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ABSTRACT: This paper presents an efficient numerical method for approximating the parameter sen-
sitivity of the failure probability with respect to design parameters. The method is computationally in-
expensive and the obtained approximations are more accurate than the approximations based on first
order reliability method (FORM). The method is particularly suitable for applications in reliability-based
design optimization (RBDO), including reliability-based topology optimization (RBTO).

1. INTRODUCTION
Reliability analysis has been considered as a part
of the standard design procedure to help engi-
neers make safe and reliable designs subject to
the inevitable randomness and uncertainties in na-
ture. On the other hand, design optimization au-
tomates the design process and guides the deci-
sion makers to find efficient use of resources and
maximize performance. Therefore, incorporating
reliability-based design within the framework of
design optimization becomes a natural goal for en-
gineers and researchers. Reliability-based design
optimization (RBDO) is often formulated as op-
timization with probabilistic constraint(s). There
are a variety of approaches for solving such kind
of problems in the literature using either gradient-
free or gradient-based algorithms. For problems
that can be described with differentiable functions,
gradient-based routine is preferable due to its com-
putational efficiency.

The challenge of using gradient-based optimiza-
tion algorithm for RBDO is the evaluation of fail-
ure probability and its sensitivity with respect to de-

sign parameters, which affects the limit state func-
tion(s). Although numerical estimation of fail-
ure probability has been studied extensively, the
literature on the numerical approximation of the
parameter sensitivity is limited. Some analytical
work can be found around the year of 1990. Ho-
henbichler and Rackwitz (1986) developed the pa-
rameter sensitivity of the estimated failure prob-
ability obtained by first order reliability method
(FORM). The FORM-based expression is compu-
tationally efficient to evaluate, thus it is widely used
in RBDO, but we should be careful when using this
expression since the approximation can be quite in-
accurate for cases where the limit state function is
nonlinear. Breitung (1991) and Uryasev (1994) de-
rived the analytical expression for the parameter
sensitivity of the exact failure probability. How-
ever, such expression is in integral form and there-
fore, precise numerical evaluation of the integral
is not likely to be computationally tractable. Ap-
proximations of the sensitivity is needed to perform
RBDO.

There are two major formulations for RBDO
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in the literature: the Reliability Index Approach
(RIA), which explicitly uses the gradient of prob-
abilistic constraint(s) in the optimization; and the
Performance Measure Approach (PMA), which
constructs target performance function(s) as equiv-
alent deterministic constraint(s) by the inverse re-
liability analysis, thus the gradient of probabilistic
constraint(s) is involved implicitly (Tu et al. 2001;
Cheng et al. 2006). Currently, the two approaches
are mostly implemented in conjunction with FORM
and FORM-based expression for the sensitivity of
failure probability. Although FORM-based approx-
imations for the sensitivity of the failure probability
are not directly used in the PMA, the PMA essen-
tially shares the same approximations of the sen-
sitivity with RIA, if the probabilistic constraint(s)
is(are) active when the optimization converges (Tu
et al. 2001). Another type of gradient-based ap-
proach employs the sample average approximation
(SAA) where the failure probability and its sen-
sitivity calculation are both carried out based on
Monte Carlo simulations (MCS) (Royset and Polak
2004). Although MCS-based can yield accurate es-
timations, they have very high computational costs.

The main purpose of this work is to provide
an alternative method that is more accurate than
a FORM-based approximation and require signif-
icantly less computational cost than MCS-based
methods. The proposed method called Segmen-
tal Multi-point Linearization (SML) is developed
to estimate the sensitivity of the failure probabil-
ity with respect to design parameters in component
reliability analysis. The method can be directly em-
ployed in the framework of RIA, enabling gradient-
based algorithms to be used in RBDO.

2. FORM-BASED APPROACHES FOR
RBDO, REVISITED

In this section, the two most used approaches of
RBDO, namely FORM-based RIA and PMA are
revisited via the Karush-Kuhn-Tucker (KKT) opti-
mality conditions, in order to demonstrate the im-
portance of the accuracy of sensitivity approxima-
tion. Consider a generic formulation of RBDO

problems with one reliability component:

min
x

f (x)

s.t. Pf =
∫

G(u,x)<0
ϕn(u)du 6 Pt

f (1)

h(x)6 0

where Pt
f is the target failure probability; x is the

vector of design variables; u is the vector of ran-
dom variables that are transformed from the origi-
nal distribution space to standard normal space by
a probability preserving transformation; G(u,x) is
the limit state function in standard normal random
space; ϕn(·) is the multi-variate standard normal
PDF for n random variables; and h(x) is a set of
deterministic constraints such as lower and upper
bounds of x. Equivalently, the constraint on failure
probability can be expressed in terms of the gener-
alized reliability index β = Φ−1(1−Pf ).

Mathematically, the KKT optimality conditions
of the optimization model as described in (1) would
become:

(1) Stationary condition:
∇x f +λ∇xPf +∑γi∇xhi = 0

(2) Primal feasibility:
Pf −Pt

f 6 0, hi 6 0 ∀i

(3) Dual feasibility:
λ > 0, γi > 0 ∀i

(4) Complementary slackness:
λ (Pf −Pt

f ) = 0, γihi = 0 ∀i

where λ and γi’s are the Lagrange multipliers. The
KKT conditions are necessary for the solution to be
optimal. In RBDO, for most cases both the value
and sensitivity of the probabilistic constraint can
not be evaluated exactly, thus the KKT conditions
are only approximately satisfied at the optimum of a
numerical solution. The more accurate the approx-
imations are, the closer the solution is to the real
optimum.

In the RIA formulation, the reliability constraint
is considered directly. The sensitivity of failure
probability with respect to design parameters is
used to find the search direction in optimization.
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The FORM-based expression by Hohenbichler and
Rackwitz (1986) is given as:

∇xPf ≈ ∇xPf ,1 =−
ϕ(β1)

‖∇uG∗‖
∇xG∗ (2)

where G∗ denotes the limit state function evalu-
ated at the design point u∗ as defined in Eq. (3),
G(u∗,x), with current design x.

u∗ = argmin
u
{‖u‖ | G(u,x) = 0} (3)

Thus the KKT stationary condition becomes:

∇x f +λ
RIA
[
− ϕ(β )

‖∇uG∗‖
∇xG∗

]
+∑γi∇xhi = 0

(4)
This expression is an approximation of the KKT
stationary condition, the error of which can be quite
large when the limit state function G is nonlinear.

The FORM-based PMA formulation applies an
inverse FORM reliability analysis. The approach
defines a target performance function Gt(x) =
G(x,ut) and incorporates it as a deterministic con-
straint, where ut is an estimation of the design point
of the optimal design and is updated at each itera-
tion as

ut = argmin
u
{G(u,x) | ‖u‖= β

t = Φ
−1(1−Pt

f )}
(5)

The KKT stationary condition of the PMA is:

∇x f +λ
PMA(−∇xGt)+∑γi∇xhi = 0 (6)

Equations (4) and (6) become the same if the
probabilistic constraint is active and the design
point is unique, that is, ut = u∗ and ∇xGt = ∇xG∗

(Tu et al. 2001). Given that the probability of failure
are both approximated by FORM, the KKT condi-
tions of RIA and PMA become identical. Hence,
although PMA tends to be more robust than RIA, it
does not improve the numerical result of the opti-
mization.

Many algorithms, which are developed based on
RIA and PMA incorporate SORM, MCS or other

reliability methods to heuristically improve the ap-
proximation of Pf (i.e. the primal feasibility con-
dition) (Royset et al. 2006; Nguyen et al. 2011),
but little attention has been paid to the accuracy
of the sensitivity which can be more influential in
the search of the optimal solution. Furthermore,
the error in the sensitivity is cumulative because it
determines the search direction at each iteration of
gradient-based optimization schemes.

3. THE METHOD OF SEGMENTAL
MULTI-POINT LINEARIZATION

It can be found in Breitung (1991) and Uryasev
(1994) that the analytical expression of the sensi-
tivity of failure probability with respect to design
parameters has the following form:

∇xPf =−
∫

S

ϕn(u)
‖∇uG‖

∇xGdS (7)

where S denotes the limit state surface. In most
cases, the surface integral in Eq. (7) is not nu-
merically tractable to compute since it is a multi-
dimensional surface integral. We propose an effi-
cient numerical method for approximation of this
surface integral. The method is developed based on
local linearization of the limit state surface.

If the surface S is composed of a set of pieces of
hyperplanes described by linear functions, Eq. (7)
can be analytically simplified to probability evalua-
tion problems. The idea of the proposed method is
to fit the limit state surface with plane segments in
a piecewise manner. Then we can perform the inte-
gration on each hyperplane segment without much
effort and compute their summation as the approx-
imation. Denote the limit state surface as S and the
piecewise linear fitting as S̄ where each of the plane
segment is denoted as S̄i. For each segment S̄i,
which is assumed to be described by a linear func-
tion Ḡi, the gradients ∇uḠi and ∇xḠi will be con-
stant vectors on the corresponding surface. Thus,
they can be taken out of the integral, which leads to
the expression:

∇xPf ,i =−
1

‖∇uḠi‖
∇xḠi

∫
S̄i

ϕn(u)dS̄i (8)
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Because all fitting segments are pieces of hyper-
planes, each hyperplane segment then has piece-
wise linear boundaries, thus its geometry appears as
polygons. To further simplify Eq. (8), we can then
rotate the coordinates of the standard normal space
such that the positive direction of the first axis is
along the opposite direction of the normal direction
of the plane. As the function of the hyperplane is
linear, the normal direction of the hyperplane is in
the same direction of ∇uḠ as shown in Fig. 1. Due
to the rotational symmetry of the standard normal
space, we can rewrite Eq. (8) by separating coordi-
nate u′1 from the integral, i.e.:

∇xPf ,i =−
ϕ(bi)

‖∇uḠi‖
∇xḠi

∫
S̄i

ϕn−1(û′)dû′ (9)

1u

 1u’û

û’

O

iG∇u iS

ib

A

B

A

B

 1u’
û’

Figure 1: Illustration of the calculation of Eq. (7) on a
hyperplane segment.

where bi is the distance from the origin to the plane,
and û = [u′2,u

′
3, ...,u

′
n]

T. The surface integral now
is simplified to the volume integral of probability.
Assuming we have a proper piecewise linear fitting
of the limit state surface where each piece of plane
segment is representative of a portion of the limit
state surface, we should be able to construct an ap-
proximation of ∇xPf based on Eq. (9) that has the
following form of weighted sum:

∇xPf ≈
p

∑
i=1

Wi∇xḠi (10)

where

Wi =−
ϕ(bi)

‖∇uḠi‖

∫
S̄i

ϕn−1(û′)dû′. (11)

In particular, if we use only one hyperplane to
fit the limit state surface which is defined by taking
a tangent expansion at the design point, then from
Eqs. (10) and (9) we can obtain Eq. (2), indicating
that FORM-based approximation is a special case
of the proposed method. It is important to notice
that, due to the exponential decay of the probabil-
ity density in the standard normal space, we only
need to focus on the region that is close to the ori-
gin where the probability density is high. Accord-
ing to Eq. (7), the integrand becomes too small to
make an impact on the overall integration when it
is evaluated far from the origin. In addition, as we
increase the number of fitting plane segments, the
accuracy of the approximation can be improved.

A proper fitting scheme is essential to the ap-
proximation. In general, each plane segment can
be completely defined by a fitting point, the normal
direction of the plane, and the boundary of the seg-
ment. A straightforward thought is to let Ḡi be the
first order expansion of the limit state function G
at the corresponding fitting point ui, which ensures
first order accuracy. Therefore, ∇xḠi = ∇xG(ui,x)
and ∇uḠi = ∇uG(ui,x), where x is the current de-
sign. This leads to a tangent fitting scheme. If the
locally most central points are selected to be the fit-
ting points, the tangent fitting has the same approx-
imation of the limit state surface as the multi-point
FORM (Ditlevsen and Madsen 2007), but here the
approximation of the limit state surface is primarily
used to calculate the sensitivity of failure probabil-
ity rather than the failure probability itself.

However, in high dimensional random space, the
tangent fitting scheme makes it quite difficult to
track the boundaries of the planes segments. More-
over, it can be affected a lot by possible perturbed
local information of the limit state function. To
overcome these challenges, we can project the gra-
dient of the limit state function at a fitting point in
the random space to a prescribed direction and de-
fine the hyperplane segment by the projected gra-
dient. Since the design variables x are not in the
random space, the value of ∇xḠi will remain as the
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first order expansion of G(u,x). That is, we take
∇uḠi = (nT∇uG(ui,x))n where n is the prescribed
normal direction for the plane segment, and still
keep ∇xḠi = ∇xG(ui,x). Hence, this compromise
would only affect the computation of the weights.
However, if the angle between the gradient vec-
tor ∇uG(ui,x)) and normal direction n is large, the
computed weight can be erroneous. For example, in
an extreme case, if the angle becomes 90◦, the cor-
responding weight will be infinitely large. There
are many alternative ways to specify the normals,
and different choice of the normals leads to differ-
ent fitting schemes.

An orthogonal fitting (OF) scheme is developed
for a simple and quick construct of the approxima-
tion. The basic idea is to fit the limit state surface
with plane segments that have normals along an or-
thogonal basis of the space. The general procedure
is described as follows:

(1) Select a reference point on the limit state sur-
face;

(2) Rotate the coordinates such that the reference
point lies on the positive part of the first axis of
the new coordinates;

(3) Search for intersection points of the new axes
and the limit state surface within radius r =
k1b1 from the origin in both positive and neg-
ative directions, where k1 is a user defined pa-
rameter and b1 is distance from the reference
point to the origin;

(4) Define plane segment i by its fitting point with
the normal ni being the direction of the axis on
which the fitting point lies;

(5) For the half axis ±e′j, that has no intersection
point within the search region, a plane segment
with normal along e′1 direction is fitted at the
off-axis point u j (denote as u j+n for −e′j) with
coordinate ±k2b1e′j +b je′1.

The values for k1 and k2 are based on heuris-
tic rules. The parameter k1 determines the size
of the search region for the intersection point,
and it is suggested to have the value such that

i n+u

(u ,x)i+n∇uG

i

G(u,x) = 0 

u

Search region

2 1k b

2 1ηk b

i∇uG(u ,x)

1∇uG(u ,x)

iu’

1u’

1u

O

1b

ie’

1-e’1-e’

1 1k b

Figure 2: Illustration of orthogonal fitting SML.

ϕ(k1b1)/ϕ(b1) = ε where ε is a small value (e.g.
ε = 0.1) to ensure that the search region is large
enough while the intersection fitting points are also
close to the origin. On the other hand, k2 is to
ensure that the off-axis fitting points stay not too
far from the origin. It is generally good to set
k2 be the minimum of 1 and 3/b1, which is the
same rule as in the point-fitting SORM proposed by
Der Kiureghian et al. (1987) except that the refer-
ence point is not necessarily the design point. In
addition, as shown in Fig. 2, a partition coeffi-
cient η is used to determine the boundaries of the
plane segments determined by the reference point
and off-axis fitting points. In practice, η can take
the value between 0.5 and 1.0.

The choice of the reference point also influences
the accuracy of the SML approximation obtained
by this fitting scheme. Intuitively, the reference
point should be close to the origin. The design point
is a good candidate for the reference point, how-
ever, in some particular cases, other choices of the
reference point would actually make the approxi-
mation more accurate than using the design point
as the reference point.

In addition, it is worth noticing that the method
also provides an approximation of Pf associatively.
Based on the existing approximation of the limit
state surface, computing the approximate failure
probability is a very light task. The output is ob-
served to be generally better than FORM. Thus,
in an implementation of RBDO, one can get the
approximation of the gradient of failure probabil-
ity and the failure probability itself using the seg-

5



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

mental multi-point linearization method. One may
also couple other reliability methods, for exam-
ple SORM, point-fitting SORM and MCS with the
SML method for approximation of the failure prob-
ability, and only use SML for approximating the
gradient of failure probability.

4. NUMERICAL EXAMPLES
4.1. Preliminary Investigation
This example is to show the accuracy of the estima-
tion obtained by the proposed method. We consider
a typical quadratic limit state function defined with
original random variables v:

g(v,x) = x3− v3− x2v2
2− x1v2

1 (12)

where x1, x2 and x3 are the design parameters. We
assume that the random variables have the same
marginal standard normal distribution. In addition,
v2 and v3 are correlated with a correlation coeffi-
cient of 0.2 while the other random variables are
taken to be statistically independent. We will com-
pare the estimations of sensitivity by (1) the pro-
posed method, (2) FORM-based expression (i.e.
Eq. 2) and (3) the MCS-based approximation pro-
posed by Royset and Polak (2004). We use the
maximum number of simulations as suggested in
Royset and Polak (2004), which equals 25000. We
can expect that the MCS-based approximations are
very close to the actual values. In addition, the cor-
responding approximations of the reliability index
by the three methods are compared as well. The
design point is selected to be the reference point in
the SML method using the suggested OF scheme.

Because the sensitivity of failure probability with
respect to design parameters is essentially a gradi-
ent vector, the vector direction and vector length
(L2-norm) of the approximate sensitivity are the
two factors that determine its accuracy. However,
in most optimization problems, the direction of
the gradient vector is of most interest, because the
search direction at each iteration in an optimization
process is determined by the direction of the gra-
dient and most modern gradient-based optimization
algorithms employ techniques to adaptively find the
proper step length (e.g., line search) (Ascher and
Greif 2011). We define an angle γ that measures

the relative angle between the approximations of
the gradient and the actual gradient. In the exam-
ple, the MCS-based approximation is taken as the
actual gradient, hence the angle γ for MCS-based
method is assumed to be 0. The magnitude of
the angle γ provides the information about the er-
ror in the vector direction. Thus, γ is small when
the direction of an approximate gradient is accu-
rate. Given a nonlinear limit state function g with
x3 = 3.0 and x2 = 0.15, at different values of x1,
Fig. 3 shows the measures of γ for the approxima-
tions by FORM-based expression and the proposed
method. We can observe that the SML method yield
smaller error in vector direction of the approximate
gradient than the commonly-used FORM-based ap-
proximation, i.e. Eq. (2). In addition, Fig. 4
shows the approximations of reliability index β by
the three methods. Overall, although the accuracy
of the approximations by the proposed method is
not as high as MCS-based method, it is much bet-
ter than traditional FORM/FORM-based approxi-
mation. In terms of the computational cost, the
SML method is just a little bit larger than the eval-
uation of FORM/FORM-based method, but much
less than MCS.
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FORM(Eq. 2)
SML−OF
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Figure 3: The angle γ between the approximate gradi-
ents and the actual gradient of ∇xPf .

4.2. Application to RBTO
Among various RBDO problems, the reliability-
based topology optimization is one of the most
challenging task. We conduct the RBTO on a
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Figure 4: Approximations of reliability index β .

ground structure based elastic formulation where
we are trying to find the structure with minimal vol-
ume by sizing a large number of potential mem-
bers (Christensen and Klarbring 2008; Zegard and
Paulino 2014). The final topology can be used to
indicate the optimal structural layout. The limit
state function appears as a threshold on the total
compliance, which is reciprocal to the overall stiff-
ness of the structure. Due to the nature of topology
optimization, the structural layout indicated by the
solution can be highly affected by the accuracy of
sensitivity approximation. On the other hand, the
evaluation of the gradient of compliance, which is
necessary for the computation of the gradient of the
failure probability, is quite computationally expen-
sive since it requires FE analysis, thus MCS-based
approximation is not applicable.

Consider a layout design of a crane in 2D. The
design domain (ground structure) and boundary
conditions of the problem is shown in Fig. 5. The
statistics of the random variables are shown in Ta-
ble. 1. The correlations coefficients (C.C.) be-
tween loads are included to make the design con-
dition more practical. Uncertainty in material prop-
erty (i.e. Young’s Modulus) is also considered and
modeled as a random variable with lognormal dis-
tribution since negative value of E is not physically
admissible.

The example is performed using the approxi-
mations of Pf and its sensitivity by FORM-based
method and the proposed SML method separately.

Figure 5: Design domain, initial ground structure and
boundary conditions.

Table 1: Statistics of Random Variables

Variable Distribution µ σ C.C.
V1 Normal -5 1

0.2
V2 Normal -3 2
H1 Normal 0 3

0.3
H2 Normal 0 3
E Lognormal 100 10 0.0

Again, the design point is the reference point in
SML. The target reliability index is 3.0 for both
cases. The obtained topologies are shown in Fig.
6a and Fig. 6b. A simple cutoff strategy is adopted
to obtain the members shown in the final topology
(Zegard and Paulino 2014). The local stability and
equilibrium in the plotted layouts may not be sat-
isfied, which is inherent from this kind of topology
optimization approach. A crude MCS is performed
with c.o.v = 5% to check the actual reliability of the
structure. We can observe that not only the optimal
volumes and actual reliability indices are different
for the two cases, but the structural layout is also
different. The conclusion is that the RBTO based
on the approximations by SML method yields a
structural layout that possesses more efficient use of
material. In topology optimization, the final topol-
ogy usually highly depends on the values of sen-
sitivities. Thus comparing to traditional FORM-
based approach, the SML-based approach is more
likely to produce result that is closer to the exact
solution of a RBTO problem since the sensitivity
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approximation is more accurate.

(a)

(b)

Figure 6: Optimal topology by RBTO using (a) FORM-
based method and (b) SML method. (a) Volume = 650,
βMCS = 2.48; (b) Volume = 696, βMCS = 2.91.
Cuto f f = 0.01.

5. CONCLUSIONS
The proposed method can be used as a general tool
for reliability analysis, and it is suitable for a va-
riety of RBDO problems especially when the ac-
curacy of the parameter sensitivity is essential for
convergence to an optimal solution (e.g., RBTO).
The benefit of low computational cost enables the
method to be applied to practical engineering prob-
lems. The theory behind the method is general and
other fitting schemes can be developed to better ap-
proximate the sensitivity of the failure probability
with respect to design parameters.
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