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Abstract. Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative 

aging of asphalt binder and temperature cycling due to climatic conditions are the major cause of 

such graded non-homogeneity. Current pavement analysis and simulation procedures either ignore 

or use a layered approach to account for non-homogeneities.  For instance, the recently developed 

Mechanistic-Empirical Design Guide (MEPDG) [1], which was recently approved by the American 

Association of State Highway and Transportation Officials (AASHTO), employs a layered analysis 

approach to simulate the effects of material aging gradients through the depth of the pavement as a 

function of pavement age. In the current work, a graded viscoelastic model has been implemented 

within a numerical framework for the simulation of asphalt pavement responses under various 

loading conditions. A functionally graded generalized Maxwell model has been used in the 

development of a constitutive model for asphalt concrete to account for aging and temperature 

induced property gradients. The associated finite element implementation of the constitutive model 

incorporates the generalized iso-parametric formulation (GIF) proposed by Kim and Paulino [2], 

which leads to the graded viscoelastic elements proposed in this work. A solution, based on the 

correspondence principle, has been implemented in conjunction with the collocation method, which 

leads to an efficient inverse numerical transform procedure.  

This work is the first of a two-part paper and focuses on the development, implementation and 

verification of the aforementioned analysis approach for functionally graded viscoelastic systems. 

The follow-up paper focuses on the application of this approach. 

Introduction and Motivation 

Functionally graded materials (FGMs) are characterized by spatially varying constitutive properties 

that are generally contributed through non-uniform microstructure. In broader sense, the FGMs 

could be classified as engineered FGMs and non-engineered FGMs. Engineered FGMs have broad 

range of applications including for example, biomechanical, automotive, aerospace, mechanical, 

civil, nuclear, and naval engineering [3][4]. Extensive research has been carried out in fields of 

designing and optimizing the material distribution and properties as well as manufacture of the 

engineered FGMs [5]. Non-engineered FGMs include materials that naturally exhibit graded 

microstructure and properties (for example, bamboo[6]) as well as man-made materials and 

structures showing graded behavior due to other factors, such as construction practices, aging of 

materials and temperature dependent material properties. Asphalt concrete pavements are examples 

of the last category whereby effects of aging and temperature dependent material properties make 

them functionally graded structures. 

  Apart from exhibiting continuously graded properties, asphalt concrete exhibits viscoelastic 

material behavior at most service temperatures. In order to perform accurate and efficient analysis 

and design of asphalt pavement systems, it is important to utilize an approach that encompasses 

both viscoelastic (temporal) and functionally graded (spatial) material variations. This paper 

describes the development of the finite element based formulation for analysis of viscoelastic 

FGMs using correspondence principle. The formulation details along with implementation and 

verification are presented in this paper. The companion paper (Part-II) details the application of this 

research in context of analysis of asphalt pavements.     
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Formulation 

This section describes the formulation developed in the current research. The subsections present, 

(a) viscoelastic constitutive relations, (b) elastic-viscoelastic correspondence principle, and (c) 

finite-element formulations. 

 Viscoelastic Constitutive Relations. Hilton [7] and Christensen [8] provided detailed 

overview on the constitutive relationships for viscoelastic materials. For non-homogeneous 

isotropic viscoelastic materials, the stress-strain relationship are written as: 
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Here ij  are the stresses, 
kl  are the strains, super-script d represents the deviatoric (shear) 

components at any location x . These parameters ijklG  and ijklK  are the shear and bulk moduli 

and '  is the integration variable. Subscripts ( , , , 1,2,3)i j k l   refer to Einstein summation 

convention.   is the reduced time, which is related to real time t  and temperature T  through 

time-temperature superposition principle given by: 
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Stress and strain components are related through, 
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ij  is the Kronecker delta.  

For a non-homogeneous viscoelastic body in quasi-static condition with boundary conditions 

imposed as, displacement iu on volume u and traction iP  on surface  . Using Eq. (1), (2) 

and (4), one obtains the stress-strain relationship as: 
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Equilibrium (assuming no body forces) and strain-displacement relationships (for small 

deformations) are as shown in Equations (7) and (8). 
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where, u  is displacement and    
,
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Elastic-Viscoelastic Correspondence Principle. The correspondence between elastic solutions 

and transformed viscoelastic solutions can be found, for example, in the work by Read [9]. It has 

been extensively utilized for obtaining a variety of viscoelastic solutions and formulation for 

various engineering problems ranging from beam problems [10] to fracture [11]. The applicability 
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of the correspondence principle in case of non-homogeneous materials is restrictive as established 

by several authors [12-14]. Here the constitutive properties are assumed to have separable spatial 

and temporal portions. 

The Laplace transform of the equilibrium equation (Eq. (7)) is,  
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Here s  is the transformation variable and the symbol tilde (~) on top of the variables represents 

transformed variable. The Laplace transform of any function  f t  is given by, 
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Inspection of Eq. (9) shows that the transformed non-homogeneous viscoelastic problem 

description has form identical with that of non-homogeneous elastic problem; hence the elastic 

solution could be readily utilized for the viscoelastic problem. Similar correspondence could be 

utilized for developing finite-element formulation for solving non-homogeneous viscoelastic 

problems. 

Finite-Element Formulation. Variational principles have been established for linear viscoelastic 

problems [15], the first variation forms the basis for finite-element formulation. The variational 

principle proposed by Taylor et al. [16] for thermo-viscoelastic boundary value problem has been 

utilized in the current paper.  For a body with volume 
u  with tractions 

iP  imposed on surface 

 , the first variation is given by, 

        
 

 
 

' '' '

''

''

''

''

'' ' ' ' * ' ' ''

' ''

''

'' ''

''

,
, , ,

,
, 0.

δ
u

t t t t t
kl

ijkl ijkl ijkl ij ij u

t t

t t
i

i

t

x t
C x t t t x t x t dt dt d

t t

u x t
P x t t dt d

t





   



  

  



 

              


   



  

 

'

(11) 

Here, 
iu  are the displacements and ijklC  are space and time dependent material constitutive 

properties. Moreover, kl  are the mechanical strains and *

kl  are the thermal strains and   is the 

reduced time related to real time t  and temperature T  through time-temperature superposition 

principle given in Equation (3).  

The element displacement vector 
iu  is related to nodal displacement degrees of freedom q  

through the isoparametric shape functions ijN , 

     ,i ij ju x t N x q t .  (12) 

Differentiation of Equation (12) yields the relationship between strain 
i  and nodal 

displacements jq  and derivatives of shape functions ijB , 

     ,i ij jx t B x q t  .  (13) 

Eqs. (11), (12) and (13) provide the equilibrium equation for each finite element, i.e. 
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Here ijk  is the element stiffness matrix, if  is the mechanical force vector and th

if  is the thermal 

force vector, which are described as following expressions: 
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Here   is the coefficient of thermal expansion and 
T  is the temperature change with respect to 

initial conditions. 

On assembly of the individual finite element contributions for the given problem domain, the 

global equilibrium equation can be obtained as: 
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Here ijK is the global stiffness matrix, iU  is the global displacement vector, and iF  and 
th

iF  are 

the global mechanical and thermal force vectors. The solution to the problem requires solving the 

convolution shown above to determine nodal displacements. The direct integration for solving 

hereditary integral has significant computational cost. In order to apply correspondence principle 

the Laplace transform of the equilibrium equation (Eq.(19)) leads to: 

       , , ,th

ij j i iK x s U s F x s F x s  .  (20) 

Notice that the Laplace transform of hereditary integral (Eq.(19)) led to an algebraic relationship, 

(Eq.(20)), with form identical to that of elastic formulation. Thus solution to non-homogeneous 

viscoelastic problem obtained using correspondence principle based finite-element implementation, 

which is broadly itemized into the following steps: 

 Define force vectors, ( , )F x t  and ( , )thF x t , and stiffness matrix, ( , )K x t  

 Perform Laplace transform to obtain, ( , )F x s , ( , )
th

F x s  and ( , )K x s  

 Solve linear system of equation to obtain transformed solution, ( )U s  

 Perform inverse Laplace transform to obtain solution, ( )U t . 

The numerical inversion of Laplace transform has been extensively studied and several methods 

have been proposed, for example, Sutradhar et al. [17] used Stehfest’s algorithm for boundary 

element analysis of heat flow in FGMs. In the current research collocation methods proposed by 

Schapery [18] is utilized. 

Graded Finite-Elements. In the conventional finite-element analysis method a single set of 

properties are assigned to an element, which makes it an unattractive method of choice for 

simulation of graded materials. Graded elements allow for non-homogeneous material distribution 

within an element. Lee and Erdogan [19] and Santare and Lambros [20] have used graded elements 

with direct Gaussian integration. This type of formulation involves selection of material properties 

directly at the Gauss integration points. Kim and Paulino [2] proposed graded elements with 

generalized isoparametric formulation (GIF). In case of GIF, the constitutive material properties are 

selected at each nodal point and interpolated back to the Gauss-quadrature points (Gaussian 

integration points) using isoparametric shape functions which makes it an appropriate approach for 

capturing material gradation. 

In case of GIF, material properties are interpolated to the integration points as: 

Int.Point
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Here 
iN  are the shape functions corresponding to node i , and m  is the number of nodal points 

in the element. This concept is illustrated in Fig. 1. The figure shows the sampling of the material 

properties at element nodes. The non-homogeneous material properties are shown by the shaded 

plane and property sampling is indicated by the arrows in z-direction. The bold faced (red-colored) 

arrows show the interpolation of material properties from nodal points to one of the Gaussian 

integration points (shown by plus marks). Paulino and Kim [21] have demonstrated the importance 

of GIF to account for two length scales for simulation of non-homogeneous problems, (a) element 

size, and (b) scale associated with material non-homogeniety. Proper consideration of both is 

important to obtain accurate results. 

 

 

Fig. 1 Generalized Isoparametric Graded Finite Element 

Implementation and Verification 

The formulation presented in the previous section has been implemented for two-dimensional 

analysis using plane-strain, plane-stress or axisymmetric assumptions. The implementation has been 

performed for linear and quadratic isoparametric shape functions. Verification of the graded 

elements was performed in similar manner as reported by Kim and Paulino [2]. The viscoelastic 

analysis portion of the implementation was verified by simulation of creep in a viscoelastic bar and 

by comparing simulation results with analytical solution.  

For further verification and to make comparison with conventional finite element procedure, a 

viscoelastic beam in three-point bending configuration is simulated using the proposed procedure as 

well as using the commercially available analysis code ABAQUS. The graded viscoelastic 

properties at the top and bottom of the beam are shown in Fig. 2(a). In case of ABAQUS simulations 

the graded problem was transformed to layered problem with varying degrees of refinement, where 

each layer was assumed to have average properties sampled at the midpoint. Fig. 2(b) shows 

selected results with comparison between FGM and conventional analysis approaches.     

 

 
 

Fig. 2 Comparison of Graded Viscoelastic Analysis with Commercial Software (ABAQUS) 

Material Property, ( , )C x y   
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Summary 

A variety of engineering problems require analysis of functionally graded viscoelastic systems. 

The current research proposes a formulation for finite element analysis of viscoelastic functionally 

graded problems using the elastic-viscoelastic correspondence principle. The formulation is 

implemented and verified. The application examples in context of asphalt concrete pavements are 

discussed in the companion paper titled “Asphalt Pavement Aging and Temperature Dependent 

Properties through a Functionally Graded Viscoelastic Model, Part-II: Applications”. 
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