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Functionally Graded Viscoelastic Model for Functionally Graded Viscoelastic Model for 
Asphalt ConcreteAsphalt Concrete

� Motivation and Introduction

� Viscoelastic FGM Finite Elements

� Time Integration Analysis

� Application Examples:
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– Asphalt Pavement

– Boundary Layer Model for Fracture

� Summary and Conclusions



0

10

20

-15 -10 -5 0 5

Temperature (C)

Asphalt Pavements are NonAsphalt Pavements are Non--Homogeneous StructuresHomogeneous Structures

� Sources of Non-Homogeneity:

1. Oxidative aging

2. Temperature dependence of material properties

3. Other sources (construction, additives etc.)
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Pavement Age=15years
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Aging gradient generated using “Global 

aging model” by Mirza and Witczak (1996)

Temperature profiles generated using 

“EICM” from AASHTO MEPDG (2002)

M.W. Mirza, and M.W. Witczak, (1996) "Development of a global aging system for short and long term aging of 
asphalt cements," Journal of Asphalt Paving Technologists, Vol. 64 393-430.

Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37A
Final Report, 2002.



Asphalt Concrete is ViscoelasticAsphalt Concrete is Viscoelastic

Asphalt mixtures from US36 
(near Cameron, MO)
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Temperature = -20ºC



ObjectivesObjectives

� Develop efficient and accurate simulation scheme 
for asphalt concrete pavements

� Account for:

– Aging gradients

– Temperature dependent property gradients

� Viscoelastic analysis
a) Correspondence Principle (Dave et al., 2009)
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a) Correspondence Principle (Dave et al., 2009)

b) Time Integration Scheme (current presentation)

� Applications: (selected examples discussed here)

– Asphalt concrete pavements and overlay systems

– Boundary layer fracture analysis

E.V. Dave, G.H. Paulino, and W.G. Buttlar, (2009) " Viscoelastic functionally graded finite element 
method using correspondence principle," Journal of Materials in Civil Engineering, 2009 (in-
review)



Viscoelasticity: BasicsViscoelasticity: Basics

� Constitutive Relationship:

� Material Representation: Generalized Maxwell Model
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� Time-Temperature Superposition
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Graded Graded Finite ElementsFinite Elements

� Graded Elements: Account for material
non-homogeneity within elements unlike
conventional (homogeneous) elements

� Lee and Erdogan (1995) and Santare and Lambros (2000) 

– Direct Gaussian integration (properties sampled at integration points) 

� Kim and Paulino (2002) 
– Generalized isoparametric formulation (GIF)

Homogeneous Graded

– Generalized isoparametric formulation (GIF)

� Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements
– Proposed patch tests

– GIF elements should be preferred for multiphysics applications 

� Buttlar et al. (2006) demonstrated need of graded FE for 
asphalt pavements (elastic analysis)

7

Y.D. Lee, and F. Erdogan, (1995) "Residual/thermal stresses in FGM and laminated thermal 
barrier coatings," International Journal of Fracture, 69:145-65.

M.H. Santare, and J. Lambros, (2000) "Use of graded finite elements to model the behavior of 
nonhomogeneous materials," Journal of Applied Mechanics, 67:819-22.

J.H. Kim, and G.H. Paulino, (2002) "Isoparametric graded finite elements for nonhomogeneous
isotropic and orthotropic materials," Journal of Applied Mechanics, 69:502-14. 

G.H. Paulino, and J.H. Kim, (2007) "The weak patch test for nonhomogeneous materials modeled 
with graded finite elements," Journal of the Brazilian Society of Mechanical Sciences and 
Engineering, 29:63-81. 

E.C.N. Silva, R.C. Carbonari, and G.H. Paulino, (2007) "On graded elements for multiphysics
applications," Smart Materials and Structures, 16:2408-2428.

W.G. Buttlar, G.H. Paulino, and S.H. Song, (2006) "Application of graded finite elements for 
asphalt pavements," Journal of Engineering Mechanics, 132:240-249.



Generalized Generalized IsoparametricIsoparametric Formulation (GIF)Formulation (GIF)

� Material properties are sampled at the element nodes

� Iso-parametric mapping provides material properties at 
integration points

� Natural extension of the conventional isoparametric
formulation
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( ) [ ]0, 3 2E x y E Exp x y= −
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General FE General FE ImplementationImplementation

� Variational Principle (Potential):

( ) ( )
( ) ( )

( )
( )

' '' '

''

''

''

' ''

'' ' ' ' ''

' ''

"

" ''

''

1
,

2

,

Where,  is Potential,  are strains for body of volume ,

u

t t t t t

u

t t

t t

t

u

t t
C x t t t dt dt d

t t

u t
P x t t dt d

t
σ

σ

ε ε
ξ ξ

π ε

π
= = −

Ω =−∞ =−∞

=

Ω =−∞

∂ ∂
 = − − Ω  ∂ ∂

∂
− − Ω

∂

Ω

∫ ∫ ∫

∫ ∫

'

9

� Stationarity forms the basis for problem description:
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NonNon--Homogeneous Viscoelastic FEMHomogeneous Viscoelastic FEM

� Equilibrium:

� Solution approaches:

1. Correspondence Principle (CP)
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2. Time-Integration Schemes

� Recursive Formulation

ã(s) is Laplace transform of a(t); s is transformation variable
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NonNon--Homogeneous Viscoelastic FEMHomogeneous Viscoelastic FEM

1. Correspondence Principle (CP)

� Benefits:

– Solution does not require evaluation of hereditary integral

– Direct extension of elastic formulations

� Limitations:

– Inverse transformations are computationally expensive 

– Transform/Convolution should exist for material model and – Transform/Convolution should exist for material model and 
boundary conditions 

2. Time-Integration Schemes (Recursive formulation)

� Benefits:

– Fewer limitations on material model and boundary conditions

� Limitations:

– Convergence studies are required to determine time step size

– Elaborate formulation and implementation
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Time Integration ApproachTime Integration Approach

� Above could be solved sequentially using 
Newton-Cotes expansion (material history 
effect needs to be considered)
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� Alternatively, recursive formulation could be 
developed that requires only few previous 
solutions
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TimeTime--Integration AnalysisIntegration Analysis

Recursive Formulation (extension from Yi and Hilton, 1994):
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Verification examples:

1. Analytical solution (Stress relaxation shown here)

2. Comparison with commercial software

S. Yi, and H.H. Hilton, (1994) "Dynamic finite element analysis of viscoelastic composite plates in 
the time domain," International Journal for Numerical Methods in Engineering, 37:4081-96.
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Analytical Solution

Step = 0.1 sec

Step = 0.2 sec

Step = 0.5 sec

Step = 1 sec
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Verification: Analytical SolutionVerification: Analytical Solution
Analytical Solution

Step = 0.1 sec

Step = 0.2 sec

Step = 0.5 sec

Step = 1 sec
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ExampleExample--1: Full Depth AC Pavement1: Full Depth AC Pavement
� Based on I-155, Lincoln IL

� Single Tire load simulated (up to 1000 sec loading time)

� Aged material properties (Apeagyei et al., 2008)

� Surface of AC: Long term aged

� Bottom of AC: Short term aged
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A.K. Apeagyei, W.G. Buttlar, and B.J. Dempsey, (2008) "Investigation of Cracking Behavior of 
Antioxidant-Modified Asphalt Mixtures," Journal of Asphalt Paving Technologists, Vol. 77.



ExampleExample--1: FEM 1: FEM DiscretizationDiscretization

Coarse Mesh Fine Mesh

6 Layers

� Two mesh refinement levels: (material distributions)

� Coarse mesh: Graded and Homogeneous simulations

� Fine Mesh: Layered simulations
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FGM

Layered Gradation

Aged (Homogeneous)
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ExampleExample--1: Strain at Bottom of AC1: Strain at Bottom of AC
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ExampleExample--1: FGM vs. Layered1: FGM vs. Layered
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Example 2: Boundary Layer ModelExample 2: Boundary Layer Model

� Displacement loading for Mode-I: (Kim, 2003)
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( ) ( )2 sin 1 cos
2 2 2

g θ κ= + −  

J.H. Kim,"Mixed-Mode Crack Propagation in Functionally Graded Materials," Doctorate Thesis, University of 
Illinois at Urbana-Champaign, Urbana, IL, 2003.



Material PropertiesMaterial Properties

� Radial Gradation:
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Viscoelastic Results,  Peak Normal  StressesViscoelastic Results,  Peak Normal  Stresses
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Viscoelastic Results, Shear StressesViscoelastic Results, Shear Stresses

Compliant Stiff
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FGM, r/R = 0.0122 FGM, r/R = 0.288



SummarySummary

� Viscoelastic graded finite elements using GIF are 
proposed

� Recursive formulation is utilized for time-integration 
analysis

� Verifications are performed by comparison of present 
approaches with:

– Analytical solutions
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– Analytical solutions

– Commercial software (ABAQUS)

� Application Examples:

– Aged Asphalt Pavement

– Boundary layer model for fracture analysis of viscoelastic 
FGM



ConclusionsConclusions

� Aging and temperature dependent property 
gradients should be considered in simulation of 
asphalt pavements

� Non-homogeneous viscoelastic analyses 
procedures presented here are suitable and 
preferred for simulation of asphalt pavement 
systemssystems

� Proposed procedures yield greater accuracy and 
efficiency over conventional approaches

� Layered gradation approach can yield significant 
errors

– Most pronounced errors are at layer interfaces in the 
stress and strain quantities.
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Thank you for your attention!!Thank you for your attention!!
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Other Applications and Future ExtensionsOther Applications and Future Extensions

Applications and ExtensionsApplications and Extensions

Transition Layers Characteristics
Micromechanical Predictions

Graded Viscoelastic + 
Stress Dependent Model
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Applications and ExtensionsApplications and Extensions

Design of Viscoelastic 

FGMs

( , )E x t

Analysis of graded viscoelastic 
materials:
• Metals at high temperature
• Polymers
• Geotechnical materials
• PCC/FRC
• Biomaterials
• Food industry

Other material models:
• 2S2P1D
• Power law etc.

ABAQUS UMAT Subroutine 


