Asphalt Pavement Aging and Temperature Dependent Properties through a Functionally Graded Viscoelastic Model -I: Development, Implementation and Verification

Eshan V. Dave, Secretary of M\&FGM2006 (Hawaii) Research Assistant and Ph.D. Candidate Glaucio H. Paulino, Chairman of M\&FGM2006 (Hawaii)

Donald Biggar Willett Professor of Engineering William G. Buttlar
Professor and Narbey Khachaturian Faculty Scholar

Department of Civil and Environmental Engineering University of Illinois at Urbana-Champaign

mmefgmioor

ILLINOIS

Outline

- Part - I
- Graded Finite Elements
- Viscoelasticity and FGMs
- Finite Element Formulations
- Verification
- Concluding Remarks

- Part - II (Companion presentation)
- Asphalt Pavements
- Effect of Aging
- Simulations
- Concluding Remarks

Objectives

- Develop efficient and accurate simulation scheme for viscoelastic functionally graded materials (VFGMs)
- Correspondence Principle based formulation
- Application: Asphalt concrete pavements (Part II)

Graded Finite Elements

Homogeneous

- Graded Elements: Account for material non-homogeneity within elements unlike conventional (homogeneous) elements

- Lee and Erdogan (1995) and Santare and Lambros (2000)
- Direct Gaussian integration (properties sampled at integration points)
- Kim and Paulino (2002)
- Generalized isoparametric formulation (GIF)
- Paulino and Kim (2007) and Paulino et al. (2007) further explored GIF graded elements
- Proposed patch tests
- GIF elements should be preferred for multiphysics applications
- Buttlar et al. (2006) demonstrated need of graded FE for asphalt pavements (elastic analysis)

Generalized Isoparametric Formulation (GIF)

- Material properties are sampled at the element nodes
- Iso-parametric mapping provides material properties at integration points
- Natural extension of the conventional isoparametric formulation

MaterialProperties (eg. $E(x, y)$)

$E=\sum_{i=1}^{m} N_{i} E_{i}$
$N_{i}=$ Shape function corresponding to node, i
$m=$ Number of nodes per element

Conventional Homogeneous

GIF

Viscoelasticity: Basics

- Constitutive Relationship for linear viscoelastic body:

$$
\begin{aligned}
& \sigma_{i j}{ }^{d}(x, t)=2 \int_{t^{\prime}=-\infty}^{t^{\prime}=t} G_{i j k l}\left(x, \xi(t)-\xi\left(t^{\prime}\right)\right) \varepsilon_{k l}{ }^{d}\left(x, t^{\prime}\right) d t^{\prime} \\
& \sigma_{k k}(x, t)=3 \int_{t^{\prime}=-\infty}^{i=t} K_{k k l l}\left(x, \xi(t)-\xi\left(t^{\prime}\right)\right) \varepsilon_{l l}\left(x, t^{\prime}\right) d t^{\prime}
\end{aligned}
$$

- $\sigma_{i j}$ are stresses, $\varepsilon_{i j}$ are strains
- Superscript d represents deviatoric components
- $G_{i j k l}$ and $K_{i j k l}$: shear and bulk moduli (space and time dependent)
- Assumptions: no body forces, small deformations
- Equilibrium: $\quad \sigma_{i j, j}=0$
- Strain-Displacement: $\quad \varepsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right)$
- u_{i} : displacements

Viscoelasticity: Correspondence Principle

- Correspondence Principle (Elastic-Viscoelastic Analogy): "Equivalency between transformed (Laplace, Fourier etc.) viscoelastic and elasticity equations"

Elastic

- Extensively utilized to solve variety of nonhomogeneous viscoelastic problems:
- Hilton and Piechocki (1962): Shear center of non-homogeneous viscoelastic beams
- Chang et al. (2007): Thermal stresses in graded viscoelastic films

Viscoelastic Model

- Prony series form: Generalized Maxwell Model
- Equivalency between compliance and relaxation forms
- Flexibility in fitting experimental data
- Transformations are well established
- Readily applicable to asphaltic and other viscoelastic materials (polymers, etc)

$$
\begin{aligned}
& E(t)=\sum_{i=1}^{h} E_{i} \operatorname{Exp}\left[-t / \tau_{i}\right] \\
& \tau_{i}=\frac{\eta_{i}}{E_{i}}
\end{aligned}
$$

Viscoelastic FGMs

- Paulino and Jin (2001); Mukherjee and Paulino (2003)
- Material with "Separable Form"

$$
\mathbf{E}(\mathbf{x}, t)=\mathbf{E}(\mathbf{x}) \mathbf{f}(t)
$$

General FE Implementation

- Correspondence principle based implementation using Laplace transform (Yi and Hilton, 1998)
- Variational Principle (Potential): (Taylor et al., 1970)

$$
\begin{gathered}
\Pi=\int_{\Omega} \int_{t^{\prime \prime}=-\infty}^{t^{\prime \prime}=t} \int_{t^{\prime}=-\infty}^{t^{\prime}=t-t^{\prime \prime}} \frac{1}{2} \boldsymbol{C}_{i j k l}\left[\boldsymbol{x}, \boldsymbol{\xi}_{i j k l}\left(t-t^{\prime \prime}\right)-\xi_{i j k l}^{\prime}\left(t^{\prime}\right)\right] \frac{\partial \boldsymbol{\varepsilon}_{i j}\left(\boldsymbol{x}, t^{\prime}\right)}{\partial t^{\prime}} \frac{\partial \varepsilon_{k l}\left(\boldsymbol{x}, t^{\prime \prime}\right)}{\partial t^{\prime \prime}} d t^{\prime} d t^{\prime \prime} d \Omega \\
-\int_{\Omega} \int_{t^{\prime \prime}=-\infty}^{t^{\prime \prime}=\boldsymbol{t}} \int_{\boldsymbol{t}^{\prime}=-\infty}^{t^{\prime}=\boldsymbol{t - t ^ { \prime \prime }}} \boldsymbol{C}_{i j k l}\left[\boldsymbol{x}, \xi_{i j k l}\left(t-t^{\prime \prime}\right)-\xi_{i j k l}^{\prime}\left(t^{\prime}\right)\right] \frac{\partial \boldsymbol{\varepsilon}^{*}{ }_{i j}\left(\boldsymbol{x}, t^{\prime}\right)}{\partial t^{\prime}} \frac{\partial \boldsymbol{\varepsilon}^{*}{ }_{k l}\left(\boldsymbol{x}, t^{\prime \prime}\right)}{\partial t^{\prime \prime}} d t^{\prime} d t^{\prime \prime} d \Omega \\
-\int_{S}^{t^{\prime \prime}=-\infty} \int_{i=-}^{t^{\prime \prime}=t} \boldsymbol{P}_{i}\left(\boldsymbol{x}, t-t^{\prime \prime}\right) \frac{\partial \boldsymbol{u}_{i}\left(\boldsymbol{x}, t^{\prime \prime}\right)}{\partial t^{\prime \prime}} d t^{\prime \prime} d S
\end{gathered}
$$

FE Implementation: Basis

- Stationarity:

$$
\delta \Pi=\int_{\Omega_{u}} \int_{t^{\prime}=-\infty}^{t=t} \int_{t^{\prime}=-\infty}^{t^{\prime=t-t}}\left\{C_{i j k l}\left[x, \xi_{i j k l}\left(t-t^{\prime \prime}\right)-\xi_{i j k l}^{\prime}\left(t^{\prime}\right)\right] \frac{\partial}{\partial t^{\prime}}\left(\varepsilon_{i j}\left(x, t^{\prime}\right)-\varepsilon_{i j}^{*}\left(x, t^{\prime}\right)\right) \frac{\partial \delta \varepsilon_{k l}\left(x, t^{\prime \prime}\right)}{\partial t^{\prime \prime}}\right\} d t^{\prime} d t^{\prime \prime} d \Omega_{u}
$$

$$
-\int_{\Omega_{\sigma}} \int_{t^{\prime \prime}=-\infty}^{t^{\prime \prime}=t} P_{i}\left(x, t-t^{\prime \prime}\right) \frac{\partial \delta u_{i}\left(x, t^{\prime \prime}\right)}{\partial t^{\prime \prime}} d t^{\prime \prime} d \Omega_{\sigma}=0 .
$$

Ω : volume, S surface with traction Pi
$C_{i j k l}$: constitutive properties
$\varepsilon_{i j}$: mechanical strains, $\varepsilon_{i j}{ }^{*}$: thermal strains, u_{i} : displacements,
ξ : reduced time related to real time through time-temperature superposition principle given by:

$$
\xi(t)=\int_{0}^{t} a\left(T\left(t^{\prime}\right)\right) d t^{\prime}
$$

a is time-temperature shift factor, and T is temperature

FEM

- Element stiffness matrix:

$$
k_{i j}(x, t)=\int_{\Omega_{u}} B_{i k}^{T}(x) C_{k l}(x, \xi(t)) B_{l j}(x) d \Omega_{u}
$$

- Force vectors:

Mechanical: $\quad f_{i}(x, t)=\int_{\Omega_{\sigma}} N_{i j}(x) P_{j}(x, t) d \Omega_{\sigma}$
Thermal: $\quad f_{i}^{t h}(x, t)=\int_{\Omega_{u}-\infty}^{t} \int_{i k}(x) C_{k l}\left(x, \xi(t)-\xi\left(t^{\prime}\right)\right) \frac{\partial \varepsilon_{l}^{*}\left(x, t^{\prime}\right)}{\partial t^{\prime}} d t^{\prime} d \Omega_{u}$
$k_{i j}$: element stiffness matrix, f_{i} : element force (load) vector
u_{i} : displacement vector
ε_{i} : strains related to nodal degrees of freedom q_{j} through isoparametric

$$
\begin{aligned}
& u_{i}(x, t)=N_{i j}(x) q_{j}(t) \\
& \varepsilon_{i}(x, t)=B_{i j}(x) q_{j}(t)
\end{aligned}
$$ derivatives $B_{i j}$

FEM: Assembly and Solution

- Assembling provides global stiffness matrix, $K_{i j}$ and force vectors, F_{i}
- Equilibrium:

$$
K_{i j}(x, \xi(t)) U_{j}(0)+\int_{0^{+}}^{t} K_{i j}\left(x, \xi(t)-\xi\left(t^{\prime}\right)\right) \frac{\partial U_{j}\left(t^{\prime}\right)}{\partial t^{\prime}} d t^{\prime}=F_{i}(x, t)+F_{i}^{t h}(x, t)
$$

- Correspondence principle:

$$
\tilde{K}_{i j}(x, s) \tilde{U}_{j}(s)=\tilde{F}_{i}(x, s)+\tilde{F}_{i}^{t h}(x, s)
$$

$\tilde{a}(s)$ is Laplace transform of $a(t), s$ is transformation variable

$$
\tilde{a}(s)=\int_{0}^{\infty} a(t) \operatorname{Exp}[-s t] d t
$$

FEM: Implementation

Define problem in time-domain (evaluate load vector, $F(x, t)$ and stiffness matrix components $K(x)$ and $\Lambda(t)$)

Perform Laplace transform to evaluate $\tilde{F}(x, s)$ and $\tilde{\Lambda}(s)$

Solve linear system of equations to evaluate nodal displacement, $\tilde{U}(x, s)$

Perform inverse Laplace transforms to get the solution, $U(x, t)$

Post-process to evaluate field quantities of interest

FEM: Verification

- MATLAB ${ }^{\circledR}$ code using GIF and correspondence principle
- GIF
- Compare analytical and numerical solutions for graded boundary value problems
- Viscoelasticity
- Compare analytical and numerical solutions for viscoelastic bar imposed with creep loading
- Comparison with Commercial Code ABAQUS ${ }^{\circledR}$ (Layered Approach)

Graded Finite Element Performance

Bending example

Homogeneous Viscoelastic Verification

Creep example shown here

FGM Verification with ABAQUS

- Simply supported beam in 3-point bending
- 100-second creep loading
- Graded viscoelastic material properties
- FE simulation:

- Homogeneous: Averaged properties
- Layered (ABAQUS):
- 6-Layers
- 12-Layers
- Graded:
- Same mesh structure as 6-Layers

Reference Material Properties

白
1867

FEM Meshes

- 6-Layers / FGM / Homogeneous
- 3146 DOFs
- 6-node triangle elements

- 12-Layers
- 6878 DOFs
- 6-node triangle elements

Numerical Results

Concluding Remarks

- Main Contribution: development of graded viscoelastic elements
- Extension of the Generalized Isoparametric Formulation (Elastic) to rate-dependent materials (viscoelastic)
- Correspondence Principle based formulation: separable material properties
- Companion presentation (paper) demonstrates application of this work to field of asphalt pavements
- Extension: Graded Viscoelastic formulation in time domain

Thank you for your attention!!

