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ABSTRACT 

 

Though topology optimization has been applied to many fields, ranging from mechanical 

to aerospace engineering, more work must be done to tailor it to the needs of the structural 

engineer, especially in regards to the design of high-rise buildings. Thus, this work aims to 

improve its application to structural engineering by describing an integrated topology 

optimization approach involving continuum and discrete finite elements to design the lateral 

systems in structural braced frames for high-rise buildings. The approach is implemented using 

concurrent continuum finite elements and discrete beam/truss elements to simplify and improve 

the overall design process by creating optimal geometries for a given volume of material. For 

example, after an engineer develops a structural frame consisting of beams and columns sized for 

gravity loads, topology optimization on the continuum (e.g. quadrilateral) elements is used to 

create a conceptual design for the braces of the lateral system resulting in highly efficient 

structures. Several practical examples are demonstrated to show the importance and relevance of 

this work to the structural design industry. 

 

INTRODUCTION 

 In the construction industry, many works of modern architecture are lacking balance 

between engineering principals and architectural aesthetics. Often, the engineering can be seen as 

a means to make the architecture stand, where in this case the architecture is similar to a work of 

art. Often these structures may use much more material than required or cause difficulties in 

constructability and realization of the design. Other cases include buildings which are built solely 

to serve a specific function at low cost, with little or no regard for aesthetics. Examples of such 

structures include big box stores, warehouses, convention centers, and strip malls. This lack of 

balance provides motivation to introduce topology optimization to connect engineering and 

architecture in the design of structures. Topology optimization provides unique optimal solutions 

for a given design space and set of applied forces and boundary conditions. Such optimal 

solutions often provide aesthetic value in the realization of patterns in the final design as well. 

Though topology optimization is typically know for its use in mechanical and 

aeronautical engineering, and it is becoming more common for civil engineering applications in 

recent years. Examples of such applications include the multi-story building design or long span 

bridge design applications presented in Stromberg et al. (2011a), Allahdadian and Boroomand 

(2010), Neves et al. (1995), or Huang and Xie (2008). Though the applications within the civil 

engineering field encompass a wide range of topics, the focus of this work is towards the high-

rise building industry to provide engineers with a tool that can be used to identify the optimal 

topology of the lateral bracing systems in addition to minimize material usage and corresponding 



cost. Thus, this work aims to develop a methodology that enables engineers to design the lateral 

system from the conceptual optimal bracing angles to the final sizing of the members. 

By using topology optimization to express the engineering together with the architecture, 

buildings can be developed with unique bracing systems. Such braced frame and moment frame 

structural systems are commonly deployed in the lateral design of high-rise buildings, such as the 

John Hancock Center (Chicago, IL), Broadgate Tower (London, UK) and Bank of China Tower 

(Hong Kong). However, the design of such systems is traditionally based on diagonal braces 

arranged according to 45 through 60 degree angles, though there have been few engineering 

studies in the past to identify the optimal bracing angle and the parameters affecting such angles 

(Huang et al., 2010). This work, on the other hand, aims to optimize the geometry of the frame 

members in terms of structural performance (maximum stiffness) while minimizing the material 

usage. Other measures of structural performance might also include tip deflection, frequency, 

critical buckling load, etc. 
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Figure 1. Comparison of existing topology optimization techniques with new methods 

proposed in this work: (a) continuum topology optimization with no frame elements, (b) 

with column elements (in red), (c) with beam and column frame elements (in red) 

 

 

In Stromberg et. al (2011a), an early attempt was made to identify optimal bracing angles 

using continuum elements. However, some limitations were evident in the optimization results as 

seen in Figure 1 (left). For example, the results show high concentrations of material towards the 

extreme edges of the domain, as expected from the web-flange behavior discussed in Stromberg 

et. al (2011a). These dense regions of material make it difficult to locate the bracing work points 

(i.e. the locations where the diagonals intersect the columns). Furthermore, such high 



concentrations may lead to incorrect flexural stiffness in the analysis of the structure. Moreover, 

with a constraint imposed on the fraction of material available for the design, if the majority of 

the material is “optimal” at the extreme edges of the domain, relatively small amounts of 

material are leftover to form the diagonal members and the structure has an incomplete 

diagonalization, which is not practical for realistic building design. An additional constraint on 

the material distribution between the columns and diagonals might be imposed to circumvent the 

issue, but the addition of beam-column elements to the design domain eliminates the problem 

altogether. 

For instance, with the additional column elements to the design problem as shown in 

Figure 1 (center), the issues mentioned are no longer of concern for structural design. The 

discrete column elements, much narrower in width, now give practical bending stiffness to the 

structure. Furthermore, the diagonalization is complete along the structure’s height and the 

bracing members are clearly identified. We highlight next how this methodology might be 

incorporated into the structural design process. 

 

GROUP OPTIMIZATION CONCEPTS 

In this work, group optimization refers to the combination of different groups of elements 

(e.g. Q4, bar, beam, etc.) in designing an optimal structure. Using group optimization, a clear, 

complete diagonalization results for maximum stiffness design with minimal volume. This 

integration of beam and quadrilateral elements can be modeled using one of the two connections 

types described next, which can be incorporated into the classical topology optimization 

formulation by introducing a few modifications as described below. 

 

Combining Q4 and Beam Elements. The beams and quadrilateral elements are connected in 

this work either at the extreme ends of the beam only, or continuously along the beam line, as 

illustrated by Figure 2. In the first case, the degrees of freedom shared between elements (shown 

in red) are only the two translations at the corners of the quadrilateral and edges of the beam 

mesh. For the latter, the two translations at coincident nodes are shared (in red) along both the 

beam and quadrilateral meshes.  

 

        
 

Figure 2. Connection types for combining continuum and discrete elements: (left) attached 

at extreme ends only, (right) attached continuously along the beam line 

 

Problem Statement. In this work, the objective of the optimization problem is to maximize the 

overall stiffness of a building, or minimize the compliance. The outer skin or shell of the 

building is taken as the design domain (see Figure 3) so that the structural system would be 

expressed in the exterior together with the architecture. Thus, the optimal layout problem in 

terms of minimum compliance can be stated using the density,  , and the displacements,  , as 

follows: 
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The overall compliance of the structure is denoted by   in the equations above, while      
represents the global stiffness matrix which depends on the material densities,    and   are the 

vectors of  nodal displacements and forces, respectively,    is the volume fraction constraint 

which represents the maximum volume of material permitted for the design of the structure, and 

  is the material density for each design variable. A void is signified by a null material density, 

   0, and     represents solid material. For regions of gray material or intermediate 

densities, the commonly used Solid Isotropic Material with Penalization (SIMP) model is 

employed (Zhou and Rozvany (1991), Rozvany et al. (1992), Bendsoe (1989), Bendsoe and 

Sigmund (1999)): 

 

              
 

This power-law relationship between stiffness and element density uses the Young’s Modulus of 

solid material    and penalization power     to force the material to tend towards 0 or 1 (void 

or solid respectively) where the element density   assumes a value somewhere in this range. The 

optimization process presented in this work for braced frames also includes continuation on the 

penalization power from 1 to 4 in steps of 0.5 until convergence. 

 

 
Figure 3. Design domain (outer skin or shell) for topology optimization of a building 

 



Design Process. The optimization techniques described in Baker (1992) help streamline the 

design decisions at various stages of a project from the conceptual characterization of a braced 

frame layout to the final sizing of the members. Combining the Principle of Virtual Work with 

the Lagrange Multiplier Method, the deflection,  , is expressed as 
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where    and    are the internal forces due to the applied and unit loads respectively,    is the 

length,    is the Young’s Modulus, and    is the cross-sectional area for the     member, and   

is the total volume of the structure. Solving, the final cross-sectional areas required to achieve a 

target deflection,     , are given as 
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Once the overall shape or outer skin of the building is known, the optimal bracing layout could 

be established assuming that frame columns are arranged around the outer perimeter at a regular 

spacing to ensure that the tributary areas for the columns are similar. At each floor level, a 

horizontal beam (spandrel) would span between two subsequent columns. Beams and columns 

would be modeled using beam elements while the space bounded by two columns and two 

beams would be meshed using quadrilateral elements. After the finite element mesh is completed 

the following steps can be applied in sequence in the design flow process: 

1. size vertical line elements (columns) according to gravity load combinations (accounting 

for dead, superimposed dead and live loads) according to Baker (1992) 

2. run topology optimization on the continuum elements for lateral load combinations 

(accounting for wind and seismic loads) 

3. identify the optimal bracing layout based on results and create frame model 

4. optimize the member sizes using the virtual work methodology 

These steps describe a complete process from the conceptual design and geometry up to the final 

sizing of the frame members. Throughout the design phase, these steps may be implemented in 

isolation or the entire process may be repeated to resize members. 

 

OPTIMAL BRACED FRAMES 

In this section, we explore several important analytical aspects of optimal braced frames in 

regards to the frame geometry. 

 

Fully Stressed Design. The energy-based design method presented in Baker (1992) and 

described in the previous section implies that any frame with optimal cross-sectional members 

subject to a point load at the top is under a state of constant stress (Fully Stressed Design) as 

demonstrated next. 

 

By taking the derivative of the equation for deflection with respect to the areas    and solving 



for the Lagrangian multiplier, we obtain: 

  
    

   
  

 

When the structure is loaded with a single point load at the top of the frame, the force can be 

expressed by         where   is a proportionality constant, thus the following equation holds: 
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In the above expression the Lagrangian multiplier is a constant, therefore the stress in the      
member,        , is also a constant. This conclusion applies to each of the     members of the 

frame, therefore the stress level is constant in every member. It follows that the stress is then 

constant throughout the frame. 

 For structures where multiple loads are applied, the compliance is given using the 

external and internal work,      and      and the applied forces and displacements    and    at 

the     node as follows: 
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Using the Lagrange multiplier method as was done previously, 
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Minimizing the compliance and solving for the Lagrange multiplier, we obtain the following 

expression: 
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This expression shows that the minimization of compliance leads to a state of constant stress. We 

note that for the compliance minimization problem, a state of constant strain energy density 

represents the condition of optimality (Bendsoe and Sigmund, 2002). Since the Von Mises 

stresses and the strain energy density are proportional (Hill, 1950; Lubliner, 1990), the effective 

stresses in optimal structures are constant. 

The constant stress condition is verified in the continuum approach for the structure in 

Figure 4 (bottom right) which was derived using a Q4 element mesh. As shown here, the Von-

Mises stresses are nearly constant within each optimized member. 

 



 
 

Figure 4. Plot of Von Mises Stresses for topology optimization problem of symmetric 

cantilever problem 

 

 

Optimal Frame Geometry. The optimal geometry of braced frames can be described by 

considering the geometry shown in Figure 5, with the overall width of the structure given as   , 

the total height as   and the unknown location of the base to the optimal bracing point as  . 

 

By applying a unit load and taking advantage of the symmetry of the problem, the internal forces 

of each member are given as 
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Figure 5. Single module frame geometry for discrete optimization problem with unknown 

bracing height,   

 

Assuming each member to have a constant stress,  , (as previously demonstrated), the tip 

displacement can be written as 
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Thus, the tip displacement, or compliance in this problem, is minimal when 
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So finally, the optimal brace work point height gives the minimum deflection when 

 

  
 

 
  

 

The rationale behind this solution can be explained by considering the topology optimization of a 

simple structural frame with a point load applied to the top left corner and symmetry constraints 

(see Figure 6). This problem (a simplification of a cantilever beam representing a “high-rise” 

problem) run with topology optimization does not lead to the 45 degree diagonalization, as one 

might expect, but rather to the “high-waisted” cross-brace with a working point at 75% of the 

structure’s height. The cantilever (“high-rise”) problem must also account for the overturning 

moment,   , which is not present in the pure shear problem, causing a vertical shift in the 

intersection of the braces. (Note: the results presented here are dependent on the assumption of 

constant stresses in the members.) 



 

 
 

Figure 6. Comparison of optimal geometries for a cantilever problem (left) and a pure 

shear problem (right) 

 

Similarly, the optimal geometry analysis can be extended for the case of multiple 

modules as is shown in Stromberg et. al (2011b), where the optimal bracing work point location 

of each module still remains at 75% of the module height. 

 

NUMERICAL RESULTS 

Numerical results are given here based on a code written by the authors in C++ using the 

methodology described in this work for a realistic building system. The structural frame is 

modeled in Figure 7 by assuming the beam elements are not engaged vertically by the 

quadrilateral mesh, while the column elements are attached continuously along their length. 

Furthermore, the connections from the beams (used to represent the floor levels) to the columns 

are pinned for the prototypical high-rise building. This structure is loaded with uniform point 

loads at each module. The volume of material for the topology optimization problem is 30% (i.e. 

30% of the design domain will be filled with solid material). 

 The resulting braced frame geometry shows working points near 75% of each modules 

height, as was derived analytically in the previous section. The discrepancy between the 

numerical results shown here and the analytical derivation is due to the nonuniformity of stress 

in the optimized solution. This behavior was explained by Bendsoe and Sigmund (2002) by 

noting that the strain energy density is constant for the intermediate densities but not for all 

possible values (e.g. the extreme regions of solid and void, or 1 and 0). In Figure 4, this behavior 

is shown by observing the Von Mises stresses are constant for the intermediate densities.

 Another interesting feature in the optimized structure of Figure 7 is that the size of the 

bracing members increases from the top to the base of the building as expected, due to the 

increase in shear forces. Note that the discrete columns are sized a priori to increase in size along 

the height, in accordance with gravity loading. 

 



 

         (a)                        (b) 

Figure 7. Braced frame design using topology optimization: (a) problem statement, (b) 

optimization results using continuum (black) and discrete elements sized a priori (red) 

CONCLUSIONS 

The methodology described in this work provides structural engineers with an effective and 

efficient means to design the lateral bracing systems for high-rise buildings by using topology 

optimization with a combination of continuum (Q4) and discrete (beam) elements. The main 

contributions of this work are as follow: 

 A method to describe optimal braced frames was proposed. 

 The constant state of stress in the members of an optimized frame was verified. 

 The relevance of this work has been demonstrated in the structural engineering industry. 

 The optimal geometry of these frames was described analytically and numerically. 
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