framework. The material gradation is approximated at the element level using a 
graded element formulation. A numerical example is provided to demonstrate the efficacy of the 
CZM approach, in which the influence of the material gradation on the crack growth pattern is 
studied. 
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I N T R O D U C T I O N 

Fracture mechanics of Functionally Graded Materials (FGMs) has been an active 
area of research during recent years. Compared to the classical hnear elastic fracture 
mechanics (LEFM) and some other existing fracture models, Cohesive Zone Models 
(CZMs) provide advantages of allowing spontaneous crack nucleation, branching, 
fragmentation and propagation without an external fracture criterion [1,2]. 
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FIGURE 1. Schematic representation of cohesive zone model concept; (a) Material softening occurs 
around crack tip due to voids and micro-cracks; (b) CZM considers material softening and separation 
using distributed cohesive tractions along a cohesive surface at the crack tip vicinity. Circled numbers 
® and (D denote the corresponding positions on the cohesive zone and cohesive law curves where 
material begins to soften (®) and where material completely loses fracture resistance capacity ((D). 
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CZMs incorporate a cohesive strength and finite work to fracture in the description 
of material behavior, and allow simulation of near-tip behavior and crack propagation. 
The concept of "cohesive failure" is illustrated in Figure 1, in which a cohesive zone, 
along the plane of potential crack propagation, is present in front of the crack tip. 
Within the extent of the cohesive zone, the material points which were identical when 
the material was intact, separate to a distance A due to influence of high stress state at 
the crack tip vicinity. The cohesive zone surface sustains a distribution of tractions T 
which are function of the displacement jump across the surface A, and the relationship 
between the traction T and separation A is defined as the constitutive law for the 
cohesive zone surface. 

CZMs can be categorized into two major groups: intrinsic CZMs and extrinsic 
CZMs. For intrinsic CZM as employed in this numerical example, the traction T first 
increases with increasing interfacial separation A, reaches a maximum value Tmax, then 
decreases and finally vanishes at a characteristic separation value 5 „, where complete 
decohesion is assumed to occur. In this paper, a novel cohesive zone model developed 
for FGMs [3] is adopted to simulate dynamic crack growth in FGMs. 

NUMERICAL SCHEME 

To incorporate a CZM into the numerical scheme for dynamic fracture, the 
cohesive element is developed and positioned along the potential path or region of 
crack propagation, and attached to the volumetric elements, which follows a cohesive 
traction-separation relationship as shown in Figure 1. In contrast, the conventional 
finite element, which is now called "bulk elemenf", follows conventional stress-strain 
relationships (continuum description). The constitutive law of cohesive elements is 
inherently embedded in the finite element model, so that the presence of cohesive 
elements allows spontaneous crack propagation. 

The FEM formulation incorporating cohesive elements is derived from the 
principle of virtual work, and discretized using the explicit central difference time 
stepping scheme to update displacements u , accelerations ii and velocities u as 
follows: 

u„„=u„+Afti„+i(AO'u„ (I) 
u„„ = M-' (F - R,„.(„,,) + R,„,(„,,)) (2) 

u„+i=u„+|A/(u„+u„, ,) (3) 

The symbols M denotes diagonal mass matrix, F, Rmt and Rcoh denote external, 
internal and cohesive force vector, and F denotes domain boundary. To treat the 
material nonhomogeneity inherent in the problem, graded elements, which incorporate 
material property gradient at the element level, are introduced. In this investigation, 
the scheme proposed by Kim and Paulino [4] is adopted. The same shape functions 
are used to interpolate the unknown displacements, the geometry, and the material 
parameters, and thus the interpolations for material properties E, v, p are given by 

m m m 

E = Y.^fi,, v = Y.^,v,, P = £A^,A (4) 
/ / / 

where Ni are the standard shape functions. 
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BILINEAR COHESIVE ZONE MODEL FOR FGMS 

Insertion of cohesive elements introduces fictitious compliance to the structure, 
which is inherent to the "intrinsic" CZM approach. The magnitude of artificial 
comphance introduced is primarily related to the initial slope of the traction-separation 
law. A stiffer slope represents more rigid initial bonds between bulk elements, 
resulting in less fictitious compliance. A bilinear cohesive model [5,6] is thus adopted 
in favor of its adjustable slope attribute. It is assumed that the material fails when the 
parameter X (a function of the normal and tangential separations) reaches unity: 

1-- n + (5) 

The parameters An, At are the current normal and tangential cohesive interface 
separations, while 5n, St are the critical separation values at which the interface is 
considered to have failed in the two modes, respectively. The choice of a "critical 
separation" Xcr allows the users to specify the initial slope of the cohesive law. The 
cohesive law is stated as 

1-X 
S, 

T, = T: 
\-X 

X 
Kr if 

if 
(6) 

/I (1 - /I) (5, /I (I - /I) 

The traction-separation relationships for pure mode I and pure mode II cases are 
plotted in Figure 2. Irreversibility of interface weakening is introduced by specifying 

/l = max(/l^„^„„„/l^„„.^J (7) 
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FIGURE 2. Bilinear cohesive model for pure normal (a) and pure tangential (b) traction-separation. 

In order to simulate crack propagation in FGM, we extended the bilinear model of 
Figure 2 to incorporate material gradation considerations. The cohesive traction force 
vectors associated with material phases 1 and 2 (Ti = [Tni; Tti] ; T2 = [Tn2; Tt2]) are 
determined from Eqs. (5). The cohesive traction vector for a two-phase FGM (TFGM) is 
approximated by the volume fraction based formula 

{x)--

\x)-. 

V,(^) 1-A' l - l ^ i W 1 - X 

F,(x) + A [ l - F , ( x ) ] "' < J „ t X ( l - 4 , i ) i-V,{x) + /3rM) "" S„,X,{\-X„,) 

V,{x) 1-A* l-V,{x) 1-X 

V,(x) + jB,[l-V,(x)] " < J , i X ( l - 4 , i ) i-V,(x) + jB,V,(x) " < J „ X ( l - 4 , 2 ) 

(8) 

(9) 
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where the parameter Vi(x) denotes volume fraction of the material phase 1, Pi and P2 
denote two cohesive gradation parameters that describe the transition of failure 
mechanisms from pure material phase 1 to pure material phase 2. 

MIXED-MODE DYNAMIC CRACK PROPAGATION 

In this section, the cohesive zone model is employed to study a mixed-mode 
dynamic crack propagation problem, where the cohesive elements allow crack 
initiation and turning of crack paths to occur spontaneously without predefining crack 
path nor prescribing a separate fracture criterion. 

Kalthoff-Winkler Experiments 

Kalthoff and Winkler [7] tested specimens, as shown in Figure 3 (a), where a plate 
with two edge notches is subjected to an impact by a projectile. The experiments 
demonstrated different fracture/damage behaviors of a maraging steel material under 
various loading rates. The material properties are hsted in Table 1. In this study, we 
only attempt to simulate the brittle failure mode and investigate the overall crack 
propagation angle, crack initiation time and propagation speed with a set of 
progressively refined element sizes. The impact loading rate is chosen as 16.5m/s. 
Since the problem possesses symmetry, only half of the geometry is modelled, as 
shown in Figure 3 (b). 
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(a) (b) 
FIGURE 3. (a) Geometry and loading of the Kalthoff-Winkler experiments [7]; (b) 2-D plane-strain 
FEM simulation model. 

The crack trajectory in this problem is not known a priori. In order to simulate 
crack propagation along arbitrary path, cohesive zone elements are inserted into a 
relatively large region through which the crack may potentially grow, as shown in 
Figure 3 (b). 

TABLE 1. Material properties of 18Ni(300) steel and cohesive model parameters 
E(GPa) V p(kg/m') Gi,=Gnc (kJ/m^) Tn"'="=Tt"" (GPa) Sn=St(^lm) 
190 0.3 8000 22.2 1.733 25.63 
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Homogeneous Material Results 

Two sets of calculations are carried out to investigate the capabilities of the bilinear 
cohesive model. The first set aims to study the effect of mesh orientation on the 
fracture propagating path. Three rectangular unit cells with aspect ratios of 
height/width = {25/16, 1, 16/25} are considered. Therefore, the plate geometry is 
discretized into 64x100, 80x80 and 100x64 rectangles, each divided into 4 T6 
elements. The second set of calculations investigates the effect of mesh size. Results 
obtained from 100x100 and 120x120 are compared to that from 80x80, for instance. 

Initially, all bulk elements are bound together with cohesive force provided by the 
cohesive elements. Fracture occurs at high stress regions, where the local stress 
overcomes cohesive strength and the cohesive elements gradually lose resistance 
capability against separation, as shown in Figure 4. 

(a) (b) 
FIGURE 4. Stress field cr̂  and crack evolution in a 120x120 grid mesh; (a) crack pattern at t = 30|xs; 
(b) crack pattern at t = 60 [is. 

The fracture paths for three aspect ratios of the "unit mesh grid" are shown in 
Figure 5 (a). Despite the different mesh orientation bias, the overall crack propagation 
paths of the three different meshes are similar. The propagation angle is estimated to 
be around 72° to 74°, which agrees well with the experimental prediction (70°). 
Further refined mesh results are shown in in Figure 5 (b) for mesh with aspect ratio of 
1, which indicate similar crack pattern, especially before crack approaches boundary. 
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FIGURE 5. (a) Influence of mesh discretization on dynamic fracture behavior; (a) final crack paths for 
the first set of mesh discretization with total number of 25,600 T6 elements, and different mesh 
orientations; (b) final crack paths for square shape grids with element sizes h = 1.25,1, 0.8mm. 

566 

Downloaded 18 Nov 2009 to 192.17.145.10. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/proceedings/cpcr.jsp



Graded Material Results 

Consider linearly graded Young's modulus E, fracture toughness G and cohesive 
strength T̂ ™ '̂' along the Cartesian x direction, as shown in Table 2. 

TABLE 2. Graded Material 
Material 

Homogenous 
FGM-LHS softer 
FGM-RHS softer 

El 
(GPa) 

190 
127 
253 

properties 
E2 

(GPa) 
190 
253 
127 

Gi 
(kJ/m^) 

22.2 
14.8 
29.6 

G2 
(kJ/m^) 

22.2 
29.6 
14.8 

'-r max 

(GPa) 
1.733 
1.155 
2.301 

'-r max 

(GPa) 
1.733 
2.301 
1.155 

([is) 

20.7 
24.8 
18.2 

The crack paths are plotted in Figure 6 for the graded specimens as well as the 
homogeneous case. Apparently, the crack tends to grow into the weaker region. After 
the velocity loading is applied to the lower left surface, the stress waves propagate 
rightwards and the stress concentration builds up at the crack tip. Since the material 
fracture toughness at the initial crack tip are the same for all three cases, the crack 
initiation time is primarily determined by the rate of stress concentration at the crack 
tip. Because the material stiffness varies along the x direction, the stress waves 
propagate at varying speeds. For the "RHS softer" specimen, the average stiffness 
between the left surface and the crack tip is higher than the other two cases, and 
consequently the average wave speed is faster. Therefore, it takes shorter time for the 
crack tip tensile stress to reach the critical value for this case than the opposite 
material gradation case, and thus the crack initiates earlier. 

0.0* 0.06 

(b) 
FIGURE 6. (a) Comparison of fracture paths for graded stiffness and graded fracture toughness along 
the Cartesian x direction, (b) material gradation profiles for E and cohesive strength. 
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