
Highly efficient nonlinear structural analysis of
origami assemblages using the MERLIN2 software

Ke Liu, Glaucio H. Paulino

Abstract: The bar-and-hinge model is a highly efficient structural analysis ap-
proach for origami systems based on reduced-order modeling, which predicts their
global mechanical behaviour surprisingly well. We implemented this method in
MERLIN, a Matlab software for structural analysis of origami assemblages. Here
we present MERLIN2, an extended version of the software, offering several new
capabilities, such as implementation of a new triangulation scheme that allows
for consideration of polygonal panels, convenient import/export capabilities, and
displacement loading. The Matlab code and associated implementation are ex-
plained in detail, and a numerical example is presented to illustrate the MERLIN2
capabilities.

1 Introduction
Emerging concepts associated to origami engineering [Schenk and Guest 13, Fil-
ipov et al. 15,Lang et al. 15] pose a challenge on our understanding of origami me-
chanics. In practical applications, engineers need to know how the origami struc-
tural system interacts with environment and responds to human control. Although
origami folding is often idealized as rigid origami, concerning only geometry and
kinematics; in practice, the folding process exhibits complicated behaviour, beyond
simple folding, which cannot be explained by geometry alone, owing to the flexi-
bility of panels. Modeling of origami structures by means of shell finite-elements
(FE) provides high-resolution analysis, but also requires a time-consuming cycle
for both modeling and computing, leading to unnecessary cost and effort especially
in the preliminary design stage [Ramm and Wall 04, Ota et al. 16]. Thus, there is
a need for a simple and effective analysis approach that fills the gap between the
overly simplified rigid origami simulations and the detailed and expensive full-
scale FE analyses, while shedding light on the essence of origami mechanics. This
leads us to the bar-and-hinge approach [Filipov et al. 17, Liu and Paulino 17].

The essence of the bar-and-hinge approach [Schenk and Guest 11,Filipov et al. 17]
is the simplification of the kinematics of origami assemblages, whose rationale lies
with the fact that admissible deformations of origami structures are strongly con-
fined by geometry. Deformed thin panels in origami are likely to display concen-
trated bending curvatures along diagonals due to the singular ridge effect [Wit-
ten 07]. The bar-and-hinge model represents the kinematic space of an origami

LIU, PAULINO

or

N4B5 N5B8

or

Force Load

Displacement
Load

F

D

orand

Load-Displacement

Energy Distribu�on
-bending
-folding
-streatching

OBJ

>>NODE=[...]
>>PANEL={...}
>>...

OBJ

Figure 1: A typical workflow of MERLIN2.

structure with a bar (or truss) frame associated with constrained out-of-plane rota-
tions, which successfully captures three fundamental deformation modes in origami:
(in-plane) stretching, (out-of-plane) crease folding, and (out-of-plane) panel bend-
ing. Bars are placed along straight fold lines, and across panels for in-plane stiff-
ness. The rotational hinges are along bars connecting panels to model folding of
creases, and along bars across panels to model bending of panels. With only a few
degrees of freedom, the reduced order bar-and-hinge model predicts surprisingly
well the overall mechanical behaviour of origami structures.

Recently, we developed a nonlinear formulation for origami structural analy-
sis using bar-and-hinge models to enable large deformation. We implemented the
formulation in the software MERLIN, a dedicated open-source Matlab code for
structural analysis of origami assemblages, which simulates the entire deforma-
tion process of an origami structure subject to prescribed applied forces. Here we
present MERLIN2, an extended version of MERLIN with several new capabilities,
such as implementation of a new N5B8 super-element [Filipov et al. 17], consider-
ation of polygonal panels, import/export capabilities with wavefront OBJ format,
and displacement loading.

2 Nonlinear elastic formulation for a general bar-and-hinge model
Here, we briefly describe the nonlinear elastic formulation of the bar-and-hinge
method [Liu and Paulino 17]. We consider a discretized origami assemblage as an
elastic system. The total potential energy (Π) of the system has contributions from
the bars (US), bending hinges (UB) and folding hinges (UF). The total potential
energy of the system can be written as:

Π(u) =US(u)+UB(u)+UF(u)− fT u, (1)

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

where f is the externally applied load, and all the other energy terms are nonlinear
functions of the nodal displacements u. Equilibrium is obtained when Π is local
stationary, and therefore the equilibrium equation and the finite element matrices
can be derived as [Filipov et al. 17, Liu and Paulino 17]:

T(u) = TS(u)+TB(u)+TF(u)− f = 0, (2)
K(u) = KS(u)+KB(u)+KF(u), (3)

where:

TS(u) =
∂US(u)

∂u
, TB(u) =

∂UB(u)
∂u

, TF(u) =
∂UF(u)

∂u
, (4)

and

KS(u) =
∂ 2US(u)

∂u2 , KB(u) =
∂ 2UB(u)

∂u2 , KF(u) =
∂ 2UF(u)

∂u2 . (5)

The system equilibrium and tangent stiffness are summations of elemental contri-
butions, which is defined through an elastic constitutive model for each element in
the system.

2.1 Bar elements
For each bar element, we define its stored energy as:

U i
S = ALW (Exx) (6)

where A denotes the member area, L denotes the member length, and W is the
energy density as a function of the one dimensional Green-Lagrange strain Exx.
The energy conjugate 2nd Piola-Kirchhoff (PK) stress and the tangent modulus are
defined as

Sxx =
∂W
∂Exx

, and C =
∂Sxx

∂Exx
. (7)

Thus for a single bar element, its contributions to the system equilibrium and tan-
gent stiffness become

Ti
S = ALSxx

∂Exx

∂u
, and Ki

S = AL
(

C
∂Exx

∂u
⊗ ∂Exx

∂u
+Sxx

∂ 2Exx

∂u2

)
. (8)

Given that the Green-Lagrange strain is a function of the nodal displacements
[Wriggers 08, Liu and Paulino 17], we are able to complete the components con-
tributed by a single bar element.

2.2 Special rotational spring elements
Folding and bending deformations are both represented by rotational springs in a
bar-and-hinge model (see [Liu and Paulino 17]). Conceptually, they are kinemat-
ically the same, but may have different constitutive behaviors. Examples can be
found in Fig. 2 and 3. A rotational spring element consists of 4 nodes, 5 bars,
and 1 dihedral angle between two triangles. Borrowing ideas from standard non-
linear elasticity, we assume a stored energy function ψ for each rotational spring to
describe its constitutive behavior, which is a function of the rotation angle (θ):

UB = ψB(θ), or UF = ψF(θ), (9)

LIU, PAULINO

where ψB is the stored energy function of a bending hinge, while ψF is the stored
energy function of a folding hinge. Taking a bending hinge as example, we can
define the resistant moment M and tangent rotational modulus k as:

M =
dψB(θ)

dθ
, k =

dM
dθ

. (10)

We define the rotation angle θ ∈ [0,2π) using absolute measurements such that
θ = π when the panel is flat. We call θ0 the neutral angle of a rotational spring
if M(θ0) = 0. Following this convention, a linear elastic rotational spring can be
defined by:

ψB(θ) =
1
2

LK(θ −θ0)
2, M = LK(θ −θ0), k = LK, (11)

where L denotes the undeformed length of the rotational hinge and K is the rota-
tional modulus per unit length along the hinge. To differentiate bending and folding
hinges, we can assign different values for K.

Thus for a bending rotational spring element, its contributions to the system
equilibrium and tangent stiffness become

Ti
B = M

dθ

du
, and Ki

B = k
dθ

du
⊗ dθ

du
+M

d2θ

du2 . (12)

The same formulation also applies to folding rotational spring elements. Given that
the the rotation angle is completely defined from the displacements and original
coordinates of the 4 associated nodes, we are able to complete the components
contributed by a single rotational spring element which either represents a bending
hinge or folding hinge.

3 Discretization schemes
Bar-and-hinge approaches are mesh-dependent by design, and thus it is crucial
to choose a representative triangulation scheme for origami structures. Currently,
there are two types of triangulation schemes that differ by how they discretized
quadrilateral panels. One is the N4B5 scheme, which simply divide a quadrilateral
panel by one of its diagonals, discretizing it into two triangles. The other is the
N5B8 scheme, which adds an extra interior node within each quadrilateral panel,
known as a Steiner point in computational geometry [Bern and Eppstein 95], and
divide it into four triangles. Triangular panels are not further discretized by both
schemes. In this section, we review the basic concepts of these two schemes and
generalize them to the triangulation of convex polygonal origami panels, as non-
convex panels rarely appear in origami patterns.

3.1 The N4B5 scheme and its generalization to polygonal panels
The N4B5 discretization scheme is most commonly adopted for reduced-order
modeling of origami structures with quadrilateral panels [Schenk and Guest 13,Fil-
ipov et al. 15], which divides each quadrilateral panel into two triangles by its
shorter diagonal, as demonstrated in Fig. 2(a). If we assume that the panel bending

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

Free joints
Bars

Folding hinges
Bending hinges

(a) (b)

X1

X2

X3

X4

X5

X6

0 24 6036(mm)

0

10

30

40

Figure 2: (a) Illustration of a N4B5 model. (b) A hexagonal origami panel triangu-
lated by the generalized N4B5 scheme.

stiffness is the same per unit length along both diagonals, then shorter diagonals
are easier to bend and thus require lower energy.

To extend this idea to the discretization of polygonal panels, we progressively
bisect a polygon by the shortest diagonals until the original polygon is triangulated,
which can be efficiently achieved using a divide and conquer algorithm [Heath 97].
In the example shown in Fig. 2(b), we first bisect hexagon 1-2-3-4-5-6 by its short-
est diagonal 1-5 (could also be 2-4), dividing the hexagon into one triangle and
one pentagon. Then we divide the pentagon 1-2-3-4-5 by its shortest diagonal 2-4.
Finally, we dived the quadrilateral 1-2-4-5 by its shortest diagonal 2-5 to finish the
triangulation.

The major advantage of the generalized N4B5 scheme is its simplicity. For
certain origami patterns, such as the Miura-ori with only parallelogram panels, its
accuracy is also satisfactory [Liu and Paulino 17]. However, ambiguity arises when
multiple diagonals of a panel are of the same length.

3.2 The N5B8 scheme and its generalization to polygonal panels

As illustrated in Fig. 3(a), the N5B8 triangulation scheme adds a Steiner point at
the intersection of the two diagonals of a quadrilateral panel, dividing it into four
triangles, hence there are 5 nodes and 8 bars belong to each panel. The N5B8
scheme allows the discrete model to capture more realistic doubly curved out-
of-plane deformations and isotropic in-plane behaviors of thin panels, potentially
yielding higher resolution than the N4B5 scheme [Filipov et al. 17].

To extend the N5B8 discretization scheme to a polygon, a Steiner point that
can simultaneously locate on all of the diagonals would be ideal. However, it is
impossible for general polygonal panels to have such a Steiner point as specific
quadrilaterals, as demonstrated in Fig. 3(b). Here we propose to pursue a point that
has the shortest overall (weighted) distance to all diagonals of a convex polygon by
solving the following optimization problem:

X∗ = argmin
X

∑
| j−i|>1

hi j

di j
, (13)

LIU, PAULINO

Free joints
Bars

Folding hinges
Bending hinges

(a) (b)

(c)

X1

X*

X2

hijdij

X3

X4

X5

X6

X*

Xj

Xi

(d)

Figure 3: (a) Illustration of a N5B8 model. (b) All diagonals of a hexagonal
origami panel. (c) Illustration for di j and hi j . (d) Triangulation by the generalized
N4B5 scheme.

where

di j = ‖X i−X j‖, and hi j =
‖(X i−X∗)× (X j−X∗)‖

di j
. (14)

Geometrically, di j is the length of the diagonal i- j, and hi j is the distance from the
Steiner point (i.e. X∗) to the diagonal i- j (see Fig. 3(c)). The measure of (hi j/di j)
is a weighted distance that favours shorter diagonals because they are more likely to
bend than longer ones, judged by the scaled stiffness of bending ridges [Witten 07,
Filipov et al. 17]. Notice that, for quadrilateral panels, the optimal solution for
X∗ by formula (13) is simply the intersection point of the two diagonals, and thus
the extended scheme is consistent with the previous N5B8 model. In the example
shown in Fig. 3(d), the optimal Steiner point for the hexagon (same as in Fig. 2(b))
is at the common intersection of three diagonals.

To recover the in-plane Poisson’s effect of origami panels, the original N5B8
model [Filipov et al. 17] provides formulas for assigning bar areas based on rect-
angular panels. However, we have not yet derived formula for polygonal and tri-
angular panels. Realizing that it is difficult to account for the Poisson effect for
those panels, we propose to assign the bar areas such that they preserves the (linear
elastic) strain energy of a continuous panel (of any shape) under uniform in-plane
dilation assuming plane stress state. For a polygonal panel of thickness t and poly-
gon area S, we assign a uniform area A for all bars belonging to this panel by:

A =
2St

(1−ν)∑i Li
, (15)

where ∑i Li is the total length of bars, and ν denotes the Poisson’s ratio. When ap-
plied to rectangular panels, the results are similar to those calculated by the existing

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

formulas [Filipov et al. 17], which is satisfactory as an estimation tool.

3.3 Preliminary study on discretization of polygonal origami panels
Using the same hexagonal panel shown in Fig. 2(b) and Fig. 3(d) as an example,
we apply load on it and compare the performance of two bar-and-hinge models
triangulated by the generalized N4B5 scheme and N5B8 scheme. The applied load
generates a torque on the polygonal panel (see Fig. 4(b)). Photograph of a twisted
polygonal panel reveals that the surface (mean) curvature concentrates near a long
diagonal, and there are two curved ridges in slight bending that spans two short di-
agonals, as illustrated in Fig. 4(a). We found that the generalized N5B8 model pro-
duces deformation that is closer to the physical model than the generalized N4B5
model. The deformation modes of the two discretized models are different, and the
generalized N4B5 model is stiffer, as demonstrated in Fig. 4(c). We use the actual
material properties of the Mylar sheet from which the polygon was made, i.e. mod-
ulus of elasticity E = 5GPa, Poisson’s ratio ν = 0.35, sheet thickness t = 0.127mm.
Constitutive relations for bending hinges in both models implement a super-linear
model [Filipov et al. 17]. We plan to make further comparison with experimental
and FE results to verify and better calibrate the proposed discretization schemes.

25

Δ (mm)

F

Δ

(a)

(b) (c)

F
(1

0-2
 N

)

1
2

3

4
5

6

20

15

10

5

0
2 4 6 8 10 120

Generalized N4B5

Generalized N5B8
y

x

z

Ini�al

Figure 4: (a) Photograph of a twisted hexagonal origami panel made with
0.127mm-thick Mylar sheet. Flanges are used to imitate surrounding panels. (b)
Boundary conditions: blue arrows indicate fixed degrees of freedom, and red arrow
indicates the applied force. (c) Load-displacement curve for both generalized N4B5
model and generalized N5B8 model. The insets show the deformed shapes of the
polygonal panel using two different discretization models. The blue dots and red
dots implies supporting nodes and loading node(s), respectively.

4 Matlab implementation
In this section, we explain the details of the MERLIN2 code for origami structural
analysis. We begin by describing the structure of the code, and the input/output
parameters. We also make some comments on the supporting functions in the Ap-
pendix.

LIU, PAULINO

The kernel of MERLIN2 has two parts: discretization and nonlinear analysis.
The function PrepareData discretizes the input origami model and formats nec-
essary data for the structural analysis. The function PathAnalysis solves the
nonlinear equilibrium problem defined by the formulation described in Sec. 2.

4.1 The PrepareData function
The following variables are inputs to the PrepareData function:

[truss,angles,AnalyInputOpt]=

PrepareData(Node,Panel,Supp,Load,AnalyInputOpt).

Node This is a three-column array of size Nnode×3 whose ith row represents
the coordinates of the i-th node (or vertex), where Nnode is the number of nodes in
the original origami model (before discretization).

Panel The is a Matlab cell array containing the topology information about
an origami structure. The jth entry of the cell array contains the indices of the
nodes incident on the jth panel in counter-clockwise order. Each entry can vary in
size, which allows for freedom on defining origami patterns that contain polygonal
panels with different number of vertices.

Supp This is a four-column array containing information for boundary con-
ditions of the structure. The first column holds the nodal index, and the second,
third and fourth columns give support conditions for that node in the x-, y-, and
z-direction, respectively. Value of 0 means that the node is free, and value of 1
specifies a fixed node.

Load This is structured in a similar way as Supp, except for the values in
the second to fourth columns that represent the magnitude of the x-, y-, and z-
components of the applied force or displacement.

AnalyInputOpt This is a Matlab structure array that contains miscellaneous
information needed for the analysis. The following fields can be specified:

1. ModelType - This parameter specifies the discretization scheme. The user
chooses between N4B5 and N5B8, which refer to the generalized versions as
explained in Sec. 3.

2. MaterCalib - This parameter specifies the calibration method for elemental
constitutive behaviour. The user chooses between manual and auto mode. In
the manual mode, the constitutive models involved in a bar-and-hinge model
need to be specified explicitly using the input fields: BarCM,
RotSprBend, RotSprFold, Abar, Kb, and Kf. In the auto mode, the constitu-
tive models are specified implicitly based on actual material properties using the
formulas defined in [Filipov et al. 17]. The following input fields are required:
ModElastic, Poisson, Thickness, and LScaleFactor. The auto mode
only applies to N5B8 models.

3. BarCM This is a function that defines the constitutive model for bar elements in
the following format: [Sx,Ct,W]=BarCM(Ex).
The only input is the Green-Lagrange strain Exx (Ex), and the three outputs are
the 2nd PK stress Sxx (Sx), tangent modulus C (Ct), and strain energy density W

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

(W). The default function is a hyper elastic model (@Ogden) as reported in [Liu
and Paulino 17]. To customize, one can write a separate function and pass a
function handle to this parameter.

4. RotSprBend This is a function that defines the constitutive model for bending
rotational spring elements in the following format:
[M,k,P]=RotSprBend(he,h0,Kp,L0).

The four inputs are: deformed bending angles θ (he), neutral angles θ0 (h0),
stiffness parameter(s) that may differ for each element (Kp), and hinge lengths
L (Lo). The three outputs shall be resistant moment M (M), tangent rotational
modulus k (k), and stored energy ψ (P). Input and output values (except for
Kp) are all Nbend × 1 arrays, where Nbend denotes the total number of bending
hinges. The default function implements an enhanced linear elastic model [Liu
and Paulino 17] (@EnhancedLinear) in the manual mode, and a super-linear
model [Filipov et al. 17] (@SuperLinearBend) in the auto mode.

5. RotSprFold This function specifies the constitutive model for folding rota-
tional spring elements, following the same format as RotSprBend, except that
the size of input and output arrays shall be N f old×1, where N f old denotes the to-
tal number of folding hinges. The default function is the enhanced linear elastic
model (@EnhancedLinear) in both manual and auto modes.

6. Abar - Areas of bar elements, which could either be a scalar (for uniform area)
or a Nbar× 1 array where Nbar denotes the total number of bar elements in the
bar-and-hinge model.

7. Kb - Stiffness parameters for bending rotational spring elements, which could
either be a 1×m array (for uniform property) or a Nbend ×m array, where m is
the number of required stiffness parameters, which typically equals 1. This is
the input Kp for RotSprBend.

8. Kf - Stiffness parameters for folding rotational spring elements, following the
same format as Kb. This is the input Kp for RotSprFold.

9. ModElastic - Modulus of elasticity E (or Young’s modulus) of the material of
the origami structure. This parameter is used in the auto mode.

10. Poisson - Poisson’s ratio ν of the material, used in the auto mode.
11. Thickness - Thickness t of the origami panels, used in the auto mode.
12. LScaleFactor - Ratio of length scale factor L∗/LF , where LF is the length of

a folding hinge and L∗ is the length scale factor defined in [Filipov et al. 17].
This parameter is used to determine the rotational modulus of folding rotational
springs, used in the auto mode. Typical values of L∗/LF is between 1 to 5. The
default value is 3.

13. ZeroBend - This parameter specifies the neutral angles of bending hinges. User
can choose between Flat and AsIs, or specify user-defined values. This is
useful when the initial configuration involves bended panels. The option AsIs

uses the bended shapes of panels as their undeformed states; while the option
Flat always assumes that the neutral angles of bending hinges are π (referring
to flat panels). When specifying user-defined values, we use a scalar for uniform
neutral angles and a Nbend×1 array for non-uniform neutral angles.

LIU, PAULINO

14. LoadType - User can choose between Force and Displacement.
15. Load - In Force mode, the actual applied loads are multiples of the speci-

fied load, the scalar multipliers (known as load factor) is determined automati-
cally by a numerical continuation algorithm [Leon et al. 14]. In Displacement
mode, the solver attempts the specified amount of displacements in an incremen-
tal manner, and stops when the specified amount of displacements is achieved.

16. AdaptiveLoad - This is a function that specifies an adaptive load in the fol-
lowing format: [F] = LoadFun(Node,U,icrm).

The inputs are initial nodal coordinates (Node), displacement vector (U), and
incremental number (icrm), which can be regarded as pseudo-time. The output
is the load vector, which can be either Force or Displacement, but each en-
try must corresponds to the same degree of freedom as in U. In Displacement

mode, the size of each incremental step must be considered within the function.
Once specified, the AdaptiveLoad overrides Load.

17. InitialLoadFactor - Initial load factor for the numerical continuation algo-
rithm [Liu and Paulino 17, Leon et al. 14], used in Force mode.

18. MaxIcr - Maximum number of increments (Nicrm) for the numerical continua-
tion algorithm, used in Force mode.

19. DispStep - Number of incremental steps to achieve a Displacement load.
20. StopCriterion - A function that specifies a stopping criterion for the nu-

merical simulation based on configurational changes of the origami structure.
Use the following format: [Flag] = StopCriterion(Node,U,icrm). The
function returns 1 when the stopping criterion is met; otherwise the function
should return 0.

The outputs of the PrepareData function are:
truss This is a Matlab structure array that contains information about the bar

elements. It has the following fields:

1. Node - This is a three-column array of size N′node × 3 in the same format as
Node, but contains additional Steiner points for generalized N5B8 models.

2. Bars - Connectivity information of bar elements stored in a Nbar×2 array. The
two entries in a row refer to the indices of the two end nodes of a bar element.

3. Trigl - Triangulation information stored in a Ntri× 3 array, where Ntri equals
the total number of triangles in the bar-and-hinge model after discretization. The
three entries in a row are vertex indices of each triangle.

4. B - Compatibility matrix of the bar frame [Filipov et al. 17] of size Nbar×Ndo f ,
where Ndo f is the total number of degrees of freedom in the system (= 3N′node).

5. L - Initial lengths of bar elements stored in a Nbar×1 array.
6. FixedDofs - Indices of fixed degrees of freedom specified by Supp.
7. CM - Constitutive model for bar elements, passed from AnalyInputOpt.BarCM.
8. A - Member areas of bar elements stored in a Nbar×1 array.
9. U0 - Initial displacement referring to the unformed configuration. Most of the

time, the initial configuration of a structure in a simulation is the undeformed

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

configuration, thus U0 is a Ndo f × 1 array of zeros. This parameter is specified
outside the PrepareData function, but before the PathAnalysis function is
executed. If not specified, the PathAnalysis function assigns truss.U0 a
vector of zeros.

angles This is a Matlab structure array that contains information about the
rotational spring elements. It has the following fields:

1. Panel - Same as the aforementioned input parameter Panel.
2. fold - A N f old × 4 array that contains indices of associated nodes of folding

rotational springs. The first two entries define the rotation axis, and the later
two refer to off-axis points of the two adjacent triangles in a rotational spring
element. See [Liu and Paulino 16] for examples.

3. bend - A Nbend × 4 array that contains indices of associated nodes of bending
rotational springs, in the same format as angles.fold.

4. pf0 - Neutral angles of folding rotational springs stored in a N f old×1 array.
5. pb0 - Neutral angles of bending rotational springs stored in a Nbend×1 array.
6. CMbend - Same as AnalyInputOpt.RotSprBend.
7. CMfold - Same as AnalyInputOpt.RotSprFold.
8. Kb - Stiffness parameters for bending rotational springs specified for each ele-

ment in an array of Nbend rows.
9. Kf - Stiffness parameters for folding rotational springs specified for each ele-

ment in an array of N f old rows.

4.2 The PathAnalysis function
The PathAnalysis function takes in the outputs of the PrepareData function
and conducts the nonlinear structural analysis:
[Uhis,Fhis]=PathAnalysis(truss,angles,AnalyInputOpt).
In Force mode, the function implements a numerical continuation algorithm called
Modified Generalized Displacement Control Method (MGDCM) [Leon et al. 14].
In addition, to improve convergence performance, the function heuristically adjusts
the constraint radius, which determines the incremental load factors. In each incre-
ment, when the number of iterations to convergence is large, the constraint radius
is reduced to make a more conservative subsequent increment; when the number of
iterations is very small, the constraint radius is increased, yielding a more aggres-
sive step for the next increment. In Displacement mode, the function divides the
Displacement load into multiple small increments. Each increment is solved by a
damped Newton-Raphson algorithm [Wriggers 08]. A standard incremental step of
displacement load is the prescribed amount divided by the number of DispStep.
The implemented algorithm makes attempts to reduce or increase the incremental
movements, and adjusts damping factors based on the convergence performance of
the current increment. Therefore, the actual number of increments Nicrm performed
to achieve the prescribed displacement load may not equal to DispStep.

The outputs of the function PathAnalysis are:

LIU, PAULINO

1. Uhis - History of nodal displacements at the end of each increment, stored in a
Ndo f ×Nicrm array.

2. Fhis - In Force mode, this is a Nicrm× 1 array that stores the values of load
factors at the end of each increment. In Displacement mode, this is a Nicrm×
Ndisp array, whose columns store the negative values of the resistant forces in
the degrees of freedom that are imposed with displacement loads, where Ndisp
is the number of imposed degrees of freedom.

5 An example using MERLIN2
In this example, we demonstrate how MERLIN2 can be used to conduct structural
analysis of a custom designed origami pattern. A generalized Miura-ori is created
using the Freeform Origami software by Tomohiro Tachi [Tachi 10] and imported
to MERLIN2 as an OBJ file. Simulation results are shown in Fig. 5. We choose
the N5B8 model under auto mode by specifying modulus of elasticity E = 1GPa,
Poisson’s ratio ν = 0.3, material thickness t = 0.25mm, and ratio of length scale
factor L∗/LF = 2. The structure is loaded by displacement.

∆

(a) (b)

Fx

y

y

x

z

110mm

30

0.4

0 Δ (mm)

UF

UB

F
(N

)

x

y

y

x

z

(c)

(d)

0

US

300 Δ (mm)

U
 (1

0-3
 J)

7

0
(e)

Figure 5: (a) Initial configuration of a generalized Miura-ori. The plan view shows
boundary conditions for numerical simulation. Blue arrows indicates support in
x and y-direction, while blue circles indicates support in the z-direction. the red
arrow shows the applied displacement load. Black arrow marks the balance force
along the specific direction of loading. (b) The deformed configuration. The grey
wire frame refers to initial configuration. (c) Load-displacement plot. (d) Energy-
displacement plot. Contributions from three deformation modes are differentiated:
folding (UF), bending (UB) and stretching (US). (e) Two views of the rendering of
the deformed origami, generated using the exported OBJ file from MERLIN2.

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

6 Conclusions
Sharing and publication of open-source and educational software has been a good
tradition in the origami community, such as “TreeMaker” [Lang 11], “Freeform
Origami” [Tachi 10], and “Rigid Origami Toolbox” [Gattas et al. 13]. In this paper,
we present the MERLIN2 software as a powerful and easy-to-use tool for nonlin-
ear structural analysis of origami assemblages, aiming at speeding origami design
cycles and educating origami engineering. The MERLIN2 software is available at
the following url: http://paulino.ce.gatech.edu/software.html.
Acknowledgements
This paper has been awarded the 7OSME Gabriella & Paul Rosenbaum Foundation
Travel Award. We also thank the support from the US National Science Foundation
(NSF) through grant no.1538830, the China Scholarship Council (CSC), and the
Raymond Allen Jones Chair at the Georgia Institute of Technology.

Appendix: Some comments on the supporting functions
In addition to the kernel functions, the MERLIN2 software provides supporting
functions for data communication and interpretation.

ReadOBJ and Write2OBJ The wavefront OBJ file format is a standard for-
mat for sharing 3D geometry, supported by many design software programs in-
cluding the origami design tool “Freeform Origami” [Tachi 10]. The ReadOBJ

function directly imports an OBJ coded 3D origami assemblage into MERLIN2.
The Write2OBJ function writes the geometry of a deformed origami simulated
by MERLIN2 to OBJ file. Necessary inputs to this function are: file name, nodal
coordinates (Node), and triangulated mesh (truss.Trigl).

PostProcess This function computes physical measures for the bar-and-
hinge model based on the deformation history stored in Uhis, such as strains of
bar elements and system energies. All measures are stored in a Matlab structure
array (named as STAT). A complete list of outputs are shown below:

1. bar - Information about bar elements at every increment: Green-Lagrange strain
(bar.Ex), 2nd PK stress (bar.Sx), stored energy of each bar element (bar.USi),
and total stored energy of bar elements (bar.US). Attributes bar.Ex, bar.Sx,
and bar.USi are of size Nbar×Nicrm. Attribute bar.US is a 1×Nicrm array.

2. fold - Information about folding rotational springs at every increment: folding
angle (fold.Angle), resistant moment (fold.RM), stored energy of each fold-
ing hinge (fold.UFi), and total stored energy of folding hinges (fold.UF).
Attributes fold.Angle, fold.RM, and fold.UFi are of size N f old ×Nicrm.
Attribute fold.UF is a 1×Nicrm array.

3. bend - Same as STAT.fold, but for bending rotational springs, which also has
4 attributes: bending angle (bend.Angle), resistant moment (bend.RM), stored
energy of each bending hinge (bend.UBi), and total stored energy (bend.UB).

4. PE - Total potential energy of the origami structure, stored in a 1×Nicrm array.

PlotOri This function generates origami renderings with various options.
The format of this function reads:

http://paulino.ce.gatech.edu/software.html

LIU, PAULINO

PlotOri(Node,Panel,Trigl,Name,Value).

Among the inputs, Node and Panel are necessary. If Trigl is provided, the func-
tion will draw the triangulated origami model, which should be used for plotting
deformed origami structures with bent panels. We need to feed an empty array [] to
the third input of the function when Trigl is not needed, e.g. PlotOri(Node,Panel,[]).
Users may use one or more Name,Value pair arguments to specify rendering prop-
erties. The following options are available:

1. PanelColor - Specify a uniform colour for panels. For example, to plot the
origami in blue colour, specify PlotOri(, , , ’PanelColor’,[0,0,1]).
The default colour is green.

2. FoldEdgeStyle - Line style for the folding hinges. To plot the folding hinges
in dashed lines, specify PlotOri(, , ,’FoldEdgeStyle’,’--’). The
default style is solid line.

3. BendEdgeStyle - Line style for the bending hinges. The default style is none,
so that the origami plot does not display bending hinges. This property is only
used when Trigl is provided.

4. EdgeShade - A scalar between 0 and 1 that specifies the greyscale of edges in
the plot. Use value 1 for black (default) and 0 for transparent.

5. ShowNumber - The PlotOri function shows the indices of nodes in the origami
plot if this property is set to on. This is very helpful for specifying boundary
conditions (i.e. Supp and Load). When this option is on, the panels are plotted
without colour (transparent). The default value is off.

6. FaceVertexColor - Face and vertex colours, specified as one colour per face,
or one colour per vertex for interpolated face colour. For one colour per face,
use an N f ace× 3 array of RGB triplets, where N f ace is the number of origami
panels (Panel) when Trigl is not provided, or the number of triangles when
Trigl is provided. For interpolated face colour based on vertex values, provide
an N′node×3 array of RGB triplets.

7. EdgeColor - Colours for all bars in the bar-and-hinge model, specified as one
colour per bar, including bending hinges, folding hinges, and boundary edges.
Use an Nbar× 3 array of RGB triplets. To enable this property, connectivity of
bar elements and Nbend needs to be specified. For example, if the bar colours are
stored in the array CData, then use PlotOri as:
PlotOri(, , ,’EdgeColor’,CData,’Bars’,truss.Bars,...

’NumBendHinge’,size(angles.bend,1)).

VisualFold This function animates the numerical simulation. The format of
this function reads:

VisualFold(Uhis,truss,angles,Fhis,instdof,Name,Value).

The input Uhis is the output of PathAnalysis function. The input Fhis is op-
tional, which allows the VisualFold function to animate the load-displacement
digram in accordance with the animation of deformation history. The parameter
instdof is a 2× 1 array that specifies the degree of freedom for displacement

MERLIN2 FOR ORIGAMI STRUCTURAL ANALYSIS

measure. The first entry stores the node being tracked, and the second entry is a
signed integer defining the direction of nodal displacement to be monitored, for
example, -3 indicates the minus z-direction and 2 indicates the positive y-direction.
Use one or more Name,Value pair arguments to specify particular display options.
The following options are available:

1. Showinitial - If set to on, the VisualFold function displays a grey-coloured
wire frame of the initial configuration during the entire animation(s) of defor-
mation history.

2. Recordtype - The VisualFold function can record the animation in video
format (MP4) or animated image format (GIF). Specify video or imggif for
video recording or image recording, respectively. The default option is none.

3. Filename - A file name for the generated video or animated image.
4. IntensityMap - This option enables the function to plot faces or edges in

varying colours during the animation based on a physical measure specified in
IntensityData. There are three choices: Vertex, Edge, and Face. This is
useful for visualizing intensity of forces acting on nodes, strains in bars, or area
change of triangulated panels.

5. IntensityData - A Nicrm-column array. Each column specifies a physical
measure for all entities of a group (e.g. nodes, bars) in the origami model at
one increment of simulation. Use a N′node×Nicrm array for IntensityMap of
Vertex, a Nbar×Nicrm array for IntensityMap of Edge, and a N f ace×Nicrm
array for IntensityMap of Face.

6. Viewangle - View angle for the animation of origami structure, specified in
[azimuth angle, elevation angle] format.

7. Axislim - Axes limits for the animation of load-displacement curve. The de-
fault option automatically adjusts the axes sizes.

References
[Bern and Eppstein 95] M. Bern and D. Eppstein. “Mesh generation and optimal triagula-

tion.” In Computing in Euclidean Geometry, edited by D. Z. Du and Hwang F. K.,
Second edition, pp. 47–123. World Scientific, 1995.

[Filipov et al. 15] Evgueni T. Filipov, Tomohiro Tachi, and Glaucio H. Paulino. “Origami
tubes assembled into stiff, yet reconfigurable structures and metamaterials.” Proceed-
ings of the National Academy of Sciences 112:40 (2015), 12321–12326.

[Filipov et al. 17] E. T. Filipov, K. Liu, T. Tachi, M. Schenk, and G. H. Paulino. “Bar and
hinge models for scalable analysis of origami.” International Journal of Solids and
Structures 124 (2017), 26–45.

[Gattas et al. 13] Joseph M. Gattas, Weina Wu, and Zhong You. “Miura-base rigid origami:
parameterizations of first-level derivative and piecewise geometries.” Journal of Me-
chanical Design 135 (2013), 111011.

[Heath 97] M.T. Heath. Scientific Computing: An Introductory Survey. Second Edition,
McGraw-Hill, 1997.

LIU, PAULINO

[Lang et al. 15] Robert J. Lang, Spencer Magleby, and Larry L. Howell. “Single-degree-of-
freedom rigidly foldable cut origami flashers.” Journal of Mechanisms and Robotics
8 (2015), 031005.

[Lang 11] Robert J. Lang. Origami Design Secrets, Second edition. CRC Press, 2011.

[Leon et al. 14] Sofie E. Leon, Eduardo N. Lages, Catarina N. de Araújo, and Glaucio H.
Paulino. “On the effect of constraint parameters on the generalized displacement con-
trol method.” Mechanics Research Communications 56 (2014), 123–129.

[Liu and Paulino 16] Ke Liu and Glaucio H Paulino. “MERLIN : A MATLAB implementa-
tion to capture highly nonlinear behavior of non-rigid origami.” In Proceedings of the
IASS Annual Symposium, edited by K Kawaguchi, M. Ohsaki, and T Takeuchi. Tokyo,
Japan, 2016.

[Liu and Paulino 17] K. Liu and G. H. Paulino. “Nonlinear mechanics of non-rigid origami:
an efficient computational approach.” Proceedings of the Royal Society A 473 (2017),
20170348.

[Ota et al. 16] N. S. N. Ota, L. Wilson, A. Gay Neto, S. Pellegrino, and P. M. Pimenta.
“Nonlinear dynamic analysis of creased shells.” Finite Elements in Analysis and De-
sign 121 (2016), 64–74.

[Ramm and Wall 04] E. Ramm and W. A. Wall. “Shell structures - A sensitive interrela-
tion between physics and numerics.” International Journal for Numerical Methods in
Engineering 60:1 (2004), 381–427.

[Schenk and Guest 11] Mark Schenk and Simon D Guest. “Origami folding: A structural
engineering approach.” In Origami 5, edited by Patsy Wang-Iverson, Robert J Lang,
and Mark Yim, pp. 293–305. CRC Press, 2011.

[Schenk and Guest 13] Mark Schenk and Simon D. Guest. “Geometry of Miura-folded
metamaterials.” Proceedings of the National Academy of Sciences 110:9 (2013), 3276–
3281.

[Tachi 10] Tomohiro Tachi. “Freeform Variations of Origami.” Journal for Geometry and
Graphics 14:2 (2010), 203–215.

[Witten 07] T. A. Witten. “Stress focusing in elastic sheets.” Reviews of Modern Physics
79:2 (2007), 643–675.

[Wriggers 08] Peter Wriggers. Nonlinear Finite Element Methods. Springer, 2008.

K. Liu
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
Georgia, USA. e-mail: ke.liu@gatech.edu

G. H. Paulino
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta,
Georgia, USA. e-mail: paulino@gatech.edu

mailto:ke.liu@gatech.edu
mailto:paulino@gatech.edu

	Introduction
	Nonlinear elastic formulation for a general bar-and-hinge model
	Bar elements
	Special rotational spring elements

	Discretization schemes
	The N4B5 scheme and its generalization to polygonal panels
	The N5B8 scheme and its generalization to polygonal panels
	Preliminary study on discretization of polygonal origami panels

	Matlab implementation
	The PrepareData function
	The PathAnalysis function

	An example using MERLIN2
	Conclusions

