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Abstract. Superelements offer several advantages for high-fidelity solutions of topology op-
timization problems. Thus this work proposes the use of a two-level mesh representation,
involving finite element and topology optimization variables. The proposed mapping–based
framework provides a general approach to solve either two-dimensional or three-dimensional
problems considering either conventional or non-conventional finite elements.
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1. INTRODUCTION

The most common discretization scheme used in topology optimization consists of assign-
ing a constant design variable to each finite element in the domain. The so-called “element-
based” approach, however, is known to suffer from numerical instabilities such as the checker-
board phenomenon unless additional restrictions are applied to the design space or higher order
finite elements are used (Diaz and Sigmund, 1995; Jog and Haber, 1996). In addition to the
accuracy of finite element solutions, the resolution of the final topology is severely limited in
this approach. In this work, we examine two-level mesh representation that somehow decouples
parameterization of the design field and the finite element discretization of the domain. For a
given density mesh, a finer finite element model leads to more stable topology optimization for-
mulation. We will discuss the computational framework for constructing the necessary mapping
between the two meshes and present some preliminary results.

2. TWO LEVEL MESH REPRESENTATION

In homogenization-based methods for topology optimization, the design is prescribed by
the “density field”, which defines the material volume fraction at every point in the extended
design domain, see Bendsøe and Sigmund (2003) and the references therein. The response
of each candidate design is then used to advance the optimization process. In the case of the
structural optimization, the displacement field is used to evaluate the objective function (e.g.
compliance) and calculate the gradients (for example, using the adjoint method), based on which
the design is updated. Therefore, the resulting topology optimization formulation involves two
separate fields, namely the density field and the displacement field. In computational solution
schemes, these fields can be discretized independently (Figure 1).

Figure 1: Two level mesh representation. On the far left is the displacement mesh (solid lines), and on
the far right is the density mesh (dashed lines). Taken from Paulino and Le (2008).

For the sake of illustration, in this paper, we assume that the finite element mesh is nested
inside the density mesh (Figure 2). In other words, the density mesh can be thought of as a sub-
set of the displacement mesh (in a geometric sense). Effectively, this amounts to constructing
“superelements” of a group of displacement elements that correspond to the density element.
Furthermore, we shall assume that the density is constant inside each element of the density
mesh. That is,

ρ (x) =
∑
m

ρmHm (x) (1)

where Hm is the Heaviside function with the support limited to density (material) element m:

Hm (x) =

{
0, x /∈ Ωm

1, x ∈ Ωm
(2)
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Figure 2: Illustration of the case where the displacement mesh is nested inside the density mesh.

For this parameterization ρm is the set of design variables for the optimization problem. Note
that the piecewise discretization of the density field is not the only choice. It is also possible
to choose the density at the nodal locations as the design variables and interpolate the density
elsewhere using finite element shape functions. This approach is referred to as the Continuous
Approximation of Material Distribution (CAMD) and is studied in Matsui and Terada (2004).
With the CAMD approach, we no longer need to require that the displacement mesh is nested
inside the density mesh as the density field is C0 continuous throughout the domain.

3. TOPOLOGY OPTIMIZATION PROBLEM

For this work, we consider benchmark compliance minimization problem, in which the
objective is to find the stiffest structures composed of a fixed volume of material subjected to a
set of loads and supports. In the discrete setting, we have:

min c(ρ,u) = fTu
ρ,u

s.t.: K(ρ)u = f

V (ρ) =

∫
Ωs

ρdV ≤ Vs

(3)

Here, f and u are the global load and displacement vectors, K is the global stiffness matrix,
and Vs is the prescribed upper bound on the volume of the structure. Note that the dependence
of stiffness matrix on ρ is based on the relation between the volume fraction of a point and its
stiffness. Here, we use the popular Solid Isotropic Material with Penalization (SIMP) model,
see Bendsøe and Sigmund (2003) for example, which defines the constitutive matrix as:

C(x) = [ρ (x)]p C0, p > 1 (4)

where C0 is the constitutive matrix for the solid phase, corresponding to ρ = 1. To avoid the
singularity of the stiffness matrix, a small positive lower bound is placed on the density:

0 < ρmin ≤ ρ ≤ 1 (5)

For our numerical implementation, we used a continuation on the value of the exponent p, by
gradually increasing its value from p = 1 to p = 4 by 0.5. This alleviates the problem of
converging to local minima.
The sensitivity of the objective function and volume constraint with respect to the design vari-
able ρm can be calculated as follows:



∂c

∂ρm

= uT ∂K

∂ρm

u,
∂V

∂ρm

=

∫
Ωm

ρdV ≡ Vs (6)

To construct the stiffness matrix and compute the gradient ∂K/∂ρm, we need a mapping that
connects the two meshes. This is discussed in more detail in the next section. With the sensi-
tivities computed, we solve the optimization problem using the Method of Moving Asymptotes
(MMA), developed in Svanberg (1987).

4. MAPPING BETWEEN TWO DISCRETIZATIONS

Consider the finite element FE in the displacement mesh. The stiffness matrix for this
element is given by:

KFE =

∫
ΩFE

BTCBdV =

∫
ΩFE

[∑
i

ρiHi (x)

]p

BTC0BdV (7)

If FE is nested inside density element m, then:

KFE = (ρm)p K0
FE (8)

where K0
FE =

∫
ΩFE

BTC0BdV is the stiffness matrix for the reference element. The collection
of finite elements that lie in the support of density element m can be defined as Sm:

Sm = {FE : ΩFE ⊆ Ωm} (9)

With this definition, the sensitivity of the compliance can be localized:

∂c

∂ρm

= −
∑

FE∈Sm

[
uT

FE

∂KFE

∂ρm

uFE

]
= −

∑
FE∈Sm

[
p (ρm)p−1 uT

FEK0
FEuFE

]
(10)

The task of determining the collection Sm is strictly geometric, which must be carried out using
the two input meshes for density and displacement.

5. NUMERICAL RESULTS

In general, two independent interpolations to approximate the displacement field and the
material density field are used in the solution of topology optimization. The conventional so-
lution when implemented with the element–based approach is denoted as �/U , where � is
the element whose displacement field will be approximated, and U refers to uniform material
density inside each element. In this work, our mapping approach is implemented by splitting
the density mesh in order to approximate the displacement field and it is denoted as �/SE.
Figure 3 shows the notation used in this work.

We have applied the mapping approach for two problems: the benchmark MBB beam
problem for the two-dimensional case and a three-dimensional cantilever problem.
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Figure 3: Mapping between displacement and density meshes used in this paper.

5.1 2D MBB Problem

The so–called MBB beam is illustrated by Figure 4. The density mesh for this problem is
uniform and made up of square elements. The displacement mesh is constructed such that four
Q4 elements are contained inside each density element, named Q4/SE. Results are compared
with the element-based approach using uniform Q4 and Q8 elements, named Q4/U and Q8/U ,
respectively, see Figure 3.

W

Figure 4: Schematic representation of the design domain, loading and boundary conditions for MBB
(Messerschmitt-Bölkow-Blohm) beam problem.

The results obtained are show in Figure 5. As expected, the Q4/U results exhibit the
checkerboard patterns, while the Q8/U results don’t. The “superelement” (Q4/SE) results
are also checkerboard–free and follow the expected Michell–type patterns. Note that due to
the geometry of the density discretization, one-node hinges may still appear even though the
checkerboard problem is removed. A plot of the compliance versus number of iterations is
provided in Figure 5(d). Table 1 shows the final values of the optimization solution.



(a) 90 × 30 Q4/U

(b) 90 × 30 Q8/U

(c) 180 × 60 Q4/SE

(d) Convergence history for the objective function
(compliance) for the MBB beam problem.

Figure 5: Results for the MBB beam problem.

Table 1: Final results for the MBB beam problem.

Mapping Number of iterations Compliance
Q4/U 309 183.6
Q8/U 318 195.6
Q4/SE 311 193.8

5.2 3D Cantilever problem

The 3D cantilever beam studied in this paper is illustrated by Figure 6. Analogous to the
2D problem, the density mesh in this case is uniform and made up of hexahedral elements. The
displacement mesh is constructed such that eight B8 elements are contained inside each density
element (B8/SE), see Figure 3. Results are compared to the element-based approach using
uniform B8 and B20 elements (B8/U and B20/U ), see Figure 7. The B8 results exhibit the
3D checkerboard patterns, while the B20 results are free from these anomalies. Table 2 shows
the final values of the optimization solution while a plot of the compliance versus number of
iterations is provided in Figure 7(d).

Table 2: Final results for the 3D Cantilever problem.

Mapping Number of iterations Compliance
B8/U 210 365.0
B20/U 191 403.7
B8/SE 269 420.4
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Figure 6: Schematic representation of the design domain, loading and boundary conditions for cantilever
beam problem.

(a) 30 × 10 × 10 B8/U

(b) 30 × 10 × 10 B20/U

(c) 60 × 20 × 20 B8/SE

(d) Convergence history for the objective function
(compliance) for the 3D Cantilever problem.

Figure 7: Results for the 3D Cantilever problem.



6. CONCLUSIONS AND EXTENSIONS

The mesh embedding proposed in this paper is a promising technique for high fidelity topol-
ogy optimization. The finite element mesh is nested inside the density mesh. In other words,
the density mesh can be thought of as a subset of the displacement mesh (in a geometric sense).
Effectively, this amounts to constructing “superelements” of a group of displacement elements
that correspond to the density element. Future work includes the application of the method
to non-coincident meshes, two-level mesh representation using topological data structure, and
independent adaptivity capabilities for the two meshes.
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