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We present adaptive preconditioners for parallel, time-dependent simulations and nonlinear optimiza-
tion problems with dynamic mesh adaptation. Adaptive meshing greatly reduces the computational cost
of simulations and optimization. Unfortunately, it also carries a number of problems for preconditioning
in iterative linear solvers, as changes in the mesh lead to structural changes in the linear systems we
must solve. As a result, a new preconditioner must be computed after every change in the mesh, which
might be prohibitively expensive. Here, we propose preconditioners that are cheap to update for dynamic
changes to the mesh as well as for changes in the matrix due to nonlinearity of the underlying problem;
more specifically, we propose preconditioners that require only local changes to the preconditioner for
local changes in the mesh and nonlinear terms. Our preconditioners combine sparse approximate in-
verses with multilevel correction [1] and [2].

For adaptive mesh refinement (AMR), especially on parallel machines, the computational domain is
usually partitioned into many small blocks, each consisting of a small number of mesh cells representing
locally a uniform mesh. The refinement and derefinement of the mesh lead to structural changes in the
system matrix. Moreover, to maintain a good load balance in parallel implementations, the mesh blocks
are redistributed over the processors after (each) mesh refinement or derefinement, even on processors
where the mesh did not change. We need preconditioners that accommodate the frequent changes in
the mesh and the data redistributions. Unfortunately, these consequences of AMR make many popular
preconditioners unfavorable. Preconditioners that depend explicitly on the matrix and the matrix order-
ing, such as incomplete factorizations like ILU and IC, are hard to update for structural changes to the
matrix. Even localized changes in the system matrix generally affect the factorization of many rows
and columns. In addition, the forward and backward substitution in these preconditioners lead to high
synchronization costs in parallel implementations, and the redistribution of mesh blocks for load bal-
ancing tends to thwart techniques to mitigate these costs. Domain decomposition preconditioners also
appear less suitable for AMR, if the frequency of mesh adaptation is relatively high and regions with high
mesh resolution traverse the computational domain. The decomposition into subdomains will change fre-
quently, so that local factorizations, coarse grid solvers, and/or Schur complement preconditioners need
to be recomputed often.

A good preconditioner for AMR should have the following properties. Computing or updating the
preconditioner should require only local information from the mesh and the discretization (method), local
updates of the preconditioner should be sufficient to maintain quality, and such local changes should be
cheap. Finally, the cost of multiplying with the preconditioner should be relatively insensitive to redistri-
bution of the mesh blocks. Explicit Sparse Approximate Inverses (SAI) satisfy these requirements. Each
column of the preconditioner depends only on the mesh in the immediate neighborhood of the mesh cell
with which the column is associated. Indeed, the use of ghost cells for each mesh block can limit updates
of the preconditioner to new mesh cells only (for linear PDEs). This makes updating the approximate
inverse very cheap. Moreover, since SAI are explicitly available in matrix form, the redistribution of
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mesh blocks does not seriously affect the cost of the matrix-vector product.

Unfortunately, SAI do not approximate the inverse well for the smooth, global components of the
solution that are often important in elliptic (type) problems, leading to slow convergence. We propose
to remedy this problem at low cost by combining SAI with multilevel corrections using SAI at coarser
meshes. We can do this efficiently by exploiting the hierarchical nature of AMR meshes. This leads to
an approach that is highly efficient in computing and updating the preconditioner and highly effective
in reducing the number of iterations of a Krylov subspace method. In addition, our preconditioners
yield significant runtime reductions for time-dependent problems and optimal design using topology
optimization. Finally, we have experimentally demonstrated level-independent convergence rates for
the time-dependent problem and near level-independent convergence rates for topology optimization
problems. As an example, we give convergence and timing results for a two-dimensional convection-
diffusion problem with large jumps in the velocity field and the diffusion coefficient using adaptive
meshing [1]. We also show the solution and mesh for two, representative, subsequent time steps.

Table 1: Convergence and timing results for a convection-diffusion problem.

time step 1 2 3 4 5
`max 5 6 7 8 8

n 4096 6208 12064 23056 32848
convergence (niters)

No Preconditioner 832 692 1270 3985 10051
One-level SAI 140 125 169 249 342
Two-level SAI 90 80 84 98 92

Full multi-level SAI 22 18 19 21 21
timing (secs)

No Preconditioner 9.47 12.00 41.88 248.78 882.01
One-level SAI 2.65 3.62 9.23 25.83 49.64
Two-level SAI 3.08 3.97 7.30 15.55 19.95

Full multi-level SAI 1.25 1.72 3.46 7.35 9.83
Update SAI on all levels 0.14 0.69 0.22 0.36 0.32

Figure 1: Distribution of pollutant before
time step on adapted mesh

Figure 2: Distribution of pollutant after
time step on adapted mesh
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