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1. Abstract
Traditionally, standard Lagrangian-type finite elements, such as linear quads and triangles, have been
the elements of choice in the field of topology optimization. In general, finite element meshes with
these elements exhibit the well-known checkerboard pathology in the iterative solution of topology opti-
mization problems. Voronoi and Wachspress-type finite elements are less susceptible to such anomalies.
Moreover, these elements provide more flexibility in mesh generation and are suitable for applications
involving significant changes in the topology of the material domain. In particular, hexagonal Wachs-
press meshes include two-node connections (i.e. two elements are either not connected or connected by
two nodes), and three edge-based symmetry lines per element. In contrast, quads can display one-node
connections, which favor checkerboard configurations; and only have two edge-based symmetry lines.
Thus checkerboard-free solutions are obtained without any further restrictions on the local variation of
material density or filtering techniques (e.g. filter of sensitivities). We explore general Voronoi-type
elements and present their implementation using a couple of approaches for topology optimization: e.g.
element-based, and minimum length-scale control through projection functions. Examples are presented
that demonstrate the advantages of the proposed elements in achieving checkerboard-free solutions and
avoiding spurious fine-scale patterns from the design optimization process. Potential extensions and
impact of this work will also be discussed.
2. Keywords: Topology Optimization, Compliance Minimization, Wachspress Elements, Voronoi Ele-
ments, Length-scale.

3. Introduction
This work addresses numerical instabilities in topology optimization that appear as a result of poor
modeling of the response field by an inappropriate choice of finite element discretization. In particular,
we are concerned with the well-known checkerboard phenomenon in which alternating void and material
regions (resembling checkerboard patches) emerge in the optimization process. We are proposing a new
topology optimization formulation consisting of polygonal Wachspress and Voronoi-type finite elements
that not only eliminates the checkerboard problem but also provides more flexibility for the topology
design.

The formation of checkerboard has been attributed to the use of lower order elements that make
the checkerboard pattern artificially stiff [14, 4]. This high stiffness makes the pattern favorable in
the compliance minimization problems, especially considering that the checkerboard also avoids the
penalization that is imposed on the intermediate densities. This observation is confirmed by the fact
that high order elements are less susceptible to the appearance of the checkerboard anomaly (e.g.,
Sigmund and Petersson [7]). Similarly, nonconforming quadrilateral elements can model the vanishing
stiffness of checkerboard, so they can lead to solutions free of such patches (Jang et. al. [3]).

The discretization of the design field also plays a role in the appearance of spurious features such as the
checkerboard in topology optimization solutions. For example, designs using triangular or quadrilateral
meshes allow for one-node connections (dominant in checkerboard patches), while hexagonal meshes
naturally avoid such features [15]. Two connected hexagonal elements necessarily share two nodes:
since checkerboard layouts contain corner-contacts, they are excluded from the design space. In Talischi
et. al. [15], it is also shown that the use of Wachspress shape functions makes the hexagonal element
numerically stable for topology optimization.
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In this work, we extend the previous investigation to consider general convex polygonal discretization.
In addition to addressing the checkerboard problem, the proposed approach provides more flexibility in
mesh generation and less constraint in the formation of optimal topology. The performance and robust-
ness of the proposed formulation is assessed through benchmark minimum compliance problems.

4. Formulations
In this section, we discuss the topology optimization formulation for the minimum compliance designs.
In this class of problems, the goal is to find the stiffest design that is subject to a set of traction
and displacement boundary conditions. The final structure must lie entirely in a predefined extended
design domain and it needs to satisfy a constraint on its volume. The discrete form of the problem is
mathematically given by:

min c = fT u
ρ

s.t.: K(ρ)u = f∫

ΩS

dV ≤ Vs

(1)

Here c is the compliance of the structure; f and u are the global force and displacement vectors; K
denotes the global stiffness matrix, which is dependent on the design variable ρ; and Vs is the upper
bound on the volume of the design denoted by ΩS .

The common choice of design parametrization is to take ρ as the material “density”: by convention,
ρ = 1 at a point signifies a material region while ρ = 0 represents void. The intermediate values are
penalized according to the following scheme:

E(ρ) = ρpE0, p > 1 (2)

Here E(ρ) is the material stiffness of a point with density ρ, while E0 denotes the stiffness of the
solid phase (corresponding to ρ = 1). For values of p greater than 1 (usually we take p ≥ 3), the
stiffness of intermediate densities is penalized through the power law relation, so they are not favored.
As a result, the final design consists primarily of solid and void regions. This approach is known as the
Solid Isotropic Material with Penalization (SIMP), and readers are referred to Bendsoe [12], Zhou and
Rozvany [2], and Bendsoe and Sigmund [1] for more information.

We have considered the following discretizations of the density field: (1) Element-based (2) Projection
scheme.

4.1. Element-based approach:

In this approach, a constant density value is assigned to each displacement finite element. These element
densities ρe are then used as the design variables for the optimization problem (1). It is in this context
that the checkerboard appears: the density of adjacent elements alternate between zero and one, while
the patch of element maintains the connectivity resembling that of a checkerboard.

For the present formulation, as mentioned before, convex polygonal elements are used to construct the
finite element discretization. Therefore, the element-based approach with such a discretization does not
favor spurious checkerboard-like patterns. Furthermore, polygonal meshes can remove the restrictions
on the orientation of the structural members and the final topology as arbitrary polygonal elements have
less directional bias when compared to quadrilateral elements. For example, hexagonal element has more
lines of symmetry per element compared to the triangular and square elements.

The polygonal finite element mesh can be constructed using a Voronoi diagram of the nodes that cover
the design domain. In this paper, we have considered a regular distribution of nodes which produces
a regular hexagonal tessellation (similar to that of Talischi et. al. [15]). As shown in Figure 1, the
boundary of a rectangular domain consists of one layer of triangular and quadrilateral elements.

The interpolation space on the polygonal mesh is constructed using Laplace (natural neighbor) shape
functions as described in Tabarraei and Sukumar [8], and Sukumar and Tabarraei [9]. These shape
functions yield a conforming finite element, and satisfy the necessary approximability conditions of
constant and linear precision, and exhibit desirable properties such as partition of unity. Moreover,
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they provide an isoparametric transformation map that allows the computations to be carried out on
a parent element. For more details on the implementation of these elements, we refer the reader to
reference mentioned above.

Figure 1: Schematic representation of the design domain, loading and boundary conditions for MBB
(Messerschmitt-Bölkow-Blohm) beam problem. Notice that the non-hexagonal elements on the boundary
are either triangles or quads [15].

4.2. Projection scheme:

In this approach, first proposed by Guest el. al. [2], “nodal” densities are the design variables in the
optimization. The element densities (again constant for each displacement FE element) are extracted
from these nodal design variables through a projection scheme. The projection is carried out as follows:

ρe =
∑

i wiρi∑
i wi

(3)

As before, ρe is the element density; ρi is the design variable associated to node i, and wi are the
weighting functions defined by:

wi = max
(

rmin − ri

rmin
, 0

)
(4)

Here ri denotes the distance of node i to the centroid of element e, and rmin is a prescribed radius
of projection. We can see that the projection has an embedded physical length scale rmin that is in-
dependent of the mesh size. As such, this scheme addresses the issue of mesh-dependency in topology
optimization by limiting the space of admissible solutions to the design having members larger than a
minimum physical size.

5. Numerical Results
In this section, the numerical results for the benchmark MBB beam problem (Olhoff et al. [11]) are
presented. Due to the symmetry of the problem, only half of the beam is considered in the optimization
algorithm (see Figure 1). The Poisson’s ratio is taken as 0.3 and the volume fraction Vs is 50% of the
volume of the extended design domain. The optimization problem is solved using the Method of Moving
Asymptotes (MMA) developed by Svanberg [13]. Also, to avoid getting trapped at local minima, a
continuation method is used on the value of SIMP penalty exponent: p is increased (with increment of
0.5) from 1 to 4 after the solution has sufficiently converged for each value.
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(a) Q4 60x20 (b) H6 60x20

(c) Q4 90x30 (d) H6 90x30

(e) Q4 120x40 (f) H6 120x40

Figure 2: MBB beam design with element–based formulation.

In Figure 2, the results of the element-based formulation for the Q4 element and the hexagonal
element are shown. The solutions with Q4 implementation contain patches of checkerboard while no
such fine scale patterns are observed with the polygonal implementation. Note that no filtering technique
or density gradient was imposed and thus the checkerboard-free property of the hexagonal element is
attributed essentially to its geometric features and interpolation characteristics. We should emphasize
that the checkerboard solution are unphysical and do not correspond to the optimal structure. Note that
for a regular polygonal mesh, Laplace interpolation is identical to Wachspress interpolation. Indeed, the
results obtained here match those obtained by Talischi et. al. [15].

The results using projection scheme are presented in Figure 3. The radius of the projection rmin is
taken to be 0.15 of the height of the beam and independent of the mesh size. We can see that despite the
change in the level of mesh refinement, the same design is recovered. The length scale imposed on the
optimization through rmin guarantees mesh-independent solutions that satisfy the required minimum
member size.
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(a) Q4 60x20 (b) H6 60x20

(c) Q4 90x30 (d) H6 90x30

(e) Q4 120x40 (f) H6 120x40

Figure 3: MBB beam design with projection approach (rmin = 0.15h where h is the height of the beam.)

6. Conclusions
In this work, the checkerboard pathology in topology optimization is addressed and the use of polygo-
nal finite elements is proposed. As discussed and demonstrated by example, the use of such elements
eliminates the formation of checkerboard and provides a robust and stable means for solving topology
optimization problems. The future work will include extensions to general irregular polygonal meshes
and other density presentations such as Continuous Approximation of Material Distribution [10, 6].
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