
10th US National Congress on Computational Mechanics

ParTopS:

Compact Topological Framework for Parallel 

Fragmentation Simulations

Rodrigo Espinha1

Prof. Waldemar Celes1

Prof. Noemi Rodriguez1

Prof. Glaucio H. Paulino2

1. Computer Science Dept., Pontifical Catholic University of Rio de Janeiro, Brazil

2. Dept. of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign

Acknowledgement



10th US National Congress on Computational Mechanics 2

Motivation

• Large-scale fragmentation simulations using extrinsic 
cohesive models 
– Evolutive problems in space and time

– Cohesive elements inserted dynamically

– High mesh discretization level at crack tip region



10th US National Congress on Computational Mechanics 3

ParTopS1

• Parallel framework for finite element meshes

– Distributed mesh representation

• Extension of the TopS3,4 topological data structure

– Parallel algorithm for inserting cohesive elements

• Extension of the serial algorithm by Paulino et al.2

1. Espinha R, Celes W, Rodriguez N, Paulino GH (2009) ParTopS: compact topological framework for parallel fragmentation 

simulations. Engineering with Computers, doi:10.1007/s00366-009-0129-2 (in press)

2. Paulino GH, Celes W, Espinha R, Zhang Z (2008) A general topology-based framework for adaptive insertion of cohesive 

elements in finite element meshes. Engineering with Computers 24(1):59-78

3. Celes W, Paulino GH, Espinha R (2005) Efficient Handling of Implicit Entities in Reduced Mesh Representations. Journal of 

Computing and Information Science in Engineering, Special Issue on Mesh-Based Geometric Data Processing, 5(4), pp. 348-359

4. Celes W, Paulino GH, Espinha R (2005) A compact adjacency-based topological data structure for finite element mesh 

representation. Int J Numer Methods Eng 64(11):1529–1565



10th US National Congress on Computational Mechanics 4

Distributed mesh representation

• Sample mesh



10th US National Congress on Computational Mechanics 5

Distributed mesh representation

Communication layer

Proxy element
Proxy node

Ghost node



10th US National Congress on Computational Mechanics 6

Topological entities

• Element

• Node

• Vertex

• Edge 

• Facet 
– Interface between elements



10th US National Congress on Computational Mechanics 7

Cohesive elements

• True extrinsic elements
– Inserted “on the fly”, where needed and when needed

– No element activation or springs

• Two-facet elements

• Inserted between two adjacent bulk elements

2D 3D



10th US National Congress on Computational Mechanics 8

Serial insertion of cohesive elements1

• Insert cohesive element at a facet shared by E1 and E2
1. Create cohesive element at facet

2. Traverse non-cohesive elements adjacent to edges of E2

• If E1 is not visited, duplicate edge and mid-nodes (if any)

3. Traverse non-cohesive elements adjacent to vertices of E2

• If E1 is not visited, duplicated vertex

E1 E2
E1 E2

1. Paulino GH, Celes W, Espinha R, Zhang Z (2008) A general topology-based framework for adaptive insertion of cohesive 

elements in finite element meshes. Engineering with Computers 24(1):59-78



10th US National Congress on Computational Mechanics 9

Parallel insertion of cohesive elements

• Simulation loop

– At each step

• Analysis application identifies fractured facets 

• Insert cohesive elements

1. Insert elements at local / proxy facets (serial algorithm)

2. Update new proxy entities

3. Update affected ghost entities



10th US National Congress on Computational Mechanics 10

Identification of fractured facets



10th US National Congress on Computational Mechanics 11

1. Insert elements at local and proxy facets

• Modified serial algorithm
– Local topological consistency 

– All copies of a new element or node are owned by the same partition

– Ghost nodes are not duplicated at this moment
• Due to dependence on remote information



10th US National Congress on Computational Mechanics 12

1. Insert elements at local and proxy facets

• Uniform criterion for selecting proxy entity’s owner partition
– e.g. partition of the adjacent element with smallest id

• Symmetrical topological results in both partitions
– No need for communication to synchronize topology



10th US National Congress on Computational Mechanics 13

1. Insert elements at local and proxy facets

• At the end of Phase 1

– Local topology is consistent

– References from proxies to real entities still have to be computed



10th US National Congress on Computational Mechanics 14

2. Update new proxy entities

• Create references from the new proxy elements and nodes to the 
corresponding real entities
– Adjacent elements are used for requesting data



10th US National Congress on Computational Mechanics 15

2. Update new proxy entities

• Same procedure applied to nodes



10th US National Congress on Computational Mechanics 16

3. Update affected ghost entities

• Replace ghost nodes affected by remote cohesive elements
– “Per-element” approach

• Local elements adjacent to duplicated nodes are used to notify other partitions



10th US National Congress on Computational Mechanics 17

3. Update affected ghost entities



10th US National Congress on Computational Mechanics 18

Resulting mesh



10th US National Congress on Computational Mechanics 19

Verification

• Cluster of 12 machines
– Intel(R) Pentium(R) D processor 3.40 GHz (dual core) with 2GB of RAM, Gigabit 

Ethernet 

• Cohesive elements randomly inserted at 1% of internal facets x 50 steps

• Meshes with different discretizations and types of elements (T3, T6, Tet4, 
Tet10) 

10 x 1%



10th US National Congress on Computational Mechanics 20

Results



10th US National Congress on Computational Mechanics 21

Concluding remarks

• ParTopS: parallel topological framework 

– Dynamic insertion of cohesive elements

• True extrinsic cohesive elements

– Inserted “on the fly”, where needed and when needed

• Generic branching patterns are supported

• General 2D or 3D meshes 

• Executed on a limited number of machines

– However, linear scaling is expected



10th US National Congress on Computational Mechanics 22

Next steps

• Other parallel adaptive operators

– E.g. refinement & coarsening

• Integrate mechanical analysis computer 

code



10th US National Congress on Computational Mechanics 23

Thank you!


