
1 INTRODUCTION 

The main objective of design optimization is to ob-
tain a set of design variables that minim-
ize/maximize objective function(s) of interest while 
satisfying given constraints. If design optimization is 
performed in a deterministic manner, i.e. uncertain-
ties are not taken into account during the optimiza-
tion, the resultant optimal design may have unquan-
tified risk of violating the given constraints. 
Recently, various reliability based design optimiza-
tion (RBDO) methods have been developed to 
achieve optimal designs with acceptable failure 
probabilities (see Frangopol & Maute 2004 for a 
state-of-the-art review of RBDO and recent applica-
tions to civil and aerospace structural systems). Dur-
ing RBDO, the probability of violating given con-
straint(s), i.e. the failure probability, is often 
computed by reliability analysis employing methods 
such as first order reliability method (FORM), 
second order reliability method (SORM) or response 
surface method. 

Traditionally, RBDO has been performed by use 
of a nested or “double loop” approach, that is, each 
step of the iteration for design optimization involves 
another loop of iteration for reliability analysis. For 
example, reliability index approach (RIA; Enevold-
sen & Sorensen 1994) and performance measure ap-
proach (PMA; Tu et al. 1999) employ FORM as the 
inner loop to perform the reliability analysis effi-

ciently. If the constraints are active, the two ap-
proaches yield the same results. However, it is 
known that PMA is generally more efficient and sta-
ble than RIA (Tu et al. 1999). 

In general, the double loop approach is computa-
tionally expensive. Recently, a single-loop approach 
(Liang et al. 2004) was proposed to improve effi-
ciency of RBDO. The Karush-Kuhn-Tucker (KKT) 
optimality condition is used to approximate the de-
sign point (or most probable point, MPP) in the in-
ner loop for each constraint. As a result, the inner 
loop is replaced by a deterministic constraint, which 
transforms the double loop RBDO problem into an 
equivalent deterministic optimization problem. 

When multiple failure modes need to be consi-
dered as the constraints of a design optimization, 
RBDO is often formulated such that the optimal 
structure satisfies each failure mode with pre-
determined probabilities. This approach is termed as 
component reliability-based design optimization 
(CRBDO) in this paper. In some cases, however, the 
failure event is better described by a system event, 
i.e. a logical (or Boolean) function of multiple fail-
ure modes. In this case, the probabilistic constraint 
should be given for the system event. This approach 
is called system reliability-based design optimiza-
tion (SRBDO). The SRBDO requires system relia-
bility analysis, which is not trivial especially for sta-
tistically dependent component events, or for a 
system event that is not series or parallel system. 
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Theoretical bounding formulas are applicable to pa-
rallel and series systems only (See Song & Der Ki-
ureghian 2003 for a review), and it is difficult to 
deal with probability bounds during RBDO. Various 
sampling methods are available, but they may render 
SRBDO inefficient in practice. Song & Kang (2009) 
developed a matrix-based system reliability (MSR) 
method that computes the system reliability by con-
venient matrix-based framework. The MSR method 
is uniformly applicable to general system events in-
cluding series, parallel, cut-set and link-set systems 
with statistical dependence between component 
events considered, and provides parameter sensitivi-
ties of the system failure probability, which are use-
ful during RBDO. 

This paper proposes a single-loop SRBDO ap-
proach using MSR method (SRBDO/MSR) to over-
come aforementioned challenges in SRBDO. After 
an overview of existing RBDO formulations and 
methods, the MSR method is briefly introduced. The 
MSR method is further developed for integration 
with a single-loop SRBDO approach. The proposed 
SRBDO/MSR procedure is demonstrated by two 
numerical examples. 

2 SYSTEM RELIABILITY BASED DESIGN 
OPTIMIZATION 

2.1 Component reliability based design 
optimization (CRBDO) 

In general, RBDO problems are formulated as fol-
lows: 
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where d∈ kℜ  is the vector of deterministic design 
variables; X∈ mℜ  is the vector of random variables; 

Xμ  is the mean vector of X; f(·) is the objective 
function; )(XUU =  is the vector of standard nor-
mal random variables that correspond to X; g(·) is 
the limit-state function indicating the occurrence of 
the failure by g(·)≤0; t

iP  is the constraint on the 
probability of the i-th mode; Ld  and Ud  are the 
lower/upper bounds on d ; L

Xμ  and U
Xμ  are the 

lower/upper bounds on Xμ  (these boundary values 
will be omitted in the following RBDO formulations 
for simplicity); and n, k, m are the number of con-
straints, deterministic variables, and random va-
riables, respectively. 

The constraint in Equation 1 can be given alterna-
tively by use of the cumulative distribution function 
(CDF) of the limit state function, i.e. 
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t
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where ( )
igF ⋅  denotes the CDF of ( )ig ⋅ ; )(⋅Φ  is 

the CDF of the standard normal random variable; 
and t

iβ  is the target reliability index. This RBDO 
problem has two nested optimization loops: the out-
er loop for design optimization and the inner loop 
for reliability analysis. 

One of the common double-loop approaches for 
RBDO is the reliability index approach (RIA; Ene-
voldsen & Sorensen 1994): 

( )
,

1

min    ( , )

.       β 0 β    =1,...,
i

t
i g i

f

s t F i n− ⎡ ⎤= −Φ ≥⎣ ⎦

X
Xd μ

d μ
 (3) 

where iβ  is the distance from the origin of the 
space of standard normal random variables 

( )=U U X  to the nearest point on the limit state sur-
face ( , ) 0iG =d U  in which ( )iG ⋅  is the limit-state 
function ( )ig ⋅  given in terms of U . This distance 
is termed as “reliability index.” The nearest point 
(“design point”) and the corresponding reliability 
index are identified by solving a nonlinear con-
strained optimization: 
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where *
iU  is the design point vector of the i-th con-

straint. 
The RIA formulation in Equation 3 can be ineffi-

cient if the constraints are inactive. Moreover, the 
algorithm may not provide an optimal design solu-
tion if the failure events ( , ) 0iG ≤d U  never occur 
in the given feasible domain. To overcome these is-
sues, Tu et al. (1999) recently proposed the perfor-
mance measure approach (PMA): 
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where 
ipg is the performance function, which is 

computed by solving a constrained optimization 
problem, i.e. 
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The constraint in Equation 5, i.e. 0
ipg ≥  implies 

that the design point is located outside the sphere 
|| || t

i= βU . Therefore, this is a constraint equivalent 
to t

i iβ ≥ β . 
These double-loop RBDO approaches are compu-

tationally expensive. To improve efficiency, a se-
quential optimization and reliability assessment 
(SORA) method was recently proposed (Du & Chen 
2004). Its main idea is to decouple the outer loop op-
timization from reliability analysis. From the infor-
mation from previous design iteration, the bounda-
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ries of the constraints are shifted to the feasible di-
rection and the design point is updated accordingly. 
Despite its improved efficiency, however, the up-
dated design points may be inaccurate. 

 Recently, Liang et al. (2004) proposed a single-
loop RBDO. The key idea is to obtain the point that 
satisfies Equation 6 approximately by employing the 
following Karush-Kuhn-Tucker (KKT) condition in-
stead of solving a nonlinear constrained optimization 
problem: 
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The negative normalized gradient vector of the lim-
it-state function at the solution of Equation 6 is ap-
proximately obtained by evaluating it at the solution 
of Equation 7, i=U U : 
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where ,X UJ  is the Jacobian of the ( )=X X U  
transformation. The solution of Equation 6 is then 
approximated by scaling this unit vector by the tar-
get reliability index, i.e. 

ˆβt t t
i i i≅U α  (9) 

As a result, the RBDO formulation is 
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In summary, the inner-loop of the PMA RBDO is 
replaced by the approximate, non-iterative proce-
dures in Equations 7-9. This single-loop approach 
can improve the efficiency of RBDO significantly 
(Liang et al. 2004).   

2.2 System reliability based design optimization 
(SRBDO) 

In the case when the failure event in the design con-
straint is better described by a system event, i.e. a 
logical (Boolean) function of multiple component 
events, the RBDO requires a system reliability anal-
ysis. This system reliability based design optimiza-
tion (SRBDO) can be formulated as 
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where sysP  is the system failure probability; sysE  is 
the system failure event; kC  is the index set of the 
components in the k-th cut set; and tP  is the target 

system failure probability. The Boolean expression 
in Equation 11 can represent general systems includ-
ing series, parallel, and cut-set systems. 

An SRBDO approach was proposed for series 
system problems by Ba-abbad et al. (2006). In this 
approach, the failure probability of a series system is 
approximated as the sum of the component failure 
probabilities, i.e.. 

11
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Then, SRBDO problems are formulated as 
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Note that the constraints on the component probabil-
ities, t

iP  are used as design variables. This approach 
can significantly overestimate the system risk be-
cause the approximation in Equation 12 provides a 
fairly conservative upper bound (See Song & Der 
Kiureghian 2003). Moreover, this approach cannot 
account for the effect of the statistical correlation be-
tween random variables or component events. 

A single-loop SRBDO approach was recently 
proposed for series systems (Liang et al. 2007). This 
approach also uses t

iP ’s as design variables. The in-
ner loop is eliminated by approximating the design 
points by KKT conditions. The system failure prob-
ability is approximated by the upper bound in the bi-
component theoretical bounding formula by Ditlev-
sen (1979). The single-loop SRBDO is formulated 
as 
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in which t
iU  is obtained by Equations 7-9; and t

ijP  
is the joint failure probability of the i-th and j-th 
constraints, computed by numerical integration. De-
spite its improved accuracy in estimating the system 
failure probability by using a higher-order bounding 
formula, it still overestimates the system failure 
probability and is not applicable to non-series sys-
tem events for which higher-order theoretical bound-
ing formulas are generally not available. 

This paper proposes to use the recently proposed 
matrix-based system reliability (MSR) method to 
compute sysP  in the single-loop SRBDO in Equa-
tion 14. The method enables us to compute sysP  of 
general system events including series, parallel, cut-
set and link-set systems efficiently and accurately 
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during SRBDO. The sensitivity of sysP  with respect 
to design variables further facilitates the use of gra-
dient-based optimization algorithm. 

3 SYSTEM RELIABILITY BASED DESIGN 
OPTIMIZATION USING MSR METHOD 

3.1 Matrix-based system reliability (MSR) method 
Although system reliability analysis is a well estab-
lished research area, it is still challenging to com-
pute the probability of a general system event and its 
parameter sensitivity, especially when component 
events are statistically dependent. Song & Der Ki-
ureghian (2003) introduced a method to compute the 
bounds on the probability of a general system event 
by linear programming (LP). This “LP bounds” me-
thod subdivides the sample space of component 
events into the mutually exclusive and collectively 
exhaustive events (termed as basic MECE events), 
and the probability of any event is described by use 
of vectors representing the probabilities of basic 
MECE events. Then, its upper bounds and lower 
bounds are obtained by solving the LP problems 
subjected to the constraints derived from given in-
formation such as component probabilities and sta-
tistical dependence. This matrix-based framework of 
system reliability analysis enables the narrowest 
possible bounds on the probability of any general 
system and the parameter sensitivities of the bounds 
(Song & Der Kiureghian 2005) as well.  

Song & Kang (2009) recently proposed the Ma-
trix-based System Reliability (MSR) method to 
compute the probability of general system events in 
a uniform manner by use of simple matrix calcula-
tion instead of solving LP. Consider a system event 
with n  components each of which has two distinct 
states, e.g., failure or safe. Then, the sample space 
can be subdivided into 2nN =  basic MECE events, 
denoted by je , 1,...,j N= . Then any system event 
can be presented by an “event” vector c whose j-th 
element is 1 if je  belongs to the system event and 0 
otherwise. Let P( )i jp e= , 1,...,j N= , denote the 
probability of je . Because je ’s are mutually exclu-
sive, the probability of system event, sysP  is the sum 
of the probability of je ’s that belong to the system 
event sysE . Therefore, the system probability is 
computed by the inner product of the two vectors. 

T
sys

:
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j
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where p is the “probability” vector that contains 

je ’s, 1,...,j N= . Both c and p are column vectors 
in this paper, and can be constructed efficiently us-
ing matrix-based procedures by Song & Kang 
(2009). 

When component events are statistically depen-
dent, the construction of p requires numerous sys-
tem reliability analysis for each element. In this 

case, one can achieve conditional independence be-
tween component events given outcomes of a few 
random variables representing the sources of “envi-
ronment dependence” or “common source effects.” 
For example, during a risk analysis of a transporta-
tion network based on bridge failure probabilities, 
the uncertain magnitude of earthquake was consi-
dered as such a random variable (Song & Kang 
2009). Let S  denote the vector of such random va-
riables, named “common source random variables” 
(CSRV). By the total probability theorem, the sys-
tem failure probability can be then computed as 
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where sysP( | )E s  is the conditional probability of 
the system event given an outcome of CSRV, =S s ; 

( )fS s is the joint probability density function (PDF) 
of S ; and ( )p s  is the conditional probability vector 
given S=s, which can be constructed efficiently by 
the proposed matrix-based procedure employing 
conditional probabilities of component events given 

=S s . 
The approach in Equation 16 can be applied even 

in the case when the CSRVs are not explicitly iden-
tified. One way to identify such implicit common 
source effect is to fit the correlation coefficient ma-
trix of basic random variables or safety margin (or 
factor) with a special correlation matrix model that 
allows such an identification. Song & Kang (2009) 
generalized Dunnett-Sobel (DS) class correlation 
matrix (Dunnett & Sobel 1955) to identify CSRVs. 
Consider correlated standard normal random va-
riables ,iZ  1,...,i n=  whose correlation matrix can 
be fit with the generalized DS model 

0.5
2

1 1
1

m m

i ik i ik k
k k

Z r U r S
= =
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= − +⎜ ⎟

⎝ ⎠
∑ ∑   for 1,...,i n=  (17) 

in which iU , 1,...,i n=  and kS , 1,...,k m=  are un-
correlated standard normal random variables; and 

ikr ’s are the coefficients of the generalized DS mod-
el that determined the correlation coefficient be-
tween iZ  and jZ , as 1ρ ( . )m

ij k ik jkr r== ∑  for  i j≠ . 
Note iZ  and jZ  are conditionally independent of 
each other given the outcome of CSRVs kS , 

1,...,k m= . 

3.2 Sensitivity of system failure probability 
The MSR method enables us to compute the para-

meter sensitivity of the probability of a general sys-
tem event. First, when the component events are sta-
tistically independent, the sensitivity of the system 
failure probability with respect to a parameter θ  is 
computed as 
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sys T=
θ θ

P∂ ∂
∂ ∂

pc  (18) 

The separation of the system event description (c ) 
and the probabilities (p ) in the MSR framework al-
lows us to compute the sensitivity in a uniform 
manner for general system events. The sensitivity of 
p  in Equation 18 can be computed by the following 
matrix-based procedure (Song & Kang 2009): 

1 2=  ... 
θ θ θ

n∂ ∂ ∂⎡ ⎤ =⎣ ⎦∂ ∂ ∂
p P Pp p p P  (19) 

where T
1 2[   ]nP P P=P  in which iP  is the prob-

ability of the i-th component event; and jp , 
1,...,j n=  is the probability vector constructed with 

the probabilities of the j-th component event and its 
complementary event replaced by 1 and −1, respec-
tively. In summary, the MSR framework allows us 
to compute the system-level parameter sensitivity by 
use of component probabilities and their sensitivi-
ties. 

When the components are statistically dependent, 
the sensitivity is computed as 
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P
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s
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in which the sensitivity in the integral is constructed 
by Equation 19 using the conditional probability of 
the component events given =S s , i.e.  
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Substituting Equation 17 into Equation 21, 
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The sensitivity of ( )iP s  with respect to the relia-
bility index iβ  is derived as 
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in which ( )ϕ ⋅  denotes the PDF of the standard 
normal random variable. The sensitivity of system 
failure probability with respect to the i-th component 
probability is derived as 
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i i i i
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P P P
P P
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This sensitivity is used for computing the sensitivity 
vector using Equation 19 or 20. 

3.3 SRBDO/MSR algorithm 
Figure 1 shows the flowchart of the proposed 
SRBDO/MSR algorithm. 
 

 
Figure 1. Flowchart of the proposed SRBDO/MSR algorithm 

4 NUMERICAL EXAMPLES 

4.1 SRBDO of an indeterminate truss structure 
The proposed SRBDO/MSR is demonstrated 
through application to an SRBDO example of a six-
bar statistically indeterminate truss (Figure 2; Mac-
Donald & Mahadevan 2008). 

 
Figure 2. A six-bar indeterminate truss example. 
 

The yielding failures of six members are modeled 
as component events. When the buckling failure 
modes, the dynamic effect of member damages, and 
the influence of the load re-distribution on progres-
sive failures (Song & Kang 2008, 2009) are neg-
lected, the system fails when at least two bars yields. 
Therefore, the system event is described by 15 mi-
nimal cut sets: { } {kC = (1,2), (1,3), (1,4), (1,5), 
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(1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), 
(4,5), (4,6), (5,6)}. 

To minimize the weight of the structure, the ob-
jective function is defined such that it is proportional 
to the total weight. The design variables are the 
cross sectional area of the bars, iA , 1,..., 6i = . The 
target system failure probability is given as 0.001. 
The load P  is normally distributed with the mean 
of 1,000 kips and a standard deviation of 100 kips 
while the yield strength of each bar (in stress) is as-
sumed to be a normal distribution with the mean 36 
ksi and the standard deviation 3 ksi. As a result, the 
SRBDO problem is formulated as  

1 6
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where iF  is the yield stress of the i-th bar, 
1,...,6i = . In the study by MacDonald & Mahadevan 

(2008), a single-loop SRBDO approach as the one in 
Equation 14 was used except that the system failure 
probability was computed as follows. First, the fail-
ure probability of each cut set was calculated as a 
parallel system using the product of conditional 
marginals (PCM) approach (Pandey 1998). Then the 
system failure probability was approximated by the 
first order bounding formula. 

 
Table 1. Results of SRBDO of indeterminate truss  

Bar/ 
Comp. 

Area (Ai)  Reliability Index (βi) 

MM* SRBDO/
MSR  MM* SRBDO/

MSR 

1 28.57 27.73  2.89 2.67 

2 28.32 27.73  2.83 2.67 

3 20.94 20.46  3.16 2.99 

4 20.83 20.46  3.12 2.99 

5 20.66 20.46  3.06 2.99 

6 20.29 20.46  2.92 2.99 

* MacDonald & Mahadevan (2008) 
 
The SRBDO/MSR approach proposed in this pa-

per was applied to this example. During SRBDO 
formulated in Equation 14, the system failure proba-
bility and its sensitivities with respect to t

iP  are 
computed by MSR method without approximation, 
as explained in Section 3. The computed sensitivities 
facilitate the use of a gradient-based optimization 
algorithm. Table 1 compares the results by the two 

approaches. The minimum objective function value 
of the proposed approach is 160.25, which is less 
than that by the approximation method, 163.16. This 
is due to the overestimate of the system failure prob-
ability by the first-order bounding method, which re-
sults in more conservative design than required. This 
is also evidenced by the lower reliability indexes of 
the component events by the proposed approach. It 
is also noteworthy that the accurate system reliabili-
ty estimates during the SRBDO/MSR reflect the 
symmetric conditions between diagonal members (1 
and 2) and between non-diagonal members (3-6) in 
the optimal design (area) and the component failure 
probability (reliability index). 

4.2 Example of system reliability based topology 
optimization (SRBTO) 

In many practical design problems, an optimal dis-
tribution of the material in a certain domain is of in-
terest. This so-called topology optimization (TO) is 
of importance in various applications since it may 
lead to a suitable structure layout with cost saving 
and design improvement. One might seek for mini-
mum compliance within a constraint on the volume 
or minimum volume with constraints on compliance 
or displacement (Kim et al. 2006). During TO using 
finite element analysis, main design variables are the 
element densities ρ . An element with 1ρ =  is solid 
while 0ρ =  indicates a void. The TO algorithms 
include the solid isotropic material with penalization 
(SIMP) method and the “projection” method (Guest 
et al. 2004; Almeida et al. 2008). 

 Figure 3. Domain for topology optimization. 
 

In order to examine the influence of the uncer-
tainty treatment during TO on the optimal topology, 
deterministic TO (DTO), component based RBTO 
(CRBTO) and system reliability based TO (SRBTO) 
have been performed to minimize the volume of a 
structure distributed within the domain of simple 
beam in Figure 3. The material properties, loads and 
displacements are given as dimensionless quantities 
for simplicity. The isotropic material is assumed to 
have Young’s modulus of 8

0 2 10E = ×  and Poisson 
ratio of 0.3.ν =  The beam has the thickness of 
0.05.  These material properties are assumed to be 
deterministic since the uncertainties in material 
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properties have minimal effect on reliability-based 
optimal topologies for a structure under linear elastic 
behavior. The three stochastic loads 1,F  2F  and 3F  
are applied as shown in Figure 3. They are modeled 
as Gaussian random variables with the means 
300,000 and standard deviations 

1 2
15,000F Fσ = σ =  

and 
3

100,100.Fσ =  The three random variables are 
assumed to be uncorrelated. The constraints on the 
displacements at the locations of the applied forces 
are described by the limit-state functions 

( ) ( ), ,     =1,2,3t
i i ig d d i= −ρ F ρ F  (26) 

where ρ  denotes the vector of element densities ρ ; 
F  is the vector of the random applied forces; 

( , )id ρ F  is the vertical displacement at the i-th loca-
tion predicted by a finite element analysis; and t

id  
is the limit on the displacement (given as 1.5). 

 

 
Figure 4. Optimal topologies by DTO, CRBTO and SRBTO. 

  
First, a DTO is performed with the loads equal to 

the given mean values. Figure 4a shows the optimal 
design. The ratio of the optimal volume to the initial 
domain volume, Vr  is 40.9%. Next, a CRBTO is 
conducted with target reliability index 2,t

iβ =  (or 
0.02275t

iP = ). The optimal topology in Figure 3b 
has 60.4Vr = %. The optimal volume is higher than 
that by the DTO since the topology that avoids the 
failure under the mean loads exceeds the constraints 
on the component failure probabilities. After the op-
timization is completed, the system failure probabili-
ty (series system) is estimated by the MSR method 
as sys 0.0434.P =  Suppose one now seeks for an op-
timal topology whose system failure probability is 
lower than the system failure probability value of the 
topology in Figure 4b, i.e. sys 0.0434.P =  If 
CRBTO is performed in lieu of SRBTO, one possi-
ble way to determine the target failure probabilities 
of components manually is to distribute the system 
failure probability equally to the components based 
on the approximation shown in Equation 12, i.e. 

sys / 3 0.0145.t
iP P= =  This leads to the topology in 

Figure 4c whose volume ratio is 62.7%, which is 
higher than that by the previous CRBTO because the 

actual target system failure probability is smaller 
than 0.0434 due to the overestimate in Equation 12. 

An SRBTO/MSR is performed with the same tar-
get system failure probability sys 0.0434.P =  The 
volume ratio is 58.2% (See Figure 4d), which is 
lower than both CRBTO results. The reason why it 
is lower than even the first CRBTO with the same 
system failure probability is that CRBTO is more 
constrained than SRBTO by manually assigned 
component probabilities, even if they lead to the 
same level of the system failure probability. For the 
optimal topology, the component failure probabili-
ties are 1 2 0.0084P P= =  and 3 0.0389,P =  which 
indicates that the third mode is more critical than the 
others when achieving the optimal design.  

Taking advantage of the uniform applicability of 
the MSR method to general system problems, 
SRBTOs are performed for a parallel system, i.e. 

sys 1 2 3E E E E=  in which iE  denotes the occurrence 
of the i-th failure mode, 1, 2,3i = (Figure 4e). The 
target system failure probability is 0.005 and the 
volume ratio is 44.5%. Figure 4f shows the optimal 
topology when the system failure event is defined as 

sys 1 2 3E E E E=  and the target failure probability is 
0.005. The volume ratio is 47.0%. The different 
topologies in Figure 4 confirm that the system event 
definition can make significant influence on the 
optimal shapes. 

We also investigate the effect of the statistical cor-
relation between random variables on TO. Figure 5 
shows the volume ratios of the optimal topologies as 
the correlation coefficient between the three loads is 
varied. The target failure probability of a series sys-
tem is given as 0.0424. It is seen that the higher cor-
relation between the loads, the more volume is re-
quired to achieve the target reliability. In this 
problem, therefore, if the positive correlation is ig-
nored, RBTO may lead to an unsafe design. This is 
because the uncertainty in the displacement is in-
creased by the positive correlation between the ap-
plied loads. 
 

 

Figure 5. Volume ratio of SRBTO results versus correlation 
coefficient between applied loads. 

(c) 

(e) 

(a) (b) 

(d) 

(f) 
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The impact of approximations in system reliability 
analysis during SRBTO is also investigated using 
the same TO example with series system event. In 
Case 1, sysP  is approximated by the sum of the three 
mode probabilities. In Case 2, sysP  and its sensitivi-
ties are computed after components are assumed to 
be statistically independent of each other. In Case 3,  

sysP  is computed accurately but the sensitivities are 
calculated approximately assuming that the compo-
nents are statistically independent. Table 2 shows 
the constraint on the system failure probability, tP , 
the system failure probability of the optimal topolo-
gies computed by the MSR method (afterward for 
Case 1-3), sysP , and the volume ratio. In this exam-
ple, all the approximate SRBTO result in unneces-
sary conservatism. The close results by Case 3 indi-
cate that the approximation in the sensitivities do not 
make significant impact on the optimal topology.  
 
Table 2. Approximation of SRBTO by CRBTO 

ρ∗ Results 
System Reliability Approx. 

SRBTO
/MSR Case 1 Case 2 Case 3 

0 

Pt 0.0434 

Psys 0.0377 0.0378 0.0434 0.0434 

Vr 0.591 0.590 0.583 0.582 

0.5 

Pt 0.0434 

Psys 0.0365 0.0365 0.0434 0.0434 

Vr 0.611 0.610 0.597 0.594 

* Correlation coefficient between applied loads. 

5 CONCLUSION 

In this study, an efficient and accurate system relia-
bility based design optimization (SRBDO) approach 
was proposed by integrating a single-loop RBDO 
algorithm and the recently developed matrix-based 
system reliability (MSR) method. The MSR method 
enables accurate calculation of system probability 
and its sensitivities for general system problems in-
cluding series, parallel, cut-set and link-set systems. 
Two numerical examples demonstrate the merits of 
the proposed SRBDO/MSR approach. The impact of 
errors in system reliability evaluations, system event 
definitions and correlation between random va-
riables on the optimal topology were investigated as 
well. 
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