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Outline
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Objectives

 Develop efficient and accurate simulation 
scheme for viscoelastic functionally graded 
materials (VFGMs)

 Correspondence Principle based formulation

 Application: Asphalt concrete pavements 
(Part II)
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Graded Finite Elements

 Graded Elements: Account for 
material non-homogeneity within elements
unlike conventional (homogeneous) elements

 Lee and Erdogan (1995) and Santare and Lambros (2000) 

– Direct Gaussian integration (properties sampled at integration points) 

 Kim and Paulino (2002) 
– Generalized isoparametric formulation (GIF)

 Paulino and Kim (2007) and Paulino et al. (2007) further 
explored GIF graded elements
– Proposed patch tests

– GIF elements should be preferred for multiphysics applications 

 Buttlar et al. (2006) demonstrated need of graded FE for 
asphalt pavements (elastic analysis)
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Homogeneous Graded
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Generalized Isoparametric Formulation (GIF)

 Material properties are sampled at the element nodes

 Iso-parametric mapping provides material properties at 
integration points

 Natural extension of the conventional isoparametric 
formulation
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Viscoelasticity: Basics
 Constitutive Relationship for linear viscoelastic body:

o σij are stresses, εij are strains

o Superscript d represents deviatoric components

o Gijkl and Kijkl : shear and bulk moduli (space and time dependent)

o Assumptions: no body forces, small deformations

o Equilibrium: 

o Strain-Displacement:

o ui : displacements
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Viscoelasticity: Correspondence Principle
 Correspondence Principle (Elastic-Viscoelastic 

Analogy): “Equivalency between transformed (Laplace, 

Fourier etc.) viscoelastic and elasticity equations”
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Elastic Transformed Viscoelastic

 Extensively utilized to solve variety of nonhomogeneous
viscoelastic problems:
 Hilton and Piechocki (1962): Shear center of non-homogeneous 

viscoelastic beams

 Chang et al. (2007): Thermal stresses in graded viscoelastic films
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Viscoelastic Model 

 Prony series form: Generalized Maxwell Model

– Equivalency between compliance and relaxation 
forms

– Flexibility in fitting experimental data

– Transformations are well established

– Readily applicable to asphaltic and other 
viscoelastic materials (polymers, etc)
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Viscoelastic  FGMs

 Paulino and Jin (2001); Mukherjee and Paulino (2003)

– Material with “Separable Form”
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General FE Implementation

 Correspondence principle based implementation using 
Laplace transform (Yi and Hilton, 1998)

 Variational Principle (Potential): (Taylor et al., 1970)

http://www.uiuc.edu/
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FE Implementation: Basis
 Stationarity:

Ω : volume, S surface with traction Pi 

Cijkl: constitutive properties 

εij: mechanical strains, εij
* : thermal strains, ui: displacements,

ξ: reduced time related to real time through time-temperature 

superposition principle given by:

a is time-temperature shift factor, and T is temperature
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FEM

 Element stiffness matrix:

 Force vectors:

Mechanical:

Thermal:

kij : element stiffness matrix,
fi : element force (load) vector
ui : displacement vector
εi : strains related to nodal degrees of
freedom qj through isoparametric

shape functions Nij and their
derivatives Bij
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FEM: Assembly and Solution

 Assembling provides global stiffness matrix, Kij and 
force vectors, Fi

 Equilibrium:

 Correspondence principle:

ã(s) is Laplace transform of a(t), s is transformation variable
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FEM: Implementation

Define problem in time-domain (evaluate load vector, F(x, t)
and stiffness matrix components K(x) and Λ(t)) 

Perform Laplace transform to evaluate   (x, s) and    (s) 

Solve linear system of equations to evaluate nodal 
displacement,   (x,s)

Perform inverse Laplace transforms to get the solution, U(x,t)  

Post-process to evaluate field quantities of interest 
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FEM: Verification

 MATLAB® code using GIF and correspondence principle 

 GIF

– Compare analytical and numerical solutions for graded 
boundary value problems 

 Viscoelasticity

– Compare analytical and numerical solutions for viscoelastic bar 
imposed with creep loading

 Comparison with Commercial Code ABAQUS® (Layered 
Approach)

http://www.uiuc.edu/
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Graded Finite Element Performance
Bending example 
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Analytical Solution (line)

Numerical Solution (markers)
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Homogeneous Viscoelastic Verification
Creep example shown here
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FGM Verification with ABAQUS

 Simply supported beam in 3-point bending

– 100-second creep loading

 Graded viscoelastic material properties

 FE simulation:

– Homogeneous: Averaged properties

– Layered (ABAQUS):

 6-Layers

 12-Layers

– Graded: 

 Same mesh structure as 6-Layers

http://www.uiuc.edu/
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Reference Material Properties
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FEM Meshes

 6-Layers / FGM / Homogeneous
 3146 DOFs

 6-node triangle elements

 12-Layers 
 6878 DOFs

 6-node triangle elements

http://www.uiuc.edu/
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Numerical Results

(100-Collocation points)
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Concluding Remarks

 Main Contribution: 

development of graded viscoelastic elements

 Extension of the Generalized Isoparametric 
Formulation (Elastic) to rate-dependent 
materials (viscoelastic)

 Correspondence Principle based formulation: 
separable material properties

 Companion presentation (paper) demonstrates 
application of this work to field of asphalt 
pavements 

 Extension: Graded Viscoelastic formulation in 
time domain

http://www.uiuc.edu/
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Thank you for your attention!!
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