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ABSTRACT

Functionally Graded Materials (FGMs) possess continuous variation of material properties and are characterized
by spatially varying microstructures. Recently, the FGM concept has been explored in piezoelectric materials
to improve properties and to increase the lifetime of piezoelectric actuators. Elastic, piezoelectric, and dielectric
properties are graded along the thickness of a piezoceramic FGM. Thus, the gradation of piezoceramic properties
can influence the performance of piezoactuators, and an optimum gradation can be sought through optimization
techniques. However, the design of these FGM piezoceramics are usually limited to simple shapes. An interesting
approach to be investigated is the design of FGM piezoelectric mechanisms which essentially can be defined as a
FGM structure with complex topology made of piezoelectric and non-piezoelectric material that must generate
output displacement and force at a certain specified point of the domain and direction. This can be achieved by
using topology optimization method. Thus, in this work, a topology optimization formulation that allows the
simultaneous distribution of void and FGM piezoelectric material (made of piezoelectric and non-piezoelectric
material) in the design domain, to achieve certain specified actuation movements, will be presented. The method
is implemented based on the SIMP material model where fictitious densities are interpolated in each finite element,
providing a continuum material distribution in the domain. The optimization algorithm employed is based on
sequential linear programming (SLP) and the finite element method is based on the graded finite element concept
where the properties change smoothly inside the element. This approach provides a continuum approximation
of material distribution, which is appropriate to model FGMs. Some FGM piezoelectric mechanisms were
designed to demonstrate the usefulness of the proposed method. Examples are limited to two-dimensional models,
due to FGM manufacturing constraints and the fact that most of the applications for such FGM piezoelectric
mechanisms are planar devices. An one-dimensional constraint of the material gradation is imposed to provide
more realistic designs.
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1. INTRODUCTION

Piezoelectric micro-tools offer significant promise in a wide range of applications involving nanopositioning and
micromanipulation.1 For instance, piezoelectric positioners are applied to atomic force microscopes (AFM)
and scanning tunneling microscopes (STM) for positioning the sample or the probe, respectively2, 3; piezoelec-
tric microgrippers are applied to micromanipulation,4 cell manipulation and microsurgery.5 The micro-tools
usually consist of multi-flexible structures actuated by two or more functionally graded piezoceramic devices
that must generate different output displacements and forces at different specified points of the domain and
on different directions. Thus, the development of these piezoelectric micro-tools require the design of actuated
compliant mechanisms6 that can perform detailed specific movements. Although the design of such micro-tools
is complicated due to the coupling between movements generated by various piezoceramics, it can be realized
by means of topology optimization7, 8 which even allows the simultaneous search for an optimal topology of a
flexible structure as well as the optimal positions of the piezoceramics in the design domain, to achieve certain
specified actuation movements.9

Functionally Graded Materials (FGMs) are special materials that possess continuously graded properties and
are characterized by spatially varying microstructures created by nonuniform distributions of the reinforcement
phase as well as by interchanging the role of reinforcement and matrix (base) materials in a continuous manner.10

The smooth variation of properties may offer advantages such as local reduction of stress concentration and
increased bonding strength.

Topology optimization is a powerful structural optimization method that seeks an optimal structural topology
design by determining which points of space should be solid and which points should be void (i.e. no material)
inside a given domain.11 However, the binary (0–1) design is an ill-posed problem and a typical way to seek
a solution for topology optimization problems is to relax the problem by defining a material model that allows
for intermediate (composites) property values. In this sense, the relaxation yields a continuous material design
problem that no longer involves a discernible connectivity. Typically, it is an improperly formulated (ill-posed)
topology optimization problem for which no optimum solution exists (0-1 design). A topology solution can
be obtained by applying penalization coefficients to the material model to recover the 0-1 design (and thus, a
discernible connectivity), and some gradient control of material distribution, such as a filter for example.11

The relaxed problem is strongly related to the functionally graded material (FGM) design problem, which
essentially seeks a continuous transition of material properties.10 In contrast, while the 0–1 design problem
does not admit intermediate values of design variables, the FGM design problem does admit solutions with
intermediate values of the material field.

Due to the attractive possibilities of tailoring the material properties, some researchers have applied optimiza-
tion methods to design FGMs.12 The application of a generic optimization method to tailor material property
gradation has been proposed by Paulino and Silva13 who applied topology optimization to solve the problem of
maximum stiffness design.

Recently, the concept of functionally graded materials (FGMs) has been explored in piezoelectric materials
to improve their properties and increase the lifetime of piezoelectric actuators.14 Usually, elastic, piezoelectric,
and dielectric properties are graded along the thickness of an FGM piezoceramic. Previous studies14, 15 have
shown that the gradation of piezoceramic properties can influence the performance of piezoactuators, such as
generated output displacements. This suggests that optimization techniques can be applied to take advantage
of the property gradation variation to improve the FGM piezoactuator performance.

However, the design of these FGM piezoactuators are usually limited to simple shapes. An interesting
approach to be investigated is to mix the concept of FGM with micro-tools, that is, to design FGM piezoelectric
mechanisms which essentially can be defined as a FGM structure with complex topology made of piezoelectric
and non-piezoelectric material that must generate output displacement and force at a certain specified point of
the domain and direction. This can be achieved by using topology optimization method.

Thus, the objective of this work is to develop a topology optimization formulation that allows the simultaneous
distribution of void and FGM piezoelectric material (made of piezoelectric and non-piezoelectric material) in
the design domain, to achieve certain specified actuation movements. Two design problems are considered
simultaneously: the optimum design of the piezoceramic property gradation in the FGM piezoceramic domain,
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Figure 1. (a) FGM piezoelectric mechanism concept; (b) FGM piezoelectric device design problem considering the
simultaneous distribution of FGM piezoceramic and void in the design domain.

and the design of the FGM structural topology. Figure 1 illustrates the concept of FGM piezoelectric devices
proposed in this work.

The optimization problem is posed as the design of a FGM structure, as well as its property gradation
that maximizes output displacement or output force in a specified direction and point of the domain, while
minimizing the effects of movement coupling.8 The method is implemented based on the solid isotropic material
with penalization (SIMP) model where fictitious densities are interpolated at each finite element, providing a
continuous material distribution in the domain. The optimization algorithm employed is based on sequential
linear programming (SLP).16, 17 Since the position of piezoceramic are not known “a priori” an independent
electrical excitation is considered for each finite element which is equivalent to a constant applied electric field.9

This decouples the electrical and mechanical problem, however, the dielectric properties are not taken into
account in the design problem.

Thus, this formulation contributes to increase the design flexibility of these devices allowing the design
of novel types of FGM piezoactuators for different applications. Some FGM piezoelectric mechanisms were
designed to demonstrate the usefulness of the proposed method. Although the presented examples are limited
to two-dimensional models (2D plane stress), this is appropriate since most of the applications for such FGM
piezoactuators are planar devices. An one-dimensional constraint of the FGM gradation is imposed to provide
more realistic designs. The use of topology optimization for the design of FGM piezoactuators is a novel approach
that has the potential to dramatically broaden the applied range of such devices, especially in the field of smart
structures.

2. FINITE ELEMENT FGM PIEZOELECTRIC MODELING

The micro-tools considered here operate in quasi-static or low-frequency modes (inertia effects are neglected).
When a non-piezoelectric conductor material and a piezoceramic material are distributed in the piezoceramic
domain, the electrode positions are not known “a priori”, as discussed ahead. Thus, the electrical excitation is
given by an applied electric field9 (∇φ=constant). In this case, all electrical degrees of freedom are specified in
the FE problem, and thus the linear finite element (FE) matrix formulation of the equilibrium equations for the
piezoelectric medium is given by18:

[
Kuu Kuφ

Kt
uφ −Kφφ

]{
U
Φ

}
=

{
F
Q

}
=⇒ [K] {U} = {Q} =⇒

[Kuu] {U} = {F} − [Kuφ] {Φ}[
Kt

uφ

]
{U} = {Q} + [Kφφ] {Φ} (1)
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since {Φ} is specified. Kuu, Kuφ, and Kφφ denote the stiffness, piezoelectric, and dielectric matrices, respectively,
and F, Q, U, and Φ are the nodal mechanical force, nodal electrical charge, nodal displacements, and nodal
electric potential vectors, respectively.18

In the case of FGM piezoceramics, the properties change continuously inside the piezoceramic domain, which
means that they can be described by some continuous function of position x in the piezoceramic domain, that
is:

C = C (x) ; e = e (x) ; εS = εS (x) (2)

From the mathematical definitions of Kuu, Kuφ, and Kφφ , these material properties must remain inside the
matrices integrals and be integrated together by using the graded finite element concept19 where properties are
continuously interpolated inside each finite element based on property values at each finite element node. An
attempt to approximate the continuous change of material properties by a stepwise function where a property
value is assigned for each finite element may result in less accurate results with undesirable discontinuities of the
stress and strain fields.

Therefore, the mechanical and electrical problems are decoupled, and only the upper problem of Equation
(1) needs to be directly solved. Essentially, the optimization problem is based on the mechanical problem. As a
consequence, the dielectric properties do not influence the design.

3. DESIGN PROBLEM FORMULATION

For topology optimization11 numerical implementation, we are considering the continuous distribution of the
design variable inside the finite element by interpolating it using the FE shape functions.20 In this case, the design
variables are defined for each element node. This formulation, known as CAMD (“Continuous Approximation
of Material Distribution”) seems to reduce instabilities, such as checkerboard of the material layout designs.20

We are interested in a simultaneous distribution of void, and FGM piezoelectric material in the design domain,
and thus, the following material model is proposed based on an simple extension of the SIMP (“Solid Isotropic
Material with Penalization”) model11 considering CAMD concept:

C = ρpc1
1 [ρ2C1 + (1 − ρ2)C2] + (1 − ρpc1

1 )Cvoid (3)
e = ρpc1

1 [ρ2e1 + (1 − ρ2) e2] , (4)

where ρ1 and ρ2 are pseudo-density function representing the amount of material at each point of the domain.
These design variables can assume different values at each finite element node. Thus, ρ1 = 1.0 denotes FGM
material and ρ1 = 0.0 denotes void, and ρ2 = 1.0 denotes piezoelectric material type 1 or ρ2 = 0.0 denotes
piezoelectric material type 2. C and e are stiffness and piezoelectric tensor properties, respectively, of the
material. The tensors Cj and ej are related to the stiffness and piezoelectric properties for piezoelectric material
type j (j = 1, 2), respectively. Cvoid is the tensor related to void stiffness property. Eventually, the piezoelectric
material type 2 can be substituted by the flexible structure material (non-piezoelectric material, such as Alu-
minum, for example), and in this case e2= 0. These are the properties of basic materials that are distributed in
the piezoceramic domain. The dielectric properties are not considered because a constant electric field is applied
to the design domain as electrical excitation, and as explained in Section 4, this approach decouples the electrical
and mechanical problems eliminating the influence of dielectric properties in the optimization problem. pc1 is
a penalization factor to recover the discrete design, and its value varies from 0 to 3. For a discretized domain
into finite elements, Equations (3) and (4) are considered for each element node, and the material properties
inside each finite element are given by functions of x (ρ1 (x) and ρ2 (x)) according to the CAMD concept. This
formulation leads to a continuous distribution of material along the design domain. Thus, by finding the nodal
values of the unknown ρ1 and ρ2 function, we are indirectly finding the optimum material distribution functions,
which are described by Equation (2).

In this work, the piezoceramic electrodes are not known “a priori”, and, thus, an electric field is applied as
electrical excitation. Essentially, the objective function is defined in terms of generated output displacements
for a certain applied electric field to the design domain. The mean transduction (L2(u1, φ1)) concept is related
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Figure 2. Load cases for calculation of: mean transduction (Figures 2(a) and 2(b)), mean compliance (2(c)), and
displacement coupling constraint function (Figures 2(a) and 2(d)). Here, Ei = −∇φi denotes the electrical field associated
with load case i.

to the electromechanical conversion represented by the displacement generated in region Γt2 along a specified
direction due to an input electrical excitation in the medium (in this work, E1 is prescribed). Thus, the larger
L2(u1, φ1), the larger the displacement generated in this region along the t2 direction due to an applied electric
field to the medium. Considering di and φi the electrical displacement and electrical potential related to load
case i, respectively, the mean transduction is defined by21:

L2(u1, φ1) =
∫

Γt2

t2u1dΓ +
∫

Γd2

d2φ1dΓ =
∫

Γt2

t2u1dΓ, (5)

as d2 = 0 in this problem. Therefore, the maximization of output displacement generated in a region Γt2 is
obtained by maximizing the mean transduction quantity (L2(u1, φ1)). The load cases considered for calculation
of mean transduction are shown in instances 2(a) and 2(b) of Figure 2 .

However, the optimum solution obtained considering only the maximization of mean transduction may be a
structure with very low stiffness. The piezoactuator must resist to reaction forces (in region Γt2) generated by
a body that the piezoactuator is trying to move or grab. Therefore, the mean compliance must be minimized
to provide enough stiffness (see Figure 2(c)). The mean compliance is calculated by considering the load case
described in case 2(c) of Figure 2 where a traction t3 = −t2 is applied to region Γt2 and the electric field is kept
null inside the medium (E3 = 0). The displacement coupling constraint is obtained by minimizing the absolute
value of the corresponding mean transduction related to undesired generated displacement. This will minimize an
undesired displacement generated when an electric field is applied. Therefore, the mean transduction L4(u1, φ1)
related to the displacement normal to the desired displacement at Γt2 must be minimized (see Figure 2(d)), and
it is calculated by using Equation 2, however, considering a load case described in case 2(d) of Figure 2 instead,
where a traction t4, normal to t2, is applied to region Γt2 .

8

To properly combine the mean transduction, mean compliance maximization, and coupling constraint mini-
mization, a multi-objective function is constructed to find an appropriate optimal solution that can incorporate
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all design requirements. The following multi-objective function is proposed to combine all these optimization
aspects9:

F (ρ1, ρ2) = w ∗ ln [L2(u1, φ1)] −
− 1

2
(1 − w) ln

[
L3(u3, φ3)2 + βL4(u1, φ1)2

]
, (6)

where w is a weight coefficient (0 ≤ w ≤ 1). The coefficient w allows control of the contributions of mean
transduction (Equation 2), mean compliance, and displacement coupling in the design. Accordingly, the final
optimization problem is defined as:

Maximize :
ρ1(x),ρ2(x)

F (ρ1, ρ2)

subject to : Equilibrium equations for different load cases
0 ≤ ρ1 ≤ 1; 0 ≤ ρ2 ≤ 1;
Θ1(ρ) =

∫
S ρ1dS − Θ1S ≤ 0; Θ2(ρ) =

∫
S ρ2dS − Θ2S ≤ 0

(7)

Here S denotes the design domain, Θ1 is the volume of this design domain, and Θ1S is an upper-bound
volume constraint defined to limit the maximum amount of material used to build the FGM coupling structure.
Moreover, Θ2 is the volume related to ρ2 design variable, and Θ2S is an upper-bound volume constraint defined
to limit ρ2 values when optimizing the FGM gradation function. The other constraints are equilibrium equations
for the piezoelectric medium considering different load cases. The equilibrium equations are solved separately
from the optimization problem. They are stated in the problem to indicate that, whatever topology is obtained,
it must satisfy the equilibrium equations.

4. NUMERICAL IMPLEMENTATION

The continuum distribution of design variables ρ1 (x) and ρ2 (x) are given by the functions20

ρ1 (x) =
nd∑

I=1

ρ1INI (x) ; ρ2 (x) =
nd∑

I=1

ρ2INI (x) (8)

where ρ1I and ρ2I are nodal design variables, NI is the finite element shape function that must be selected to
provide non-negative values of the design variables, and nd is the number of nodes at each finite element. The
design variables ρ1I and ρ2I can assume different values at each node of the finite element.

Due to the definition of Equation (8), the material property functions (Equations (3) and (4)) also have a
continuum distribution inside the design domain. Thus, considering the mathematical definitions of the stiffness
and piezoelectric matrices of Equation (1), the material properties must remain inside the integrals and be
integrated together by means of the graded finite element concept.19 The finite element equilibrium Equation
(1) is solved considering 4-node isoparametric finite elements under either plane stress or plane strain assumptions.

When a non-piezoelectric conductor material (usually a metal, such as Aluminum) is considered in Equations
(3) and (4), a relevant problem to be solved is how to define the piezoceramic electrodes. If only different
types of piezoelectric materials are considered, the position of electrodes surface is known and is defined by the
piezoceramic domain geometry. However, if a non-piezoelectric conductor material (for example, Aluminum) is
also distributed in the piezoceramic design domain, we cannot define “a priori” the position of the piezoceramic
electrodes because we do not know where the piezoceramic is located in the design domain. To circumvent this
problem, we consider the electrical problem independently for each finite element of the piezoceramic domain by
defining a pair of electrodes at each finite element, that is, each finite element has its own electrical degrees of
freedom as illustrated by Figure 3.

Thus, each finite element has 4 electrical degrees of freedom given by [φa, φb, φc, φd] (nodes are ordered
counterclockwise starting from the upper right corner of each finite element) considering that one of the electrodes
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Figure 3. Finite elements with their corresponding electrical degrees of freedom. Here, ui and vi denote the node i
horizontal and vertical displacement, respectively; and φij denotes the j-th potential at the i-th node.

is grounded. Electrical voltage φ0 is applied to the two upper nodes, and thus, the four electrical degrees of
freedom are prescribed at each finite element, as follows ([φ0, φ0, 0, 0]).9 This is equivalent to applying a constant
electrical field along the 3-direction in the design domain (see Figure 3). In this case, all electrical degrees of
freedom are prescribed in the FE problem.

By means of the FE matrix formulation of equilibrium, Equation (1), the discrete forms of mean transduction,
Equation (5), and mean compliance for actuation movement i can be calculated numerically.

The discretized form of the optimization problem given by Equation (7) is restated as:

Maximize :
ρ1I ,ρ2I

F (ρ1I , ρ2I)

subject to : {F3} = −{F2} (Γt3 = Γt2)
{F4}t {F2} = 0 (Γt4 = Γt2)
[K1] {U1} = {Q1} [K2] {U2} = {Q2}
[K3] {U3} = {Q3} [K2] {U4} = {Q4}
0 ≤ ρ1I ≤ 1; 0 ≤ ρ2I ≤ 1 I = 1..Ne∑NE

I=1

∫
SI

ρ1dSI − Θ1S ≤ 0∑NE
J=1

∫
SJ

ρ2dSJ − Θ2S ≤ 0

(9)

where the integrals in the volume constraint expressions are evaluated by using Gauss quadrature (4 points) and
considering Equation (8). The parameter Ne is the number of nodes in the design design domain. Moreover,
NE denotes the number of elements in the design domain. The matrices [K1] and [K3] are reduced forms of
the matrix [K2] considering non-zero and zero specified voltage degrees of freedom (applied electric field) at the
piezoceramic domain, respectively. The initial domain is discretized by finite elements and the design variables
(ρ1and ρ2) are the values of ρ1I and ρ2J are defined at each finite element node in the design domain.

A flow chart of the optimization algorithm describing the steps involved is shown in Figure 4. The software
was implemented using the C language.

The mathematical programming method called Sequential Linear Programming (SLP) is applied to solve the
optimization problem since there are a large number of design variables, and different objective functions and
constraints.16, 17 The linearization of the problem at each iteration requires the sensitivities (gradients) of the
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Table 1. Material Properties of PZT5A.

cE
11 (1010 N/m2) 12.1 e13 (C/m2) -5.4

cE
12 (1010 N/m2) 7.54 e33 (C/m2) 15.8

cE
13 (1010 N/m2) 7.52 e15 (C/m2) 12.3

cE
33 (1010 N/m2) 11.1

cE
44 (1010 N/m2) 2.30

cE
66 (1010 N/m2) 2.10

multi-objective function and constraints. These sensitivities depend on gradients of mean transduction and mean
compliance functions in relation to ρ1I and ρ2J .

Suitable moving limits are introduced to assure that the design variables do not change by more than 5–15%
between consecutive iterations. A new set of design variables ρ1I and ρ2J are obtained after each iteration, and
the optimization continues until convergence is achieved for the objective function. The results are obtained
using the continuation method where the penalization coefficient pc1 varies from 1 to 3 along the iterations. The
continuation method alleviates the problem of multiple local minimum (or maximum).11

5. NUMERICAL RESULTS

Examples are presented to illustrate the design piezoelectric actuators using the proposed method. Once the idea
is to simultaneously distribute void, and FGM piezoelectric no regions with predefined materials are specified
in the design domain S. For all examples, the FGM piezoelectric is composed of piezoelectric material and
Aluminum, and the material gradation is constrained to the 3 direction. Table (1) presents the piezoelectric
material properties used in the simulations for all examples. C and e are the elastic and piezoelectric properties,
respectively, of the medium. The Young’s modulus and Poisson’s ratio of Aluminum are equal to 70 GPa and
0.33, respectively. Two-dimensional isoparametric finite elements under plane-stress assumption are used in the
finite element analysis.
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Figure 6. Result for w = 0.7 and β = 0.0; a) Optimal topology; b) Material gradation along 3 direction; c) Deformed
configuration of interpreted topology.

The amount of electric field applied to the design domain is 500 V/mm (see Figure 5). The design domain for
all examples is shown in Figure 5 which was discretized into 5000 finite elements. The mechanical and electrical
boundary conditions are shown in the same figure. The FGM volume constraint and piezoelectric material
volume constraint in the FGM are both equal to 25%. The initial values of design variables ρ1I and ρ2I are
equal to 0.15, and the optimization problem starts in the feasible domain (all constraints satisfied). The results
are shown by plotting the average density value. The final actuator configuration for all results is obtained by
interpreting FGM topology by doing a simple threshold of pseudo-density value ρ1I .
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Figure 7. Result for w = 0.5 and β = 0.0; a) Optimal topology; b) Material gradation along 3 direction; c) Deformed
configuration of interpreted topology.

In the first example, the topology optimization problem was solved considering w = 0.7. The β coefficient
(see Equation 6) was set equal to 0.0 which means that the coupling constraint is not considered. The obtained
piezoelectric FGM topology is shown in Figure 6(a). The graphic shown in Figure 6(b) describes the material
gradation in the FGM domain along the 3 direction. A clear contrast among piezoelectric FGM topology and
void could be obtained. However, the optimization tends to give results with a steep material gradation in
the FGM domain. The piezoceramic is distributed in the upper and lower parts of the design domain. The
corresponding deformed configuration of interpreted topology is shown in Figure 6(c).

In the second example, the topology optimization problem was solved considering w = 0.5. The β coefficient
was set equal to 0.0 and 0.0001 which means that the coupling constraint is not considered in the first case,
and it is considered in the second case, respectively. The obtained piezoelectric FGM topologies are shown in
Figures 7(a) and 8(a), respectively. The material gradation in the FGM domain along the 3 direction are shown
in graphics of Figures 7(b) and 8(b), respectively. Again, a clear contrast among piezoelectric FGM topology
and void could be obtained in both cases. The corresponding deformed configuration of interpreted topologies
(considering 500 V/mm) are shown in Figures 7(c) and 8(c), respectively. For β equal to 0.0 the piezoceramic
is distributed in the upper and lower parts of the design domain, like in the previous example. However, for β
equal to 0.0001 the piezoceramic is distributed in lower part.

Table 2. Vertical displacement at point A (500 V/mm applied) and coupling factor (Ryx).

Piezoactuator uy(µm) ux(µm) Ryx(%) w β
Figure 6(a) 1.87 0.98 52.4 0.7 0.0
Figure 7(a) 1.12 0.80 71.4 0.5 0.0
Figures 8(a) 0.89 0.001 0.6 0.5 10−4

Table 2 describes vertical displacement at point A (see Figure 5) considering 500V/mm applied to the
piezoceramic finite elements, and the coupling factor Rxy which is the ratio between undesired (horizontal) and
desired (vertical) displacement. The largest displacement value is obtained for the first example, as expected,
due to the large w value (w equal to 0.7), however, a large coupling was also obtained. For the second example,
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Figure 8. Result for w = 0.5 and β = 0.0001; a) Optimal topology; b) Material gradation along 3 direction; c) Deformed
configuration of interpreted topology.

a smaller displacement was obtained due to lower value of w (0.5), however, for β equal to 0.0001 a negligible
coupling was achieved.

6. CONCLUSIONS

A topology optimization formulation was proposed which allows the search of an optimal topology of a FGM
piezoelectric structure for designing piezoelectric actuators, to achieve certain specified actuation movements.
This is achieved by the optimization problem by allowing the simultaneous distribution of void and FGM piezo-
electric in the design domain and applying an electric field as electrical excitation. The composition of FGM
piezoelectric may include non-piezoelectric material. The adopted material model in the formulation is based on
the density method and it interpolates fictitious densities at each finite element based on pseudo-densities de-
fined as design variables for each finite element node providing a continuous material distribution in the domain.
Some 2D examples were presented to illustrate the potentiality of the method. By controlling topology and
material gradation large displacement and low displacement coupling constraint can be obtained. However, the
optimization tends to give results with a steep material gradation in the FGM domain which suggests that some
kind of gradation control must be implemented to allow the FGM gradation control, mainly for manufacturing
purposes.

In future work, the designed piezoelectric actuators will be manufactured in a mesoscale by using a spark
plasma sintering (SPS) machine, and displacement measurements will be conducted to verify the performance
of these designs.
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