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Motivation

• Large-scale fragmentation simulations using extrinsic 
cohesive models 
– Evolutive problems in space and time

– Cohesive elements inserted dynamically

– High mesh discretization level at crack tip region
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ParTopS1

• Parallel framework for finite element meshes

– Distributed mesh representation

• Extension of the TopS3,4 topological data structure

– Parallel algorithm for inserting cohesive elements

• Extension of the serial algorithm by Paulino et al.2
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Distributed mesh representation

• Sample mesh
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Distributed mesh representation

Communication layer

Proxy element
Proxy node

Ghost node
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Topological entities

• Element

• Node

• Vertex

• Edge 

• Facet 
– Interface between elements
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Cohesive elements

• True extrinsic elements
– Inserted “on the fly”, where needed and when needed

– No element activation or springs

• Two-facet elements

• Inserted between two adjacent bulk elements

2D 3D
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Serial insertion of cohesive elements1

• Insert cohesive element at a facet shared by E1 and E2
1. Create cohesive element at facet

2. Traverse non-cohesive elements adjacent to edges of E2

• If E1 is not visited, duplicate edge and mid-nodes (if any)

3. Traverse non-cohesive elements adjacent to vertices of E2

• If E1 is not visited, duplicated vertex

E1 E2
E1 E2

1. Paulino GH, Celes W, Espinha R, Zhang Z (2008) A general topology-based framework for adaptive insertion of cohesive 

elements in finite element meshes. Engineering with Computers 24(1):59-78
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Parallel insertion of cohesive elements

• Simulation loop

– At each step

• Analysis application identifies fractured facets 

• Insert cohesive elements

1. Insert elements at local / proxy facets (serial algorithm)

2. Update new proxy entities

3. Update affected ghost entities
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Identification of fractured facets
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1. Insert elements at local and proxy facets

• Modified serial algorithm
– Local topological consistency 

– All copies of a new element or node are owned by the same partition

– Ghost nodes are not duplicated at this moment
• Due to dependence on remote information
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1. Insert elements at local and proxy facets

• Uniform criterion for selecting proxy entity’s owner partition
– e.g. partition of the adjacent element with smallest id

• Symmetrical topological results in both partitions
– No need for communication to synchronize topology
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1. Insert elements at local and proxy facets

• At the end of Phase 1

– Local topology is consistent

– References from proxies to real entities still have to be computed
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2. Update new proxy entities

• Create references from the new proxy elements and nodes to the 
corresponding real entities
– Adjacent elements are used for requesting data
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2. Update new proxy entities

• Same procedure applied to nodes
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3. Update affected ghost entities

• Replace ghost nodes affected by remote cohesive elements
– “Per-element” approach

• Local elements adjacent to duplicated nodes are used to notify other partitions
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3. Update affected ghost entities
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Resulting mesh
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Verification

• Cluster of 12 machines
– Intel(R) Pentium(R) D processor 3.40 GHz (dual core) with 2GB of RAM, Gigabit 

Ethernet 

• Cohesive elements randomly inserted at 1% of internal facets x 50 steps

• Meshes with different discretizations and types of elements (T3, T6, Tet4, 
Tet10) 

10 x 1%



10th US National Congress on Computational Mechanics 20

Results
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Concluding remarks

• ParTopS: parallel topological framework 

– Dynamic insertion of cohesive elements

• True extrinsic cohesive elements

– Inserted “on the fly”, where needed and when needed

• Generic branching patterns are supported

• General 2D or 3D meshes 

• Executed on a limited number of machines

– However, linear scaling is expected
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Next steps

• Other parallel adaptive operators

– E.g. refinement & coarsening

• Integrate mechanical analysis computer 

code
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Thank you!


