

Grain Boundary Decohesion and Particle-Matrix Debonding in Aluminum Alloy 7075-T651 using the PPR Potential-Based Cohesive Zone Model

Albert Cerrone¹, Gerd Heber², Paul Wawrzynek¹, Glaucio Paulino³, Anthony Ingraffea¹ Research Sponsor: AFOSR FA9550-10-1-0213, Dr. David Stargel

Problem Description

- Majority of a fatigue crack's life spent in the microstructurally small fatigue crack (MSFC) phase. Estimates as high as 90%.
- Grain boundary decohesion (intergranular fracture) and particle matrix debonding occur in some aluminum alloys.
- To model accurately MSFC behavior in aluminum microstructures, must account for these interface mobilizations.
- Massively parallel finite element analyses are coupled with crystal plastic and cohesive material models to quantify these mobilizations as accurately as possible.

idealized cubical polycrystal

Refinement Study			
Mesh ID	9 # of Bulk Elements	# of Cohesive Elements	# of DOFs
I	4,056	1,152	27,840
2	15,494	2,856	88,386
3	129,900	11,232	615,642
4	504,482	32,022	2,283,576

PPR Cohesive Zone Model

Interplay between plastic slip and cohesive softening is resolved.

Plastic slip and global cohesive softening initiate at same time.

Plastic slip dominates.

Note change in scale.

9% decrease in slip

rate-dependent FCC crystal plastic

grains assigned randomized crystallographic orientations

resistance engenders 35x increase in slip.

- Cohesive softening dominates.
- High prevalence of slip prior to global softening.

the crack's propensity to

around bonded particle.

propagate in a certain

direction.

plane.

cracked particle embedded in single grain

- emulates a grain containing a secondphase particle located at the surface of a notch of a DEN specimen
- cohesive elements placed along grainparticle interface
- slip metric mapped to non-local arc to avoid crack front dominance
- 625,690 bulk elements, 17,956 cohesive elements, 2,669,526 DOFs

constrained to in-plane motion Particle 0.1µm 10µm ND crack núcleation 10µm TD 10µm RD

Slip Around Particle Slip metric is an indication of

equi-axed-grain polycrystal

Plastic Slip in Polycrystal

