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ABSTRACT: A new method is proposed to incorporate the first passage probability into stochastic 
topology optimization using sequential compounding method (Kang and Song 2010). Parameter 
sensitivities of the first passage probability in the probabilistic constraint are derived to facilitate the use 
of gradient-based optimizer for efficient topology optimization. The proposed method is applied to 
building structures subjected to stochastic ground motion to find optimal bracing systems which can 
resist future realization of stochastic excitations while achieving a desired level of reliability. 

 
Optimal design of a lateral load-resisting system 
of a structure is one of the essential tasks in 
structural engineering as it is directly linked to 
building safety and operation. In particular, 
reliable operation and safety under stochastic 
excitations by natural hazards such as earthquake, 
wind loads are major design objectives. However, 
deterministic description of future realization of a 
random process is frequently limited because only 
a set of few time histories are available. Therefore, 
a probabilistic prediction of structural responses 
based on random vibration analysis is much 
needed in the process for optimal design. To 
address this issue, the authors performed a study 
of topology optimization of structures under 
stochastic excitations (Chun et al. in review). In 
the study, random vibration analysis by a discrete 
representation method (Der Kiureghian 2000) and 
structural reliability theory were integrated into 
topology optimization framework. In addition, the 
authors developed the system reliability-based 
topology optimization framework under 
stochastic excitations (Chun et al. 2013) to 
consider system failure events with statistical 
dependency using the matrix-based system 
reliability method (Song and Kang 2009). The 

developed method helps satisfy probabilistic 
constraints on a system failure event, which 
consists of multiple limit-states defined in terms 
of different locations, failure modes and time 
points as it optimizes a structural system. Chun et 
al. (in review) has evaluated an instantaneous 
failure probability of the structure subjected to 
random excitations at a discrete time point. 
However, a more practical application in 
engineering can be achieved if the failure 
probability is evaluated for exceedance event over 
a time interval. This helps promote the use of the 
proposed stochastic topology optimization 
framework for the design of lateral load-resisting 
system under stochastic excitations. Thus, in this 
paper, a stochastic topology optimization 
framework is proposed to handle probabilistic 
constraints on the first passage probability. 

1. RANDOM VIBRATION ANALYSIS USING 
DISCRETE REPRESENTATION METHOD  

1.1. Discrete representation of stochastic 
process 

The discrete representation method (Der 
Kiureghian 2000) discretizes a continuous 
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stochastic process with a finite number of 
standard normal random variables. For example, 
a zero-mean Gaussian process f(t) can be 
discretized as: 
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where s(t) denotes a vector of deterministic basis 
functions, which is determined from the spectral 
characteristics of the process (Der Kiureghian 
2000), and v is a vector of n uncorrelated standard 
normal random variables. 

1.2. Characterization of linear system under 
stochastic excitations 

The displacement time history u(t) of a linear 
system subjected to stochastic excitations, can be 
determined by using Duhamel’s integral and Eq. 
(1), i.e. 
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where hs(t) is the unit impulse response function 
of the degree-of-freedom of interest, and a(t) 
denotes a vector of deterministic basis functions. 
Then, failure events defined in terms of responses 
can be described in the space of standard normal 
random variable v (Der Kiureghian 2000).  

 
Figure 1 : Geometric representation of instantaneous 
failure at time ti and tj in standard normal space. 
 
For example, the ‘instantaneous’ failure event, i.e. 
the event of a response at a certain time t = ti 

exceeding a prescribed threshold u0, is represented 
by the linear half space u0u(ti) = u0a(ti)Tv ≤ 0 as 
shown in Figure 1. From the geometric 
interpretation, a reliability index can be computed 
as a closed-form solution, i.e. 

 *
0 0 ˆβ( , ) / ( ) ( )i i iu t u t t a α v   (3) 

where  denotes the negative normalized gradient 
vector of the limit-state function evaluated at the 
most probable failure point v*. 

2. FIRST-PASSAGE PROBABILITY 
The first passage probability is commonly utilized 
to find the probability of the failure event 
described within a time interval (VanMarcke 
1975, Song and Der Kiureghian 2006, Fujimura 
and Der Kiureghian 2007). One of the available 
approaches for formulating the first passage 
probability is defining the problem as a series 
system problem such as: 
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The first passage probability then requires 
evaluation of component events at each time point 
within an interval. Moreover, an efficient, reliable 
and robust algorithm is required to evaluate 
system failure probability with statistical 
dependency between the component events fully 
considered. To address these requirements, the 
sequential compounding method (SCM; Kang and 
Song 2010) is adopted in this study. 

3. SEQUENTIAL COMPOUNDING METHOD 
The sequential compounding method is a system 
reliability method that compounds component 
events coupled by union or intersection 
sequentially until a single compound event 
represents the system event. Whenever two 
components are compounded, the probability of 
the new compound event is obtained while the 
correlation coefficients between the new 
compound event and each of the other remaining 
component events are computed. For instance, 
compounding two component events in a series 
system can be described as 

   1 2 1or2 3( ) ( )n nP E E E P E E E      (5) 
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The reliability index β1or2 of the compound event 
E1or2 can be determined as follow:  

1 1
1or2 1 2 2 1 2 1,2β [1 ( ] [ (β ,β ; )]P E E          (6) 

where Ф and Ф2 respectively denote the marginal 
and bi-variate cumulative distribution function 
(CDF) of standard normal random variable(s).  

 
Figure 2: SCM procedure. (a) system probability of 
three events; (b) compound event of E1 and E2 and an 
updated correlation coefficient. 

 
The correlation coefficients between the 
compound event and the remaining events, i.e. 
ρ(1or2),k, k = 3,…, n are determined such that 

u
1 2 3 1,2 1, 2, 2 1or2 (1or2),( , , ; , , ) ( β , β ; )k k k kz z z d    


    z  

  (7) 

where z denotes a vector of standard normal 
random variables, φ is the joint probability density 
function of z, and Ωu represents the domain of the 
system event as 

  u 1 1 1 2 ( β )( β ) ( β ) k kZZ Z          (8) 

ρ(1or2),k in Eq. (7) is obtained numerically by using 
nonlinear programming. The sequential 
compounding procedure of three events is 

illustrated in Figure 2. More details on an efficient 
scheme to find ρ(1or2),k and compounding two 
components coupled by intersection can be found 
in Kang and Song (2010). The SCM is 
implemented to compute the first-passage 
probability in the proposed method because the 
SCM can provide the probability and parameter 
sensitivities of a system consisting of a large 
number of components. 

4. PARAMETETRIC SENSITIVITY OF 
SYSTEM RELIABILITY USING SCM 

Reliability based design/topology optimization 
(RBDO/RBTO) can be efficiently performed if 
parameter sensitivities of the probability can be 
readily computed. In this paper, the first passage 
probability is considered as a probabilistic 
constraint in topology optimization. Therefore, 
sensitivity analysis of system reliability consisting 
of many component events is required. Integrating 
SCM with the proposed method leads to 
significant reduction of computational cost for the 
reliability analysis in the developed topology 
optimization framework.  

 
Figure 3: Sensitivities of series system with 20 
components (unequal reliability indices and equal 
correlation coefficients, 0.5): (a) sensitivity 
comparison between the proposed method and finite 
difference method, and (b) component reliability 
indices consisting of the series system. 

 
To this end, the authors further developed the 
SCM to compute parameter sensitivities 
efficiently (Chun et al. 2015). Figure 3(a) shows 
numerical results of the sensitivity analysis for a 
series system with 20 components. 
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5. TOPOLOGY OPTIMIZATION UNDER 
FIRST PASSAGE PROBABILITY 

Topology optimization (Bendsøe and Sigmund 
2003) aims to find the optimal material 
distributions in a design domain Ω subjected to 
tractions and displacement boundary conditions 
while satisfying given design constraints. In this 
paper, we consider a linear elastic and isotropic 
constituent material with an elasticity tensor D0. 
Solid Isotropic Material with Penalization (SIMP; 
Bendsøe and Sigmund 1999) model is adopted in 
which a smooth convex function : [0,1]R   is 
defined by a power function representation, i.e. 

 ψ( ) px x   (9) 

where 0p   is a penalization factor and x is a 
filtered density ρ ( )e d  with a vector of 
deterministic design variables, d. The SIMP 
model expresses an elasticity tensor of an 
isotropic material in the state of plane stress as:  

0
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where  is the Poisson’s ratio, and E0 is the 
elasticity tensor of the solid material, where the 
density is 1. The filtered element density can be 
obtained by using a density filtering method such 
as the projection technique (e.g. Guest et al. 2004, 
Sigmund 2007) to avoid checkerboard-patterns 
and to achieve a  minimum length scale. By using 
a linear “hat” kernel of radius r, the element 
density can be computed as a weighted average of 
the design variables within an influence domain 
Ωe such as: 

 ρ ( ) /
e e

e j j j
j j

w d w
 

  d   (11) 

Where wj=(r−rj)/r>0 is a weight, and rj is the 
distance between the centroids of element e and 
element j, which lies within the radius r of element 
e. In order to avoid singularity of a stiffness matrix 
in finite element analysis, one needs to set a lower 
bound on the element density ρ ( )e d  i.e., 

min0<ρ ρ ( ) 1e d  . Using the SIMP model, the 
stiffness matrix of the eth element and its 

sensitivity are obtained as follows in the element-
based computational framework (Bendsøe and 
Sigmund 2003): 

0 1 0(ρ ) ρ ,    (ρ ) / ρ ρp p
e e e e e e e e ep    K K K K       (12) 

A formulation of topology optimization under 
stochastic excitation with the first passage 
probability constraint can be formulated as 
follows: 
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where n denotes the total number of time points 
during stochastic excitations, M, C and K are the 
mass, damping and stiffness matrices of the 
design domain, respectively, and u , u , u and f 
are the acceleration, velocity, displacement and 
external force vectors at time t, respectively. We 
omitted the dependence of filtered densities ρ  on 
the design variables d, ( )ρ ρ d  . 

6. SENSITIVITY ANALYSIS: FIRST 
PASSAGE PROBABILITY 

Sensitivity analysis is an essential procedure in 
order to use gradient-based optimization 
algorithms. A method of adjoint sensitivity 
analysis for probabilistic constraints is derived as 
follows. 

6.1. Adjoint sensitivity analysis 
Sensitivity of the probabilistic constraint on the 
first passage probability is computed from the 
following expression. 
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where PT denotes a filtering matrix computed 
from Eq. (11). 1( :β ( ),...,β ( )) / βj sys n jc P E  ρ ρ  can 
be obtained as in Chun et al. (2015). The partial 
derivative ∂βj/ ρi  is obtained from the following 
expression. 
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Figure 4: (a) Kanai-Tajimi power spectral density 
(PSD); (b) Design domain and loading configuration. 

 
When a uniform time step size is used, i.e. 

1 ,   1,2,....,i it t t i n     and 0nt t , Eq. (14) 

can be rewritten as follows:  
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where 
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Pre-multiplying the discretized adjoint system 
from the governing system equation in Eq. (13) 
with a ndof dimensional adjoint variable vector 

1n j λ  and adding to right-hand side terms of Eq. 
(16), the following expression is obtained: 

 

   

T 1
1

T
1

1

2 1

2 2 2

( ) ( , )
( , )

ρ

( , )( )
( , ) ( )

ρ ρ

( , )
(0.5 γ 2η)

ρ

( , ) ( , )
η (0.5 γ η)

ρ ρ

( )

ρ

n
sys n l n

l n l n
l mi i

n
j

n j j
j j j

j

j

j j

j j

j

P E a t
a t

d

t
t

t
t

t t
t t

  
 



 






      
 

     


   


 
     

 










ρ
P ρ

u ρA ρ
λ u ρ A ρ

f ρ

f ρ f ρ

B ρ





 

 




 
 




1
1

2
2

( , )
( , ) ( )

ρ

( , )( )
( , ) ( )

ρ ρ

j
j

j

j
j

j j

t
t

t
t








  




     

u ρ
u ρ B ρ

u ρE ρ
u ρ E ρ


 




 

 

  (18) 

More details of the adjoint sensitivity analysis can 
be found in Chun et al. (in review). 

7. NUMERICAL APPLICATIONS 

7.1. Comparison of the finite difference method 
and the adjoint method 

The derived adjoint sensitivity method was 
compared with the finite difference method 
(FDM) to verify accuracy and efficiency. For 
comparison, The stochastic seismic excitation f(t) 
is modeled as a filtered white-noise process using 
the Kanai-Tajimi filter model with the intensity Φ0 
(Figure 4(a)). The force vector in Eq. (13) is 
replaced with an inertial force vector of f = 
−M(ρ)lf(t) where the vector l represents 
directional distribution of masses with unity. The 
structural columns represented by two vertical 
lines as shown in Figure 4(b) are modeled by 
frame elements whose densities remain 
unchanged throughout the optimization process. 
Young’s modulus E = 21,000 MPa and mass 
density = 2,400 kg/m3 are used as material 
properties for both the quadrilateral and frame 
elements. The damping matrix is constructed 
using a Rayleigh damping model. Table 1 
summarizes the Kanai-Tajimi filter parameters of 
dominant frequency f and bandwidth ζf, column 
size, time interval of interest, and the threshold 
value u0 of the average drift ratio at each time 
point. 
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Table 1.  Parameters used for sensitivity analysis: 
design domain, probabilistic constraint and ground 
motion model. 
f ζf Ф0 Column size t u0 

   m sec  

5π 0.4 450 0.4 x 0.4 4.0 0.02 
 

At each time point, a component limit state is 
described as an event that the average inter-story 
drift ratio evaluated at nodes of interest in Figure 
4(b) exceeds the given threshold values as: 

T T
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where h is the story height (10m). Figure 5 shows 
that sensitivities calculated by the finite difference 
method and the adjoint method match well. The 
computational cost of the adjoint sensitivity 
method is much less than the finite difference 
method as shown in Figure 6. 
 

 
Figure 5: Normalized sensitivities by different 
approaches. (a) Finite difference method (FDM); (b) 
Adjoint method (AJM). 

7.2. Example 1: Probabilistic constraint on first 
passage probability 

The proposed topology optimization framework 
was applied to a multi-story building for 
identifying optimal bracing system under 
stochastic excitations. The design domain for 
topology optimization is shown in Figure 7(a). 
Kanai-Tajimi parameters in Section 7.1 are used 
except Ф0=30. The ground acceleration duration 
and a time step are 4.0s and 0.1s, respectively. A 
column size is 0.5m 0.5m and a thread hold of 
inter-story drift ratio u0 is 0.02. A filtering radius 

r is 0.25m and a prescribed density 0.7 is applied 
uniformly throughout the mesh. The topology 
optimization problem can be formulated as: 
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Figure 6: Normalized computational time. 

 

 
Figure 7: Topology optimization solutions to the 
multi-story building example. (a) design domain; (b) 
βt

sys =3.0, Pt
sys= 0.13%;  (c) βt

sys=1.5, Pt
sys= 6.68%. 

 
Topology optimization results corresponding to 
different target reliability indices are shown in 
Figure 7(b)-(c). As the target failure probability 
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decreases, the converged topologies become 
significantly different especially at the lower 
level. In particular, the intersection point of the 
bracing at the lower level moves up vertically and 
the thickness of the bracing increases at the lower 
level but remains relatively stable at higher levels. 
The convergence histories of the objective 
function and the system failure probability are 
shown in Figure 8. 
 

 
Figure 8: Convergence history. (a) volume; (b) 
reliability index; (c) failure probability. 

 
Figure 9: Dynamic response comparison of the 
problem shown in Fig. 7(b): (a) Input ground motion 
acceleration; (b) corresponding dynamic responses of 
the initial design and the optimal design. 

 
Figure 9 shows time histories of inter-story 

drift ratios of the initial design and the optimal 
design for an input process randomly generated 
from the Kanai-Tajimi filter model. The 
optimized system shows improvement in dynamic 

performance even though only 58% of the initial 
volume is used. 

7.3. Example 2: Multiple probabilistic 
constraints on first passage probability 

In this example, two probabilistic constraints 
given in terms of drift ratios are considered in Eq. 
(13) with the same modelling and optimization 
parameters in Section 7.2. The two limit-state 
functions of drift ratios are defined between the 
ground and the 2nd level; the 2nd and the 3rd level, 
respectively. E ach limit state function is 
considered a component failure event. Thus, a 
topology optimization framework with two 
component probabilistic constraints is written as: 
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In addition, system failure probability constraint 
combining those two constraints in Eq.(21) under 
statistical dependence can be considered in 
optimization as:   
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Topology optimization results and convergence 
histories are shown in Figure 10 and Figure 11. 
Final topologies obtained from the optimization 
problem with two component probabilistic 
constraints in Eq. (21) and that with the system 
constraint in Eq. (22) show similar material 
distributions. However, significantly different 
topologies from two approaches may be obtained 
under different optimization and modelling 
parameters. The optimal volume from the system 
probabilistic constraint is slightly higher than the 
one from component probabilistic constraints.  
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Figure 10: Topology optimization solutions to the 
multi-story building example (βt

sys =3.0, Pt
sys= 

0.13%): (a) design domain; (b) system constraint; (c) 
component constraints. 

 
Figure 11: Convergence history. (a) volume; (b) 
reliability indices of component constraints; (c) 
reliability index of system constraint. 

8. CONCLUSIONS 
In this paper, a new topology optimization 
framework is proposed for structures under 
stochastic excitations under constraints on first-
passage probability. The proposed topology 
optimization frame work provides an efficient 
way for structural engineers to obtain optimal 
design solutions satisfying probabilistic 
constraints on stochastic response in the 
conceptual design process of structural systems 
subject to stochastic excitations. 
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