A Unified Library of Nonlinear Solution Schemes

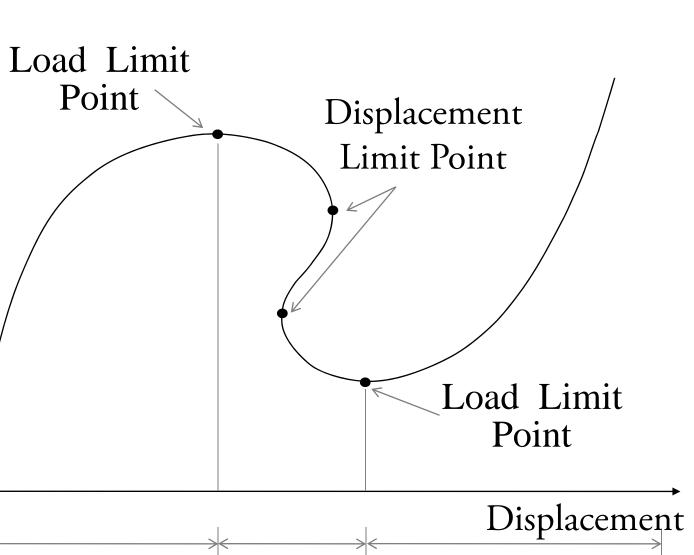
Sofie E. Leon¹, Glaucio H. Paulino¹, Anderson Pereira², Ivan F. M. Menezes², Eduardo N. Lages²

¹Civil and Environmental Engineering Department, University of Illinois, Urbana, IL, USA ² Group of Technology in Computer Graphics, Pontifical Catholic University ,Rio de Janeiro, RJ, Brazil ³ Center of Technology, Federal University of Alagoas, Maceió, Alagoas, Brazil

Motivation

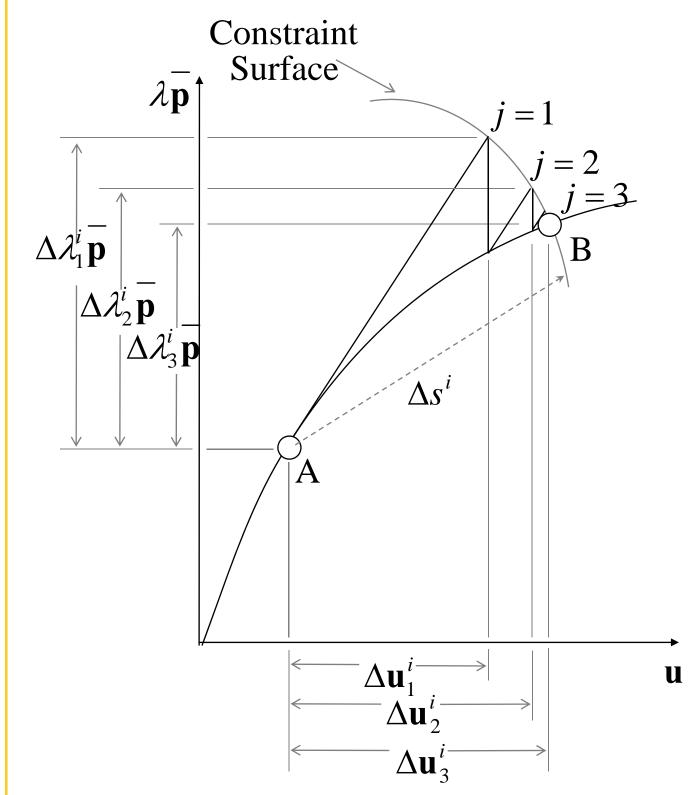
11th USNCCM

- Nonlinear problems are prevalent in Load † structural and continuum mechanics
- No single algorithm is appropriate for solving any and all nonlinear problems
- A library of nonlinear solution schemes, defined by unique constraint equations, is unified into a single space



Solution Schemes

- $\delta\lambda$ is computed uniquely for each nonlinear solution scheme:
 - Load control method (LCM)
 - Displacement control method (DCM)
 - Arc-length control method (ALCM)
 - Work control method (WCM)



Stable Unstable Stable

、 Yes _

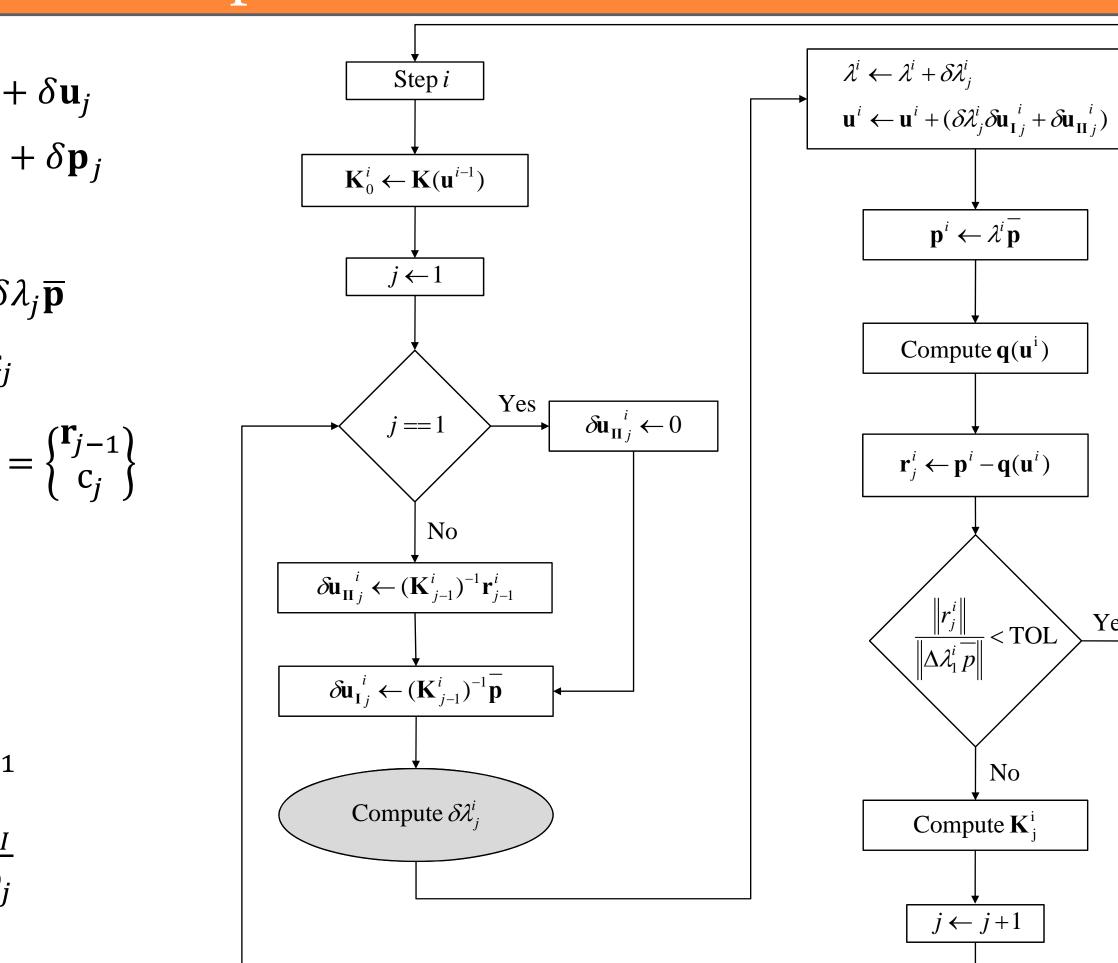
 $i \leftarrow i + 1$

N+1 Dimensional Space Formulation: NLS++

 $\mathbf{u}_{j} = \mathbf{u}^{prev} + \Delta \mathbf{u}_{j-1} + \delta \mathbf{u}_{j}$ $\boldsymbol{p}_{j} = \mathbf{p}^{prev} + \Delta \mathbf{p}_{j-1} + \delta \mathbf{p}_{j}$

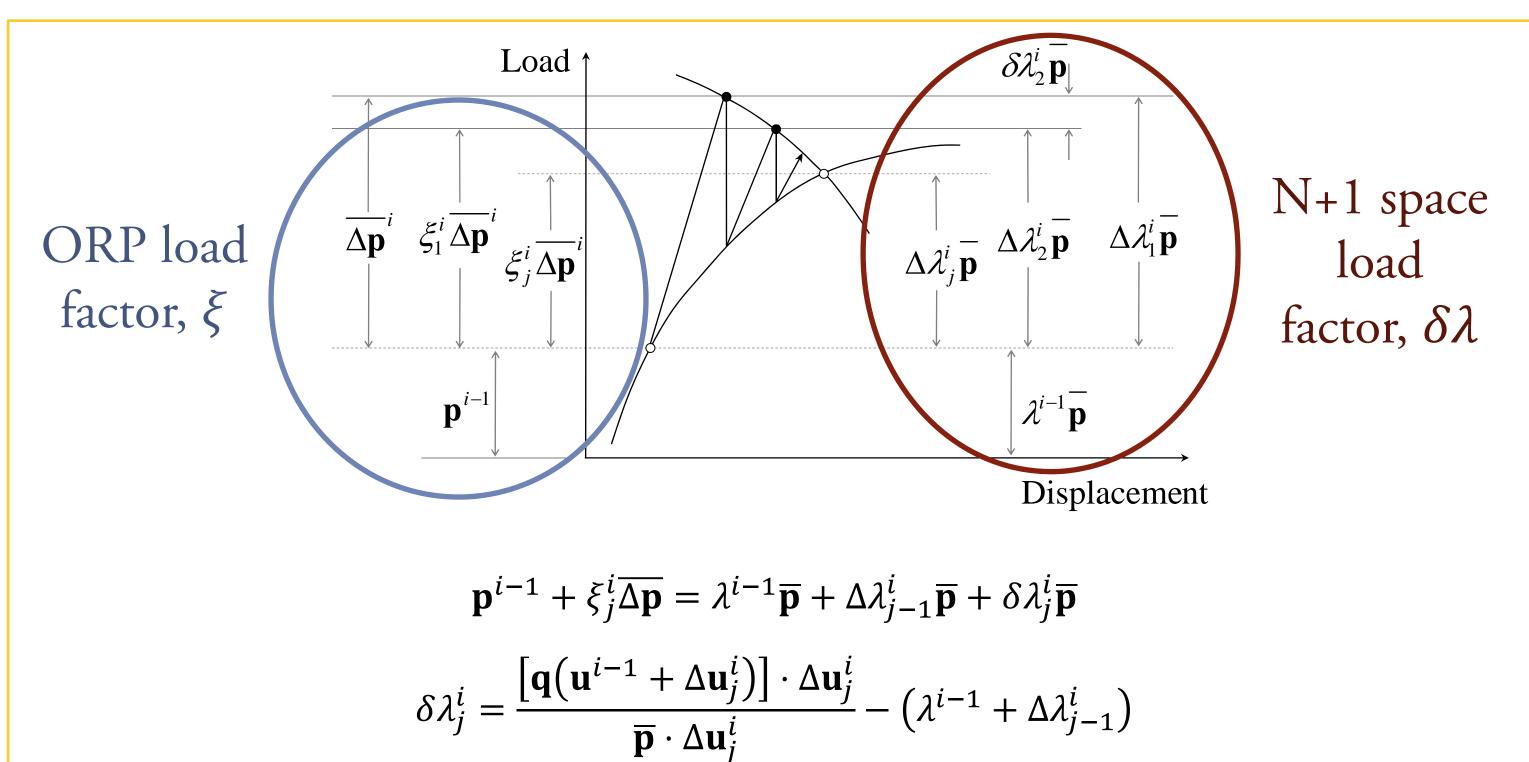
 $\mathbf{p}_j = \mathbf{p} + \Delta \mathbf{p}_{j-1} + \delta \lambda_j \overline{\mathbf{p}}$ $\mathbf{a}_j \cdot \delta \mathbf{u}_j + b_j \delta \lambda_j = \mathbf{c}_j$ $\begin{bmatrix} \mathbf{K}_{j-1} & -\overline{\mathbf{p}} \\ \left(\mathbf{a}_{j}\right)^{T} & b_{j} \end{bmatrix} \begin{cases} \delta \mathbf{u}_{j} \\ \delta \lambda_{j} \end{cases} = \begin{cases} \mathbf{r}_{j-1} \\ \mathbf{c}_{j} \end{cases}$

 $\delta \mathbf{u} = \delta \mathbf{u}_I + \delta \lambda \delta \mathbf{u}_{II}$ $\mathbf{K}_{j-1} \delta \mathbf{u}_{j} = \overline{\mathbf{p}}$ $\mathbf{K}_{j-1} \delta \mathbf{u}_{j_{II}} = \mathbf{r}_{j-1}$ $\delta \lambda_j = \frac{\mathbf{c}_j - \mathbf{a}_j \cdot \delta \mathbf{u}_{j_{II}}}{\mathbf{a}_j \cdot \delta \mathbf{u}_{j_{II}} + b_j}$

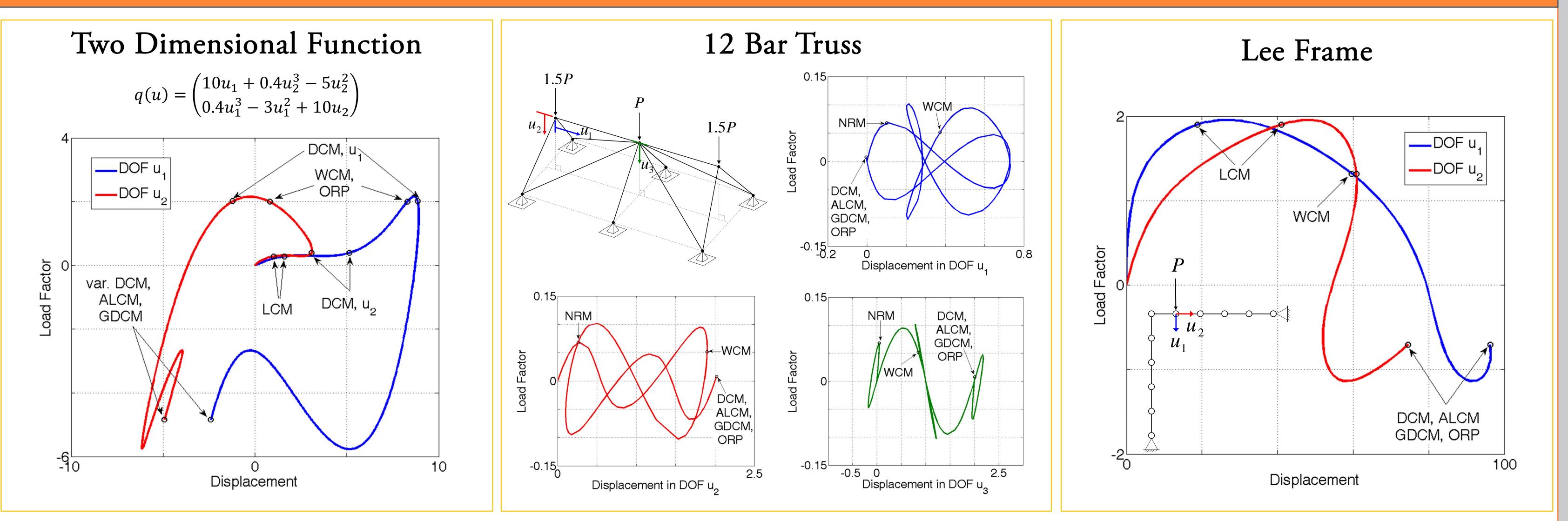


- Generalized displacement control method (GDCM)
- Orthogonal residual procedure (ORP)

Arc-length control method



Numerical Results



Conclusions and Extensions

- NLS++ is an effective computational framework for solving problems with varying degrees of nonlinearity
- Robustness of algorithms is evaluated by means of the unified schemes
- Potential to incorporate NLS++ into an object-oriented finite element engine

Acknowledgements

• National Science Foundation Graduate Research Fellowship awarded to Sofie E. Leon

References

• S.E. Leon, G.H. Paulino, A. Pereira, I.F.M. Menezes, E.N. Lages. "A unified library of nonlinear solution schemes," To be submitted to Applied Mechanics Reviews. • S.E. Leon, "A unified library of nonlinear solution schemes: An excursion into nonlinear computational mechanics", MS Thesis, Department of Civil Engineering, UIUC, 2010. • W.F. Lam and C.T. Morley, "Arc-length method for passing limit points in structural calculations", Journal of Structural Engineering (ASCE), 118(1), 169-185, 1992. • M.A. Crisfield, "A fast incremental/iterative solution procedure that handles snap-through", Computers & Structures, 13, 55-62, 1981. • S. Krenk, "An orthogonal residual procedure for nonlinear finite element equations", IJNME, 38, 823-839, 1995. • Y.B. Yang and M.S. Shieh, "Solution method for nonlinear problems with multiple critical points", AIAA Journal, 28(12), 2110-2116, 1990.