Large deflection analysis of planar solids based on the Finite Particle Method

Presenter: Ying Yu ${ }^{1,2}$
Advisors: Prof. Glaucio H. Paulino 1 Prof. Yaozhi Luo 2
Date: July $17^{\text {th }}$

1 Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, U.S. \& NSF
2 Space Structures Research Center, Zhejiang University, China

Outline

> Motivation of the Finite Particle Method (FPM)
$>$ Fundamentals of the FPM
$>$ Numerical Examples
$>$ Concluding Remarks
> Future Work

Motivation of the FPM

$>$ Structural nonlinear problems:

- large deformation, large rotation
$>$ Discontinuous problems:
- fracture, collapse, fragmentation

Methods:
$>$ Finite Element Method (FEM):

- general method
> Mesh-free Methods: (DEM, SPH, and others)
- suited for particulate material, such as sand and concrete

Motivation of the FPM

Finite Particle Method (FPM)

$>$ Based on Vector Mechanics

The procedure of this method is simple and unified. Without special considerations, strong nonlinear and discontinuous problems can be solved.

Ting, E.C., Shi, C., Wang, Y.K.: Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a planar frame element. J. Mech. 20, 113122 (2004)

Fundamentals of the FPM 1) Discretization of structure.

Assumptions:
> Particle
> Cell ("element" like)
$>$ The relationship between particle and element
$>$ The particle motion undergoes a time history.

Fundamentals of the FPM 2) Discrete Path

Assumptions:

> The effect due to geometrical changes within the time interval $t_{1}-t_{2}$ can be neglected
$>$ The use of infinitesimal strain and engineering stress for evaluating stresses and computing virtual work is feasible.

Fundamentals of the FPM

3) Particle Motion Equation

$$
\left.\sum_{i=1}^{n} f_{i x}^{i n t}\right|^{\sum_{i=1}^{n} f_{i y}^{e x t}+F_{\alpha y}^{e x t}} \xrightarrow{\longrightarrow \sum_{i=1}^{n} f_{i x}^{e x t}+F_{\alpha x}^{e x t}}
$$

α

$$
\sum_{i=1}^{n} f_{i y}^{i n t}
$$

Fundamentals of the FPM

 4)Evaluation of deformations and internal forcesa) Evaluate the rigid body motion

b) Use reverse motion to remove rigid translation and rotation

c) Use deformed coordinate to reduce element degree of freedom

f) Use forward motion to get the element back to the original position

g) Transform the internal force back to global coordinate

d) Calculate the internal force at the deformed coordinate system

Fundamentals of the FPM

5) Time Integration

To avoid iteration, explicit time integration is used..
If a second order, explicit, central difference time integrator is adopted:

Velocity:

$$
\dot{\boldsymbol{d}}_{n}=\frac{1}{2 \Delta t}\left(\boldsymbol{d}_{n+1}-\boldsymbol{d}_{n-1}\right)
$$

Acceleration: $\quad \ddot{\boldsymbol{d}}_{n}=\frac{1}{\Delta t^{2}}\left(\boldsymbol{d}_{n+1}-2 \boldsymbol{d}_{n}+\boldsymbol{d}_{n-1}\right)$.
Displacement: $\boldsymbol{d}_{n+1}=\left(\frac{2}{2+\mu \Delta t}\right) \frac{\Delta t^{2}}{m_{\alpha}}\left(\boldsymbol{F}_{\alpha}^{e x t}+\sum_{i=1}^{n} f^{e x t}-\sum_{i=1}^{n} f^{i n t}\right)$

$$
+\left(\frac{4}{2+\mu \Delta t}\right) \boldsymbol{d}_{n}-\left(\frac{2-\mu \Delta t}{2+\mu \Delta t}\right) \boldsymbol{d}_{n-1} .
$$

yuying @uiuc.edu 10th US National Congress on Computational Mechanics

Fundamentals of the FPM 6) Flow Chart

Numerical examples

1. A square plane subjected to an initial angular velocity

Goal: a) verify the accuracy of internal force evaluation
b) effect of the Young's modulus

Mass density: $\rho=1.0 \mathrm{~kg} / \mathrm{m}^{3}$ Young's modulus:

$$
\mathrm{E} 1=10 \mathrm{Mpa} ;
$$

$$
\mathrm{E} 2=1 \mathrm{Mpa} ;
$$

$$
\mathrm{E} 3=0.5 \mathrm{Mpa}
$$

Poisson's ratio: $v=0$ Thickness: $\quad \mathrm{h}=0.1 \mathrm{~m}$
yuying@uiuc.edu 10th US National Congress on Computational Mechanics

Numerical examples

1. A square plane subjected to an initial angular velocity

- Animation

The Young's modulus and initial angular velocity are the same in these two cases.

Numerical examples

1. A square plane subjected to an initial angular velocity

Displacement of point 1 in x direction

rigid body
(exact solution)
yuying@uiuc.edu 10th US National Congress on Computational Mechanics

Numerical examples

2. A square frame under tension and compression

Goal: test the capability of FPM in simulating large deformation of planar solids

$\begin{array}{ll}\text { Mass density: } \quad \rho=1.0 \mathrm{~kg} / \mathrm{m}^{3} & \text { width: } l=10 \mathrm{~m} \\ \text { Young's modulus: } E=10 \mathrm{pa} & \text { Poisson's ratio: } v=0\end{array}$

Numerical examples
 2. A square frame under tension

Modeled with 228 particles

yuying @uiuc.edu 10th US National Congress on Computational Mechanics

Numerical examples
 2. A square frame under compression

Modeled with 228 particles

yuying@uiuc.edu 10th US National Congress on Computational Mechanics

Numerical examples

2. A square frame under tension and compression

Compare with analytical solution of Euler beam

under tension

under compression
yuying@uiuc.edu 10th US National Congress on Computational Mechanics

Remarks on the Finite Particle Method

>1. FPM is based on the combination of the vector mechanics and numerical calculations. It enforces equilibrium on each particle.
>2. No iterations are used to follow nonlinear laws, and no matrices are formed. The procedures are quite simple and robust.
>3. The examples demonstrate performance and applicability of the proposed method on large deflection analysis of planar solids.

Future work

>1. Expand the present work into 3D;
>2. Use FPM in failure and collapse simulation.

yuying@uiuc.edu 10th US National Congress on Computational Mechanics

References

> Ying Yu, Yaozhi Luo. Motion analysis of deployable structures based on the rod hinge element by the finite particle method. Proc. IMechE Part G: J. Aerospace Engineering. 2009, 223: 1-10.
$>$ Ying Yu, Yaozhi Luo. Finite particle method for kinematically indeterminate bar assemblies. J Zhejiang Univ Sci A. 2009, 10 (5): 667-676.
$>$ Ying Yu, Glaucio Paulino, Yaozhi Luo. Finite particle method for progressive failure simulation of framed structures . (finished and will be submitted for publication)

Thank you!!

a) Evaluate the rigid body motion

translation
rotation $\Delta \theta=\frac{1}{3} \sum_{i=1}^{3} \Delta \beta_{i}$
b) Using reverse motion to remove rigid translation and rotation

$\mathbf{R}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$

$$
\begin{aligned}
\mathbf{u}_{i}^{d} & =\mathbf{u}_{i}-\mathbf{u}_{i}^{r} \\
& =\Delta \mathbf{d}_{i}-\Delta \mathbf{d}_{1}-(\mathbf{R}-\mathbf{I})\left(\mathbf{x}_{i}-\mathbf{x}_{1}\right), \quad(i=1,2,33)
\end{aligned}
$$

c) Using deformation coordinate to reduce element degree of freedom

$$
\begin{aligned}
& \hat{\mathbf{e}}_{1}=\left\{\begin{array}{c}
l_{1} \\
m_{1}
\end{array}\right\}=\frac{1}{\left|u_{2}^{d}\right|}\left\{\begin{array}{l}
u_{2 x}^{d} \\
u_{2 y}^{d}
\end{array}\right\} \\
& \hat{\mathbf{e}}_{2}=\left\{\begin{array}{c}
-m_{1} \\
l_{1}
\end{array}\right\} \\
& \hat{\mathbf{x}}=\hat{\mathbf{Q}}\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
& \hat{\mathbf{Q}}=\left\{\begin{array}{c}
\hat{\mathbf{e}}_{1}^{T} \\
\hat{\mathbf{e}}_{2}^{T}
\end{array}\right\}=\left[\begin{array}{cc}
l_{1} & m_{1} \\
-m_{1} & l_{1}
\end{array}\right]
\end{aligned}
$$

d) Calculate the internal force at the deformation

coordinate

$$
\begin{array}{lll}
\hat{u}=N_{1} \hat{u}_{1}+N_{2} \hat{u}_{2}+N_{3} \hat{u}_{3} & \begin{array}{l}
\hat{u}=N_{2} \hat{u}_{2}+N_{3} \hat{u}_{3} \\
\hat{v}=N_{1} \hat{v}_{1}+N_{2} \hat{v}_{2}+N_{3} \hat{v}_{3}
\end{array} & \begin{array}{l}
\hat{x}_{1}=\hat{y}_{1}=0 \\
\hat{u}_{1}=\hat{v}_{1}=\hat{v}_{2}=0
\end{array}
\end{array} \begin{aligned}
& \hat{v}=N_{3} \hat{v}_{3}
\end{aligned}
$$

Principle of virtual work:

$$
\left\{\begin{array}{l}
f_{2 x}^{\prime} \\
f_{3 x}^{\prime} \\
f_{3 y}^{\prime}
\end{array}\right\}=\left\{\begin{array}{l}
f_{2 x a} \\
f_{3 x a} \\
f_{3 y a}
\end{array}\right\}+\left\{\begin{array}{l}
\Delta f_{2 x}^{\prime} \\
\Delta f_{3 x}^{\prime} \\
\Delta f_{3 y}^{\prime}
\end{array}\right\}=\left\{\begin{array}{l}
f_{2 x a} \\
f_{3 x a} \\
f_{3 y a}
\end{array}\right\}+\left[t \int_{A} \mathbf{B}^{T} \mathbf{E} \mathbf{B} d A\right]\left\{\begin{array}{l}
\delta \hat{u}_{2 x} \\
\delta \hat{u}_{3 x} \\
\delta v_{3 y}
\end{array}\right\}
$$

g) Transform the internal force back to global coordinate

$$
1_{\mathrm{a}}, 1^{\prime \prime}
$$

x

$$
\begin{gathered}
\hat{\mathbf{Q}}=\left\{\begin{array}{l}
\hat{\mathbf{e}}_{1}^{T} \\
\hat{\mathbf{e}}_{2}^{T}
\end{array}\right\}=\left[\begin{array}{cc}
l_{1} & m_{1} \\
-m_{1} & l_{1}
\end{array}\right] \\
\left\{\begin{array}{l}
f_{i x}^{\prime} \\
f_{i y}^{\prime}
\end{array}\right\}=\mathbf{Q}^{T}\left\{\begin{array}{l}
\hat{f}_{i x} \\
\hat{f}_{i y}
\end{array}\right\}, \quad i=1,2,3
\end{gathered}
$$

f) Using forward motion to get the element back to the original position

Transform the internal force back to the original direction

$$
\left\{\begin{array}{l}
f_{i x} \\
f_{i y}
\end{array}\right\}=\mathbf{R}\left\{\begin{array}{l}
f_{i x}^{\prime} \\
f_{i y}^{\prime}
\end{array}\right\}, \quad i=1,2,3
$$

