
AN EFFICIENT AND COMPACT MATLAB IMPLEMENTATION OF
TOPOLOGY OPTIMIZATION: APPLICATION TO COMPLIANT

MECHANISM

Anderson Pereiraa, Ivan F. M. Menezesa, Cameron Talischib and Glaucio H. Paulinob

aTecgraf (Group of Technology in Computer Graphics), Pontifical Catholic University of Rio de Janeiro
(PUC–Rio), Rua Marquês de São Vicente, 225, 22453-900, Rio de Janeiro, RJ, Brazil,

{anderson,ivan}@tecgraf.puc-rio.br, http://www.tecgraf.puc-rio.br

bDepartment of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,
Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL, 61801, U.S.A.

{ktalisch,paulino}@uiuc.edu, http://cee.illinois.edu

Keywords: Topology optimization, Unstructured meshes, Polygonal finite elements, Compli-
ant mechanism, MATLAB software

Abstract. This paper presents an effective MATLAB implementation of a general topology op-
timization method for compliant mechanism synthesis of statically loaded structures. Our im-
plementation is based on the educational framework PolyTop (Talischi et al., 2011b), which
is easily extended to handle compliant mechanism design. The main features of PolyTop
are preserved, including a general finite element module using polygons, which are superior to
conventional linear triangles and quads in topology optimization as they are not susceptible to
checkerboard patterns. The MATLAB code is explained in detail and benchmark numerical ex-
amples are presented to illustrate the capabilities of the code. Examples of mechanism synthesis
are presented. Moreover, PolyTop offers room for further exploration of finite elements and
topology optimization formulations both for research and for practical engineering applications.



1 INTRODUCTION

Since the publication of the popular “99 line” code (Sigmund, 2001) sharing and publi-
cation of educational software has become a tradition in the topology optimization commu-
nity. For example, Allaire and Pantz (2006) presented a structural optimization code based on
FreeFem++, Liu et al. (2005) introduced a coupled level set method using the FEMLAB pack-
age and Challis (2010) presented a discrete level-set MATLAB code very much in the spirit
of the “99 line” code. Suresh (2010) developed a 199 line code for Pareto-optimal tracing
with the aid of topological derivatives. The recent “88 line” code (Andreassen et al., 2011), an
improved version of the popular “99 line” code, was developed to achieve higher efficiency.
Recently, PolyMesher (Talischi et al., 2011a) and PolyTop (Talischi et al., 2011b) comple-
mented the technical literature by means of a MATLAB implementation of topology optimiza-
tion that, among other features, introduces a general framework for finite element discretization
and analysis. As demonstrated in reference (Talischi et al., 2011b), PolyTop outperforms the
“88 line” MATLAB code (Andreassen et al., 2011).

In this work, we present the implementation of compliant mechanism problem in the
PolyMesher/PolyTop framework. The remainder of this paper is organized as follows:
in the next two sections, we review the main concepts of PolyMesher and PolyTop. We
explain the MATLAB implementation of this algorithm in section 4 and present numerical
examples in section 5. Conclusions, potential extensions and generalizations of the code are
addressed in section 6.

2 MESH GENERATOR: PolyMesher

PolyMesher is a simple and robust MATLAB code for polygonal mesh generation. The
main ingredients of PolyMesher are the implicit representation of the domain and the use of
Centroidal Voronoi diagrams for its discretization. The implicit description offer great flexibility
to construct a relatively large class of domains with algebraic expressions. A discretization of
the domain is constructed from a Centroidal Voronoi tessellation (CVT) that incorporates an
approximation to its boundary. This approximation is obtained by including the set of reflections
of the seeds (Bolander and Saito, 1998; Yip et al., 2005). Additionally, the Lloyd’s method
is used to establish a uniform (optimal) distribution of seeds and thus a high quality mesh
(Talischi et al., 2010).

2.1 Use of PolyMesher

To generate a mesh using PolyMesher, the user needs to define a Domain function that
defines the meshing domain. The Domain function is passed to the PolyMesher providing
access to information about domain geometry (i.e., the sign distance function), the bounding
box and the boundary conditions. The details of this function are discussed in Talischi et al.
(2011a).

The call to PolyMesher is as follows:

[Node,Element,Supp,Load,P] = PolyMesher(@Domain,NElem,MaxIter,P)

where Domain is a MATLAB function defining the domain, NElem is the desired number of
elements in the mesh, MaxIter specifies the maximum number of Lloyd’s iterations and P is
an optional argument where the user can input an initial set of seeds.



Figure 1 shows sample meshes generated using PolyMesher. The Domain functions for
these examples, geometries and the library of distance functions are provided as supplementary
material in Talischi et al. (2011a).

(a) Horn geometry. (b) Wrench geometry.

Figure 1: Sample meshes generated using PolyMesher (Talischi et al., 2011a).

3 TOPOLOGY OPTIMIZATION: PolyTop

PolyTop is an efficient MATLAB code for structural topology optimization that includes
a general finite element routine based on isoparametric polygonal elements. The code also
features a modular structure in which the analysis routine and the optimization algorithm are
separated from the specific choice of topology optimization formulation. Within this frame-
work, the finite element and sensitivity analysis routines contain no information related to the
formulation and thus can be extended, developed and modified independently.

3.1 MATLAB files

To run PolyTop, the user needs two main files. The first, PolyTop.m is the kernel of the
code that contains the optimizer and analysis routines, including the FE routine and functions
responsible for computing cost functional and their sensitivities. The second, PolyScript.m,
a MATLAB script that calls the kernel, holds all the parameters related to topology optimization
that link design variables with the analysis parameters (e.g. filter matrix, material interpolation
functions), as well as the finite element model (e.g. the mesh, load and support boundary
conditions for the state equation).

In the implementation of PolyScript, the auxiliary functions PolyMesher and
PolyFilter are called to generate the finite element mesh and construct the linear filtering
matrix. Another auxiliary function MatIntFnc.m, responsible for the material interpolation,
is passed to the kernel via the opt.MatIntFnc field.

All files listed above are provided as supplementary material in Talischi et al. (2011b). Fig-
ure 2 shows the final topology for a non-trivial geometry using PolyTop.

4 MATLAB IMPLEMENTATION OF COMPLIANT MECHANISM PROBLEM

In the previous sections we briefly described the PolyMesher and PolyTop implemen-
tation. The aim now is to explain how to extend those codes to solve compliant mechanism
problems. The original prototype for PolyTop is written to solve the compliance minimization
problem but specific functions are designed to compute the objective and constraint functions.
This functional decoupling easily allows to extend to compliant mechanism problems without
major changes in the original code.



(a) Hook geometry. (b) Hook final topology.

Figure 2: Sample compliance problems with non-trivial geometry using PolyTop (Talischi et al., 2011b).

4.1 Input data and PolyScript

All the input and internal parameters of the code are collected in two MATLAB struct arrays.
One struct, called fem, contains all the FE-related parameters while the other, opt, has the
variables pertaining to the topology optimization formulation and optimizer. For the compliant
mechanism, new fields are added to the original fem structure (see Table 1) while the opt
remains the same (see Table 2). Note that some of the fem fields are populated inside the
PolyTop kernel unless they are already specified. Also the user has access to all the model
parameters since these structures reside in the MATLAB workspace.

4.2 Compliant Mechanism and PolyTop

The objective function of the optimization problem for the minimum compliance is given
by:

f = FTU (1)

while for the compliant mechanism, we have:

f = LTU (2)

where F and U are the global force and displacement vectors and L is a vector composed of
zeros except the degree of the output position which is one.

For a discretized linear state equation, KU = F where K is the stiffness matrix, the sensi-
tivity of the objective function with respect to a state variable E is given by:

∂f

∂E
= −λT ∂K

∂E
U (3)

where λ is the solution to the adjoint load problem

Kλ =
∂f

∂U
(4)



Table 1: List of fields in the fem structure. The fields marked with the superscript †, if empty, are populated inside
PolyTop.

Field Definition
fem.NNode Number of nodes
fem.NElem Number of elements
fem.Node [NNode × 2] array of nodes
fem.Element [NElement × Var] cell array of elements
fem.Supp [NSupp × 3] Array of supports
fem.Load [NLoad × 3] Array of loads
fem.Nu0 Poisson’s ratio of solid material
fem.E0 Young’s modulus of solid material
fem.Reg Tag for regular meshes
fem.ElemNDof† Array showing number of DOFs of elements
fem.ShapeFnc† Cell array with tabulated shape functions and weights
fem.k† Array of local stiffness matrix entries
fem.i† Index array for sparse assembly of fem.k
fem.j† Index array for sparse assembly of fem.k
fem.e† Array of element IDs corresponding to fem.k
fem.ElemArea† Array of element areas
fem.F† Global load vector
fem.FreeDofs† Array of free degrees of freedom
Added fields
fem.Spring [NSpring × 3] Array of springs
fem.DOut Target node
fem.DofDOut† Target DOF
fem.s† Array of global springs entries

For the compliance minimization problem, Eq. 1, the right hand side of Eq. 4 is ∂f/∂U = F
leading to a self-adjoint problem where the solution of the adjoint equation is λ = U. In this
case, the sensitivity of the objective function is given by:

∂f

∂E
= −UT ∂K

∂E
U (5)

On the other hand, for the compliant mechanism problem, Eq. 2, the right hand side of Eq. 4
is ∂f/∂U = L where for the solution of the adjoint equation we need to solve another linear
system of equations:

Kλ = L (6)

In order to computer the sensitivities efficiently, PolyTop stores the element stiffness ma-
trix using the index vectors fem.i, fem.j and fem.k. For compliance minimization we
need to compute −∑

Ui (kl)ij Uj where the sum is taken over all DOFs i and j of element Ωl.
This requires summing the block of -U(fem.i).*fem.k.*U(fem.j) that corresponds to
element l. This computation is carried out using cumsum, the cumulative sum function in MAT-
LAB. For compliant mechanism we compute −∑

λi (kl)ij Uj , where the adjoint solution λ is
stored in the second column of U vector so the sensitivities are computed summing the block
of -U(fem.i,1).*fem.k.*U(fem.j,2). The incomplete code for solving compliant
mechanism problem is presented in the Appendix A. The complete code can be assembled by
adding the differences in Appendix A with the original PolyTop code.



Table 2: List of fields in the opt structure.

Field Definition
opt.zMin Lower bound for design variables
opt.zMax Upper bound for design variables
opt.zIni Initial design variables
opt.MatIntFnc Handle to material interpolation fnc.
opt.P Matrix that maps design to element variables
opt.VolFrac Specified volume fraction cosntraint
opt.Tol Convergence tolerance on design variables
opt.MaxIter Max. number of optimization iterations
opt.OCMove Allowable move step in OC update scheme
opt.OCEta Exponent used in OC update scheme

5 NUMERICAL EXAMPLES

In this section, we present numerical results for benchmark compliant mechanism problems to
demonstrate the versatility of the code. For all results, the Ersatz parameter ε was set to 10−4

and the Young’s modulus and Poisson’s ratio of the solid phase were taken to be E0 = 1 and
ν = 0.3, respectively. Also the maximum tolerance for the change in design was taken to be 1%.
The Solid Isotropic Material with Penalization (SIMP) model (Bendsøe, 1989; Rozvany et al.,
1992; Rozvany, 2009) was adopted with continuation on the penalty parameter p in the follow-
ing manner: the value of p was increased from 1 to 4 using increments of size 0.5 and for each
value of p, a maximum of 150 iterations was performed (by setting opt.MaxIter=150).
For the optimization algorithm, UpdateScheme function, we used move limit M = 0.05
(by setting opt.OCMove=0.05), and numerical damping parameter η = 0.3 (by setting
opt.OCEta=0.3). Also, for stable convergence of the OC update, positive sensitivities were
replaced by a small positive number

The examples presented are the force inverter and gripper compliant mechanism design prob-
lems, as shown in Fig. 3, Due to the symmetry of the problem, only half of the domain is
considered in the optimization algorithm (shaded areas in Fig. 3). The spring constants k1

and k2 are 0.1. For each problem, a mesh of 5, 000 polygonal elements was generated using
PolyMesher (Talischi et al., 2011a).

k
2

k
1

P=1 u
out

60

30

(a) Inverter mechanism.

k
1

P=1

60

30
k
2

u
out 10

15

(b) Gripper mechanism.

Figure 3: Compliant mechanism problems.



The final result shown in Fig. 4 was obtained using a linear filter of radius 1.2.

(a) Inverter mechanism. (b) Gripper mechanism.

Figure 4: Final topologies.

6 CONCLUSIONS

An efficient implementation for compliant mechanism synthesis of statically loaded struc-
tures was presented using the recently developed educational framework PolyTop
(Talischi et al., 2011b). PolyTop was easily extended to handle compliant mechanism de-
sign by replacing 10 existing lines and adding 7 new ones. Numerical examples were presented
to illustrate the capabilities of the code.

We would like to point out that PolyTop offers room for further exploration of finite ele-
ments and topology optimization formulations both for research and for practical engineering
applications. We hope that the community can make use of PolyTop in ways that we cannot
anticipate.

Acknowledgments

The first two authors acknowledge the financial support provided by Tecgraf (Group of Tech-
nology in Computer Graphics), PUC-Rio, Rio de Janeiro, Brazil. The last two acknowledge the
support by the Department of Energy Computational Science Graduate Fellowship Program
of the Office of Science and National Nuclear Security Administration in the Department of
Energy under contract DE-FG02-97ER25308.

A APPENDIX: MATLAB CODE FOR COMPLIANT MECHANISM SYNTHESIS

The MATLAB code for compliance minimization PolyTop described in Talischi et al.
(2011b) can be changed into a code for mechanism synthesis by replacing 10 existing lines
and adding 7 new ones. These consist of change in the finite element analysis functions (to
account for the input/output springs as well as solving the adjoint problem), the objective func-
tion (changing compliance to compliant mechanism), and the update scheme (changes needed
to stabilize OC for the compliant mechanism problem). Instead of listing the whole program we
just show a list of changes. To facilitate the comparison, we have renamed the modified kernel
PolyTopM.m. The list of changes is obtained by comparing PolyTop.mwith PolyTopM.m
using the UNIX command “diff PolyTop.m PolyTopM.m”. This results in output where “<”



means lines in PolyTop.m and “>” means lines in PolyTopM.m. In the following we briefly
discuss the changes.

First we rename the code from “PolyTop” to “PolyTopM”

7c7
< function [z,V,fem] = PolyTop(fem,opt)
---
> function [z,V,fem] = PolyTopM(fem,opt)

The objective function was changed to a target output displacement and the sensitivities
depend on the solution to the adjoint load case (second column of the displacement matrix U)

29,30c29,30
< f = dot(fem.F,U);
< temp = cumsum(-U(fem.i).*fem.k.*U(fem.j));
---
> f = U(fem.DofDOut,1);
> temp = cumsum(U(fem.i,1).*fem.k.*U(fem.j,2));

The bi-sectioning part of the UpdateScheme was changed as

51c51
< while l2-l1 > 1e-4
---
> while (l2-l1)/(l2+l1) > 1e-4 && l2>1e-40

Also, for stabilizing convergence, positive sensitivities were replaced by a small positive
number (Bendsøe and Sigmund, 2003)

53c53
< B = -(dfdz./dgdz)/lmid;
---
> B = max(1e-10,-(dfdz./dgdz)/lmid);

The external force vector was allocated for the real and the adjoint load cases and the external
springs were considered

81,83c81,90
< fem.F = zeros(2*fem.NNode,1); %external load vector
< fem.F(2*fem.Load(1:NLoad,1)-1) = fem.Load(1:NLoad,2); %x-crdnt
< fem.F(2*fem.Load(1:NLoad,1)) = fem.Load(1:NLoad,3); %y-crdnt
---
> fem.F = zeros(2*fem.NNode,2); %external load vector
> fem.F(2*fem.Load(1:NLoad,1)-1,1) = fem.Load(1:NLoad,2); %x-crdnt
> fem.F(2*fem.Load(1:NLoad,1),1) = fem.Load(1:NLoad,3); %y-crdnt
> fem.DofDOut = 2*fem.DOut(1)-2+fem.DOut(2);
> fem.F(fem.DofDOut,2) = -1;
> NSpring = size(fem.Spring,1);
> s = zeros(2*fem.NNode,2); %spring vector
> s(2*fem.Spring(1:NSpring,1)-1) = fem.Spring(1:NSpring,2); %x-crdnt
> s(2*fem.Spring(1:NSpring,1)) = fem.Spring(1:NSpring,3); %y-crdnt
> fem.s = spdiags(s(:),0,2*fem.NNode,2*fem.NNode);



The assembly of the global stiffness matrix was changed for adding the external springs

91c98
< K = sparse(fem.i,fem.j,E(fem.e).*fem.k);
---
> K = sparse(fem.i,fem.j,E(fem.e).*fem.k) + fem.s;

Finally, we allocated the displacement vector for the real and the adjoint load cases

93c100
< U = zeros(2*fem.NNode,1);
---
> U = zeros(2*fem.NNode,2);

REFERENCES

Allaire G. and Pantz O. Structural optimization with FreeFem++. Struct Multidisc Optim,
32(3):173–181, 2006.

Andreassen E., Clausen A., Schevenels M., Lazarov B.S., and Sigmund O. Efficient topology
optimization in MATLAB using 88 lines of code. Structural and Multidisciplinary Optimiza-
tion, 43(1):1–16, 2011. doi:10.1007/s00158-010-0594-7.

Bendsøe M. and Sigmund O. Topology Optimization Theory, Methods and Applications. Berlin:
Springer, 2003.

Bendsøe M.P. Optimal shape design as a material distribution problem. Structural and Multi-
disciplinary Optimization, 1(4):193–202, 1989.

Bolander J.E. and Saito S. Fracture analyses using spring networks with random geometry. Eng
Fract Mech, 61(5-6):569–591, 1998.

Challis V.J. A discrete level-set topology optimization code written in matlab. Struct Multidisc
Optim, 41(3):453–464, 2010.

Liu Z., Korvink J., and Huang R. Structure topology optimization: fully coupled level set
method via FEMLAB. Struct Multidisc Optim, 29:407–417, 2005.

Rozvany G. A critical review of established methods of structural topology optimiza-
tion. Structural and Multidisciplinary Optimization, 37:217–237, 2009. ISSN 1615-147X.
10.1007/s00158-007-0217-0.

Rozvany G.I.N., Zhou M., and Birker T. Generalized shape optimization without homogeniza-
tion. Structural and Multidisciplinary Optimization, 4:250–252, 1992. ISSN 1615-147X.
10.1007/BF01742754.

Sigmund O. A 99 line topology optimization code written in Matlab. Struct Multidisc Optim,
21(2):120–127, 2001.

Suresh K. A 199-line matlab code for Pareto-optimal tracing in topology optimization. Struct
Multidisc Optim, 42(5):665–679, 2010.

Talischi C., Paulino G.H., Pereira A., and Menezes I.F.M. Polygonal finite elements for topol-
ogy optimization: A unifying paradigm. Int J Numer Meth Eng, 82(6):671–698, 2010.

Talischi C., Paulino G.H., Pereira A., and Menezes I.F.M. PolyMesher: A general-purpose
mesh generator for polygonal elements written in Matlab. Structural and Multidisciplinary
Optimization, 2011a. In Press, doi:10.1007/s00158-011-0706-z.

Talischi C., Paulino G.H., Pereira A., and Menezes I.F.M. PolyTop: A Matlab imple-
mentation of a general topology optimization framework using unstructured polygonal fi-
nite element meshes. Structural and Multidisciplinary Optimization, 2011b. In Press,
doi:10.1007/s00158-011-0696-x.



Yip M., Mohle J., and Bolander J. Automated modeling of three-dimensional structural com-
ponents using irregular lattices. Comput-Aided Civ Inf, 20(6):393–407, 2005.


