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ABSTRACT 
In this paper Cohesive Zone Model (CZM) concepts are applied in order to study mode I fracture in a 
pre-cracked bonded Double Cantilever Beam (DCB) specimen. A cohesive surface element is 
implemented in a Finite Element commercial code using intrinsic cohesive zone models: exponential, 
bilinear and trapezoidal traction-separation laws. The sensitivity of cohesive zone parameters in 
predicting the overall mechanical response is examined, then the load displacement curves obtained 
with the different CZMs are compared and some interesting features concerning the prediction of 
damage onset in adhesive joints are illustrated. Finally, cohesive parameters are identified comparing 
numerically simulated load-displacement curves with experimental data retrieved from literature. 
 
 
1. INTRODUCTION 
The use of adhesive joints in automotive, aerospace, biomedical, and microelectronics industries is 
widespread; however, inaccurate joint fabrication or inappropriate curing may cause the presence of 
bubbles, dust particles or un-bonded areas in the bond line. As a consequence the establishment of 
reliable integrity assessment methodologies and testing procedures is needed in order to tackle 
fracture events in adhesive joints. A valuable approach from this point of view is represented by the 
Linear Elastic Fracture Mechanics (LEFM) [1-3]. So far, both the classic one parameter models of 
elastic and plastic fracture have been successfully applied but they present some limitations. They 
require pre-existing crack like defects or notch and, therefore, crack initiation cannot be treated 
directly. In addition, they neglect a detailed description of what happens in the fracture process zone 
(FPZ) because, provided the FPZ is small compared to the other specimen dimensions, they lump it all 
into the crack tip. However, a detailed description of the FPZ is essential, especially to understand 
fracture mechanisms and to design suitable modifications of the material (e.g. toughening by 
reinforcement in polymeric structural adhesive [4]). 
The standard model used to describe the crack tip process zone assumes bonds stretching orthogonal 
to the crack surfaces until they break at a characteristic stress level. Thus, the singular region 
introduced from LEFM can be replaced by a lateral region over which non-linear phenomena occur. 
This model is often mentioned as the Cohesive Zone Model (CZM) and it can be traced back to the 
works of Dugdale and Barenblatt [5,6]. According to CZM the entire fracture process is lumped into the 
crack line and is characterized by a cohesive law that relates traction and displacement jumps across 
cohesive surfaces (T-Δ). Unlike fracture mechanics based strategies, CZM can be used for the 
analysis of crack initiation and growth that, indeed, are obtained as a natural part of the solution 
without any a priori or ad hoc assumptions. So far, CZM has been successfully applied to model 
fracture in metals, concrete, polymers and functionally graded materials (FGMs) [7-11].  
Cohesive zone approaches differ in the way by which cohesive surface elements are inserted in the 
initial geometry. In the intrinsic approach [12] cohesive elements are introduced between volumetric 
elements from the beginning of the analysis as a network of cohesive surfaces; on the other hand, in 



the extrinsic approach, [13] a cohesive element is introduced in the mesh only after the corresponding 
interface is predicted to have started to fail, i.e. they are inserted adaptively. 
In this paper CZM concepts have been applied in order to study mode I fracture in a pre-cracked 
bonded Double Cantilever Beam (DCB) specimen. A cohesive surface element has been implemented 
in the Finite Element commercial code ABAQUS [14] using intrinsic cohesive zone models: 
exponential, bilinear and trapezoidal laws. Theoretical and numerical aspects of the CZM are 
explained. In particular, details regarding the computation of the force vector and the tangent stiffness 
matrix are presented. The sensitivity of cohesive zone parameters in predicting the overall mechanical 
response is examined and then cohesive parameters are identified comparing numerically simulated 
load-displacement curves with experimental data retrieved from literature [2]. 

 
 

2. GENERAL THEORY AND NUMERICAL ASPECTS OF COHESIVE ZONE MODEL (CZM) 
 
2.1 CZM concepts 
Let consider the domain Ω showed in Fig. 1.a which is divided into two parts, i.e. Ω1 and Ω2, by a 
material discontinuity, Γc. This last defines the interface between the domains Ω1 and Ω2  and 
represents an internal surface not yet separated. Prescribed tractions, fi, are imposed on the boundary 
Γf. The stress field, σij, in Ω, neglecting body forces, is related to the external loading and to the closing 
tractions, Ti, in the material discontinuity through the following equilibrium equations 
 

 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Γ=σ

Γ=σ

Γ=σ

ΩΩ=Ω=
∂
σ∂

cijij

uijij

fijij

21

j

ij

onTn
onrn
onfn

in0
x

U

 (1)

 
where nj is the outward normal, while ri are the reaction forces on the boundary Γu. Cohesive zone 
model is, as previously said, one of the most commonly used tools to model material discontinuities. In 
the simplest and most usual formulation of CZM, the whole body volume remains elastic while the 
nonlinearity is embedded in the cohesive law which dictates the boundary conditions along the crack 
line, Γc (Fig. 1). The pick stress on the cohesive law is the cohesive strength, σcr, of the material while 
the area under the curve is the cohesive fracture energy, Gc. As a consequence, fracture process can 
be summarized as illustrated in Fig. 1.b: at first a linear elastic material response prevails (I), as the 
load increases the crack initiates (T=σcr) (II) and then, governed by the non linear cohesive law 
(softening curve), it evolves from initiation to complete failure (III) with the appearance of new traction 
free crack surfaces, Γ−

c and Γ+
c (Δ=Δf) (IV).  

 

 
Fig. 1 - Cohesive Zone Model concepts Fig. 2 - Intrinsic versus extrinsic CZM 

 
Therefore, the continuum should be characterized by two constitutive laws: a linear stress-strain 
relation for the bulk material and a cohesive surface relation (cohesive law) that allows crack 
spontaneous initiation and growth. It was shown in [15] that the shape of the traction-separation laws  
plays an important role in the macroscopic mechanical response of the system, therefore, it is 



important to properly select the shape of the softening curve. The development of cohesive zone 
models in FEM framework requires bulk finite elements, for modelling the stage (1) (Fig.1.b), bordered 
by cohesive surface elements for the remaining three stages. From this point of view there are 
basically two cohesive zone approaches that differ in the way by which cohesive surface elements are 
inserted in the initial geometry. In the intrinsic approach [12] cohesive elements are introduced  
between volumetric elements from the beginning of the analysis as a network of cohesive surfaces. 
Cohesive tractions increase from zero to a failure point that is represented by the cohesive strength, at 
which they reach a maximum before they gradually decrease back to zero following the post peak 
softening behaviour (Fig. 2). This active network of cohesive surfaces introduces a compliance due to 
the initial slope of the cohesive law, i.e. the penalty stiffness, K0. This drawback could be addressed 
increasing K0, however, from a numerical standpoint, it is not recommendable to use elements with an 
extremely stiff initial response because instabilities in the solution procedure arise [16]. Another 
noteworthy CZM reported in literature is the extrinsic model proposed in [13], which eliminates the 
artificial compliance typical of the intrinsic models mentioned above. In particular, in the extrinsic 
approach, a cohesive element is introduced adaptively in the mesh only after the corresponding 
interface is predicted to have started to fail; as a consequence, it is possible to adopt a cohesive law 
with a very high initial stiffness like that reported in Fig. 2. In the present paper, the fracture behaviour 
of adhesive joints is analyzed using intrinsic cohesive zone model. For this particular problem 
cohesive surface elements are introduced along a predefined fracture path, i.e. the bond line; 
therefore their number is reduced and this, in turn, yields a lower compliance.  
 
2.3 Traction separation laws examined in the paper 
In this paper three of the most representative traction-separation laws proposed in literature have 
been analyzed and compared in order to investigate the fracture behaviour of adhesive joints: bilinear, 
trapezoidal and exponential cohesive laws (Fig. 3). In particular, only pure-mode I decohesion 
problems are considered so that the attention has been focused on traction-displacement relationships 
relating the normal opening displacement Δ to the dual traction component T. In all the traction 
separation laws presented below, only positive values of Δ are considered, for negative values, a high 
penalty stiffness is assumed in order to avoid crack faces interpenetration (Fig. 3). In addition, only 
monotonic loading processes, without local unloading, will be studied in the paper. This assumption 
strictly makes the laws thermodynamically not consistent (i.e. irreversibility is not accounted for) 
however it will not affect the results of the comparative analyses. In what follows, the traction-
separation laws analyzed in the paper are briefly summarized. The cohesive traction according to the 
exponential model is derived trough cohesive potential energy φ [12] 
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where Δcr is the critical normal displacement and σcr, as mentioned above, is the cohesive strength of 
the material. As crack face displacements increase, the traction increases, reaches a maximum, and 
then decays monotonically. The traction integrated to complete separation yields the fracture energy 
release rate  
 

 ( )1expG crcrc Δσ=  (3)
 
The analytical expression of the bilinear law [17] is given as follows 
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where K0 is the penalty stiffness of the cohesive zone model that can be adjusted selecting proper 
values of σcr and γ1 (Fig. 3). The normal work of separation is then given by 
 

 2/G fcrc Δσ=  (5)
 
The analytical expression of the trapezoidal traction-separation law is given as follows [18] 
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the normal work of separation is given by 
  

 2/)1(G 12fcrc λ−λ+Δσ=  (7)
 
As it can be seen, for this particular (T-Δ) curve, the governing cohesive parameters are the cohesive 
fracture energy (Gc), the peak stress (σcr), the critical opening displacement (Δf) and the factors λ1 and 
λ2 whose values dictate the shape of T=T(Δ). 
 

  
Fig. 3 – Cohesive laws examined Fig. 4 - Cohesive zone element 

 
2.3  Finite element implementation 
The development of cohesive zone models in FEM framework requires bulk finite elements, for 
modelling the stage (1) (Fig.1.b), bordered by cohesive surface elements for the remaining three 
stages: (2) crack initiation, (3) crack evolution and (4) complete failure. In this work, four node 
cohesive zone elements (CZE) with two integration points have been implemented within the 
commercial FE code ABAQUS [14] using the user element (UEL) capability. A schematic 
representation of a CZE is given in Fig. 4. A CZE is made up of two linear line elements (cohesive 
surfaces) that connect the faces of adjacent elements during the fracture process. The two surfaces 
initially lie together in the unstressed deformation state (zero thickness) and, subsequently, separate 
as the adjacent elements deform. In particular, the surface constitutive relations prescribe the 
evolution of tractions (T) generated across crack faces as a function of displacements jump (Δ) at the 
nodes of the element. Thus cohesive elements do not represent any physical material, but describe 
the cohesive forces when material elements are being pulled apart. The insertion of cohesive surface 
elements bridges linear elastic and fracture behaviour allowing for spontaneous crack propagation. In 
order to carry out the iterations of the method [14], the contribution of cohesive elements to the 
tangent stiffness matrix as well as to the force vector is acquired from the numerical implementation of 
the CZM. The implementation of a general cohesive element is explained in what follows. The line 
cohesive element has eight degrees of freedom. In particular, the nodal displacements vector in the 
global coordinate system is given as: 
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in which the order follows typical ABAQUS conventions. Crack faces opening for cohesive elements is 
defined as the difference between top and bottom nodes thereby leading to the following definition in 
terms of displacements of paired nodes: 
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with [L] being an operator matrix. From the nodal positions, the crack face opening is interpolated to 
the Gauss integration points by means of standard shape functions 
 

 g

)3,2(

y

)3,2(

x

)4,1(

y

)4,1(

x

y

x uLN

2
10

2
10

0
2

10
2

1

Δ~ =

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

δ
δ
δ
δ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+ξ−

ξ+ξ−

=
⎭
⎬
⎫

⎩
⎨
⎧
δ
δ

=  (10)

 
where ξ is the natural coordinate and N is the matrix of shape functions. Since the constitutive 
relations are based on tractions and displacements in the local coordinate system a transformation 
from global to local coordinate is needed for the cohesive element. Let [R] defines the orthogonal 
transformation matrix from global (x,y) reference frame to element specific local coordinate system. 
Then the relative displacement vector, for an uncoupled cohesive law, is given as: 
 

 gg uBuLNRΔ ==  (11)
 
The relative displacements of the element faces create normal and shear displacements, which in turn 
generate element stresses depending on the constitutive equations of the material. The relationship 
between tractions and displacements is given by: 
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with the last term being the Jacobian stiffness matrix while the subscripts t and n denote the tangential 
and normal directions. The constitutive relationships adopted herein have been presented in the 
previous section and they are independent of the element formulation. The stiffness matrix for 
cohesive elements can be obtained by minimizing the total amount of potential energy: 
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where f is the external traction vector; after some manipulations it follows 
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so that the cohesive element stiffness matrix is given as 
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where w is the element width. The contribution of cohesive elements to the global force vector is 
defined in a variational setting using the principle of virtual work 
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with INTΠδ  and EXTΠδ  being the internal and external virtual work respectively. After some 
manipulations the equivalent right hand side nodal force vector for cohesive elements, FCOH, is given 
as follows: 
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3. SIMULATION OF FRACTURE IN DCB CONFIGURATION 
The specimen analyzed herein is the DCB studied in [2]. A schematic representation is reported in 
Fig. 5. The beam has a length (L) of 120 mm, a substrate thickness (h) of 15 mm, and a width (B) of 
30 mm. The mechanical pre-notch (a0) extends 40 mm from the left to the right edge of the beam. The 
substrate material is aluminium (Es=70 GPa and νs=0.33) and the adhesive is epoxy (Ea=1.3 GPa and 
νa=0.35). The bond line thickness (ha) is equal to 0.3 mm. External loading is imposed under 
displacement control. 

 

 
Fig. 5 - Schematic representation of the specimen 

 
The measured fracture toughness reported in [2] is Gc= 550 N/m. The cohesive strength, that is a 
material parameter, is not easily measurable, therefore estimated values are usually adopted [19]. 
Likewise, in this paper the cohesive strength will be selected using a trial and error procedure until a 
match between numerical and experimental P-δ curves will be obtained. The general purpose 
commercial code ABAQUS has been adopted in order to model the specimen: zero thickness 
cohesive surface elements were used for the cohesive zone and plane strain four nodes isoparametric 
elements (CPS4) for the surrounding bulk material. Fig. 6 shows mesh details for the regions where 
cohesive elements are inserted.  
 

Fig. 6 - Details of the FE model in the region were 
cohesive elements are inserted Fig. 7 - Total dissipated fracture energy 

 
In order to properly represent tractions in the cohesive zone, spatial discretization along the crack 
propagation path is essential and enough elements (three or more) should be inserted in the FPZ. 
With coarser mesh, the shape of the interface law may have a non negligible influence on the 
simulated load-displacement curve; however, this problem can be tackled by means of suitable mesh 
refinements [20]. In the paper, different cohesive element sizes, have been assessed. To illustrate that 
the element size chosen for the numerical analyses is objective and not sensitive to artefacts of the 
numerical solution, a global quantity, i.e. total dissipated fracture energy, is evaluated for each 
element size and then compared. As it can be seen from Fig. 7, with element size ranging from 0.1 to 
1 mm, the fracture energy dissipated is almost the same. Therefore, using an element length of 1 mm 



the proper mechanics of energy dissipation and crack propagation are ensured. Subsequently, a 
sensitivity analysis to cohesive fracture parameters has been performed. The influence of the 
simulated mechanical responses to cohesive parameters, i.e. material strength (σcr) and cohesive 
fracture energy (Gc) has been assessed. Fig. 8 illustrates the sensitivity of P versus the opening 
displacement δ curve to different fracture energies and cohesive strengths for exponential and bilinear 
cohesive laws.  
 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Fig. 8 - Sensitivity to cohesive strength and fracture energy. 
 
Fig.8 clearly shows that when the cohesive strength, σcr, is held constant (Fig. 8.a-b) as the fracture 
energy increases the area under the curve (global fracture energy) and the peak load increases. On 
the other hand, when the cohesive fracture energy is held fixed (Fig. 8.c-d) as the critical strength 
increases, the peak load is increased while the global fracture energy is almost constant. The authors 
obtained similar results for the trapezoidal law [21], but, for the sake of brevity, these results are not 
reported herein.  
The load-displacement curves predicted by the cohesive laws using similar fracture parameters are 
now compared (Fig. 9). As it can be seen, a good agreement between the cohesive laws is observed 
in the linear elastic range and in the post-peak regions (damage propagation) of the P-δ curves. 
However, slight differences in the maximum load region (damage onset) are observed, in particular 
the trapezoidal law overestimates the peak load. This can be addressed as follows; the trapezoidal 
law produces a different interfacial stress profile with respect to the other ones. These in turn can 
greatly affect the simulated P-δ curve if the FPZ is large, i.e. for very stiff bulk materials [20]. 
The parameters of the cohesive zone model are then tuned in order to match the experimental results 
reported in [2]. These last are calibrated by fitting present numerical results to experimental findings in 
order to account for the differences between experiments and numerical simulations. The simulated 
load displacement curves along with the corresponding cohesive parameters that give minimum 
deviations between simulations and experiments are reported in Fig. 10. As the tangent stiffness for 
the exponential model starts to decrease from the very beginning, the initial slope of the corresponding 
load-displacement curve is affected by this inherent artificial compliance. When bilinear and 
trapezoidal models are used this compliance is reduced. It is worth noting that the cohesive strength 
adopted for the exponential model is higher than that of the bilinear one; this is a drawback of the 
exponential model that does not allow to control the penalty stiffness, K0, without affecting the 
cohesive strength (K0 increases if σcr increases). On the contrary, in the linear CZMs, K0 can be 



adjusted ensuring a stiff connection between cohesive and bulk elements and thus a proper 
representation of the undamaged state, without affecting the cohesive strength. However, the lowest 
value of the cohesive strength among those that allow to obtain the best fit with experimental data is 
that of the trapezoidal law; the differences with respect exponential and bilinear laws are ≅-25 % and 
≅-14 %, respectively. Indeed, the trapezoidal law overestimates the load for damage onset and then 
lower values of the cohesive strength must be selected in order to match the experimental results. 
 

 
Fig. 9 - Comparison among the P-δ curves 
keeping cohesive parameters as constants

Fig. 10 - Experimental versus numerical P-δ 
curve 

 
 

4. SUMMARY AND CONCLUSIONS 
In this paper CZM concepts have been applied in order to study mode I fracture in a pre-cracked 
bonded Double Cantilever Beam (DCB) specimen. A cohesive surface element has been implemented 
in a finite element commercial code using intrinsic cohesive zone models: exponential, bilinear and 
trapezoidal laws. Basically, a good agreement among numerical and experimental results has been 
observed and some interesting features were reported. In particular, it has been shown that both the 
linear cohesive zone models are appropriate for modelling the undamaged state of cracked adhesive 
joints: they can control the pre-peak slope of the traction-separation law allowing to reduce 
compliance. However, the trapezoidal law overestimates the load for damage onset and then lower 
values of the cohesive strength must be selected in order to match the experimental results. This 
problem was addressed to the different interfacial stress profile produced by the trapezoidal law which, 
in turn, can greatly affect the simulated P-δ curve for larger FPZ. 
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