

Functionally Graded Viscoelastic Model for Asphalt Concrete

- Motivation and Introduction
- Viscoelastic FGM Finite Elements
- Time Integration Analysis
- Application Examples:
 - Asphalt Pavement
 - Boundary Layer Model for Fracture
- Summary and Conclusions

Asphalt Pavements are Non-Homogeneous Structures

- Sources of Non-Homogeneity:
 - 1. Oxidative aging
 - 2. Temperature dependence of material properties
 - 3. Other sources (construction, additives etc.)

Aging gradient generated using "Global aging model" by Mirza and Witczak (1996)

Temperature profiles generated using "EICM" from AASHTO MEPDG (2002)

M.W. Mirza, and M.W. Witczak, (1996) "Development of a global aging system for short and long term aging of asphalt cements," Journal of Asphalt Paving Technologists, Vol. 64 393-430.

Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP Project 1-37A Final Report, 2002.

3

Objectives

- Develop efficient and accurate simulation scheme for asphalt concrete pavements
- Account for:
 - Aging gradients
 - Temperature dependent property gradients
- Viscoelastic analysis
 - a) Correspondence Principle (Dave et al., 2009)
 - b) Time Integration Scheme (current presentation)
- Applications: (selected examples discussed here)
 - Asphalt concrete pavements and overlay systems
 - Boundary layer fracture analysis

E.V. Dave, G.H. Paulino, and W.G. Buttlar, (2009) " Viscoelastic functionally graded finite element method using correspondence principle," Journal of Materials in Civil Engineering, 2009 (inreview) 5

Viscoelasticity: Basics

Constitutive Relationship:

$$\sigma(x,t) = \int_{t'=-\infty}^{t'=t} C(x,\xi-\xi') \frac{\partial \mathcal{E}(x,t')}{\partial t'} dt'$$

 σ : Stresses, $C(x,\xi)$: Relaxation Modulus, ε : Strains

Graded Finite Elements

 Graded Elements: Account for material non-homogeneity within elements unlike conventional (homogeneous) elements

- Lee and Erdogan (1995) and Santare and Lambros (2000)
 - Direct Gaussian integration (properties sampled at integration points)
- Kim and Paulino (2002)
 - Generalized isoparametric formulation (GIF)
- Paulino and Kim (2007) and Silva et al. (2007) further explored GIF graded elements
 - Proposed patch tests
 - GIF elements should be preferred for multiphysics applications

J.B.Utith, and et. Habau(iAQ, Q60)) dependents graded in the edmonts graded for the provided of t

Generalized Isoparametric Formulation (GIF)

- Material properties are sampled at the element nodes
- Iso-parametric mapping provides material properties at integration points
- Natural extension of the conventional isoparametric formulation

General FE Implementation

Variational Principle (Potential):

$$\begin{aligned} \boldsymbol{\mathcal{T}} &= \int_{\Omega_{u}} \int_{t'=-\infty}^{t'=t} \int_{t'=-\infty}^{t'=t-t'} \frac{1}{2} C \Big[x, \boldsymbol{\xi} \big(t-t'' \big) - \boldsymbol{\xi}' \big(t' \big) \Big] \frac{\partial \boldsymbol{\varepsilon} \big(t' \big)}{\partial t'} \frac{\partial \boldsymbol{\varepsilon} \big(t'' \big)}{\partial t''} dt'' d\Omega_{u} \\ &- \int_{\Omega_{\sigma}} \int_{t'=-\infty}^{t'=t} P \big(x, t-t'' \big) \frac{\partial u \big(t'' \big)}{\partial t''} dt'' d\Omega_{\sigma} \end{aligned}$$

Where, π is Potential, ε are strains for body of volume Ω_{μ} ,

P is the prescribed traction on surface Ω_{σ} and *u* is the corresponding displacement

Stationarity forms the basis for problem description:

$$\begin{split} \boldsymbol{\delta} \boldsymbol{\pi} &= \int_{\Omega_{u}} \int_{t^{'}=-\infty}^{t^{'}=t} \int_{t^{'}=-\infty}^{t^{'}=t-t^{'}} \left\{ C \left[x, \boldsymbol{\xi} \left(t-t^{''} \right) - \boldsymbol{\xi}^{'} \left(t^{'} \right) \right] \frac{\partial \boldsymbol{\varepsilon} \left(t^{'} \right)}{\partial t^{'}} \frac{\partial \boldsymbol{\delta} \boldsymbol{\varepsilon} \left(t^{''} \right)}{\partial t^{''}} \right\} dt^{'} dt^{''} d\Omega_{u} \\ &- \int_{\Omega_{\sigma}} \int_{t^{''}=-\infty}^{t^{''}=t} P \left(x, t-t^{''} \right) \frac{\partial \boldsymbol{\delta} u \left(t^{''} \right)}{\partial t^{''}} dt^{''} d\Omega_{\sigma} = 0 \end{split}$$

*Non-Homogeneous Viscoelastic FEM*Equilibrium:

$$K_{ij}\left(x,\xi(t)\right)u_{j}\left(0\right)+\int_{0^{+}}^{t}K_{ij}\left(x,\xi(t)-\xi(t')\right)\frac{\partial u_{j}\left(t'\right)}{\partial t'}dt'=F_{i}\left(x,t\right)$$

Solution approaches:
 1. Correspondence Principle (CP)

$$\left[K^{0}(x)s\tilde{K}^{t}(s)\right]_{ij}\tilde{u}_{j}(s) = \tilde{F}_{i}(x,s)$$

 $\tilde{a}(s)$ is Laplace transform of a(t); s is transformation variable

$$\tilde{a}(s) = \int_{0}^{\infty} a(t) Exp[-st]dt$$

2. Time-Integration Schemes

Recursive Formulation

Non-Homogeneous Viscoelastic FEM

1. Correspondence Principle (CP)

- Benefits:
 - Solution does not require evaluation of hereditary integral
 - Direct extension of elastic formulations
- Limitations:
 - Inverse transformations are computationally expensive
 - Transform/Convolution should exist for material model and boundary conditions

2. Time-Integration Schemes (Recursive formulation)

- Benefits:
 - Fewer limitations on material model and boundary conditions
- Limitations:
 - Convergence studies are required to determine time step size
 - Elaborate formulation and implementation

Time Integration Approach

$$K_{ij}(x,\xi)u_{j}(0) + \int_{0^{+}}^{t} K_{ij}(x,\xi-\xi')\frac{\partial u_{j}(t')}{\partial t'}dt' = F_{i}(x,t)$$

 Above could be solved sequentially using Newton-Cotes expansion (material history effect needs to be considered)

$$u_{j}(t_{n}) = \left[K_{ij}(x,0) + K_{ij}(\xi_{n} - \xi_{n-1})\right]^{-1} \begin{cases} 2F_{i}(t_{n}) - \left[K_{ij}(\xi_{n}) - K_{ij}(\xi_{n} - \xi_{1})\right]u_{j}(0) \\ -\sum_{m=1}^{n-1}\left[K_{ij}(\xi_{n} - \xi_{m-1}) - K_{ij}(\xi_{n} - \xi_{m+1})\right]u_{j}(t_{m}) \end{cases}$$

 Alternatively, recursive formulation could be developed that requires only few previous solutions

Time-Integration Analysis

Recursive Formulation (extension from Yi and Hilton, 1994):

$$\begin{split} &\left[\sum_{h=1}^{m} \left(K_{ij}^{e}\left(x\right)\right)_{h} \cdot \left[\left(v_{ij}^{1}\left(x,t_{n}\right)\right)_{h} \Delta t - \left(v_{ij}^{2}\left(x,t_{n}\right)\right)_{h}\right] \frac{2}{\Delta t^{2}}\right] u_{j}\left(t_{n}\right) = F_{i}\left(t_{n}\right) \\ &+ \sum_{h=1}^{m} \left[\left[\left(K_{ij}^{e}\left(x\right)\right)_{h} \cdot Exp\left[-\frac{\xi\left(t_{n}\right)}{\left(\tau_{ij}\left(x\right)\right)_{h}}\right]\right] \left\{\left(v_{ij}^{1}\left(x,t_{n-1}\right)\right)_{h}\left[u_{j}\left(t_{n-1}\right)\frac{2}{\Delta t} + \dot{u}_{j}\left(t_{n-1}\right)\right)\right] \\ &- \frac{2}{\Delta t^{2}}\left(v_{ij}^{2}\left(x,t_{n-1}\right)\right)_{h}\left[u_{j}\left(t_{n-1}\right) + \dot{u}_{j}\left(t_{n-1}\right)\Delta t\right] - u_{i}\left(t_{0}\right) + \left(v_{ij}^{1}\left(x,t_{0}\right)\right)\dot{u}_{j}\left(t_{0}\right)\right\} + \left(R_{i}\left(t_{n}\right)\right)_{h}\right] \end{split}$$

Where.

$$\left(v_{ij}^{1}(x,t_{n}) \right)_{h} = \int_{0}^{t_{n}} Exp \left[-\xi(t') / (\tau_{ij}(x))_{h} \right] dt'; \left(v_{ij}^{2}(x,t_{n}) \right)_{h} = \int_{t_{n-1}}^{t_{n}} \left(v_{ij}^{1}(x,t') \right)_{h} dt$$

$$\left(R_{i}(t_{n}) \right)_{h} = K_{ij}^{e} \cdot Exp \left[-\xi(t') / (\tau_{ij}(x))_{h} \right] \cdot \left(v_{ij}^{2}(x,t_{n}) \right)_{h} \ddot{u}_{j}(t_{n-1})$$

$$+ Exp \left[-\xi(t') / (\tau_{ij}(x))_{h} \right] \left(R_{j}(t_{n-1}) \right)_{h}$$

Verification examples: S. Yi, and H.H. Hilton, (1994) "Dynamic finite element analysis of viscoelastic composite plates in The Amadytaica Incolution of (Stressmeet a water and instromation), ere)81-96.

2. Comparison with commercial software

Example-1: Full Depth AC Pavement

- Based on I-155, Lincoln IL
- Single Tire load simulated (up to 1000 sec loading time)
- Aged material properties (Apeagyei et al., 2008)
 - Surface of AC: Long term aged
 - Bottom of AC: Short term aged

Example-1: FEM Discretization

- Two mesh refinement levels: (material distributions)
 - Coarse mesh: Graded and Homogeneous simulations
 - Fine Mesh: Layered simulations
- **Coarse Mesh** Fine Mesh 6 lavers \mathbf{x} 1 2.5 16 Lavers 0.5 e 372, Top 225 10 10⁵ 10⁴ 10³ 10² 150 10 10 0, Bottom Reduced Time (sec) Height of AC Layer (mm) 72150 DOFs 16 1867

Example 2: Boundary Layer Model Displacement loading for Mode-I: (Kim, 2003) $u_{i} = \frac{K_{I}}{G_{in}} \sqrt{\frac{r}{2\pi}} g_{i}^{I}(\theta);$ where, $g_1^I(\theta) = \cos\frac{\theta}{2} \left[\frac{1}{2} (\kappa - 1) + \sin^2\frac{\theta}{2} \right]$ and $g_2^{I}(\theta) = \sin \frac{\theta}{2} \left[\frac{1}{2} (\kappa + 1) - \cos^2 \frac{\theta}{2} \right]$ **∧** *y* x

J.H. Kim, "Mixed-Mode Crack Propagation in Functionally Graded Materials," Doctorate Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 2003.

Material Properties

Radial Gradation:

$$E(r,t) = \sum_{i=1}^{2} E_i(r) Exp\left(-\frac{t}{\tau_i(r)}\right);$$

$$E_i(r) = E_0 Exp\left(a\frac{r}{R}\right);$$

$$\tau_1(r) = b\left(1 + \frac{r}{R}\right)^c; \ \tau_2(r) = d\left(1 - Exp\left(e\frac{r}{R}\right)\right)$$

a, b, c, d, and e are all scalar material constants

Viscoelastic Results, Peak Normal Stresses

Summary

- Viscoelastic graded finite elements using GIF are proposed
- Recursive formulation is utilized for time-integration analysis
- Verifications are performed by comparison of present approaches with:
 - Analytical solutions
 - Commercial software (ABAQUS)
- Application Examples:
 - Aged Asphalt Pavement
 - Boundary layer model for fracture analysis of viscoelastic FGM

Conclusions

- Aging and temperature dependent property gradients should be considered in simulation of asphalt pavements
- Non-homogeneous viscoelastic analyses procedures presented here are suitable and preferred for simulation of asphalt pavement systems
- Proposed procedures yield greater accuracy and efficiency over conventional approaches
- Layered gradation approach can yield significant errors
 - Most pronounced errors are at layer interfaces in the stress and strain quantities.

Thank you for your attention!! Acknowledgement: USDOT Nextrans Research Center

Other Applications and Future Extensions

