USNCCM-XI

11th US National Congress on Computational Mechanics Minneapolis July 25-29, 2011

جامعة الملك عبدالله

King Abdullah University of Science and Technology

لعلوم والتقنية

Identification of fracture properties for a cohesive model using digital image correlation

M. Alfano, G. Lubineau, A. Moussawi

Composite and Heterogeneous Materials Analysis and Simulations, King Abdullah University of Science and Technology Kingdom of Saudi Arabia

G. H. Paulino

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, USA

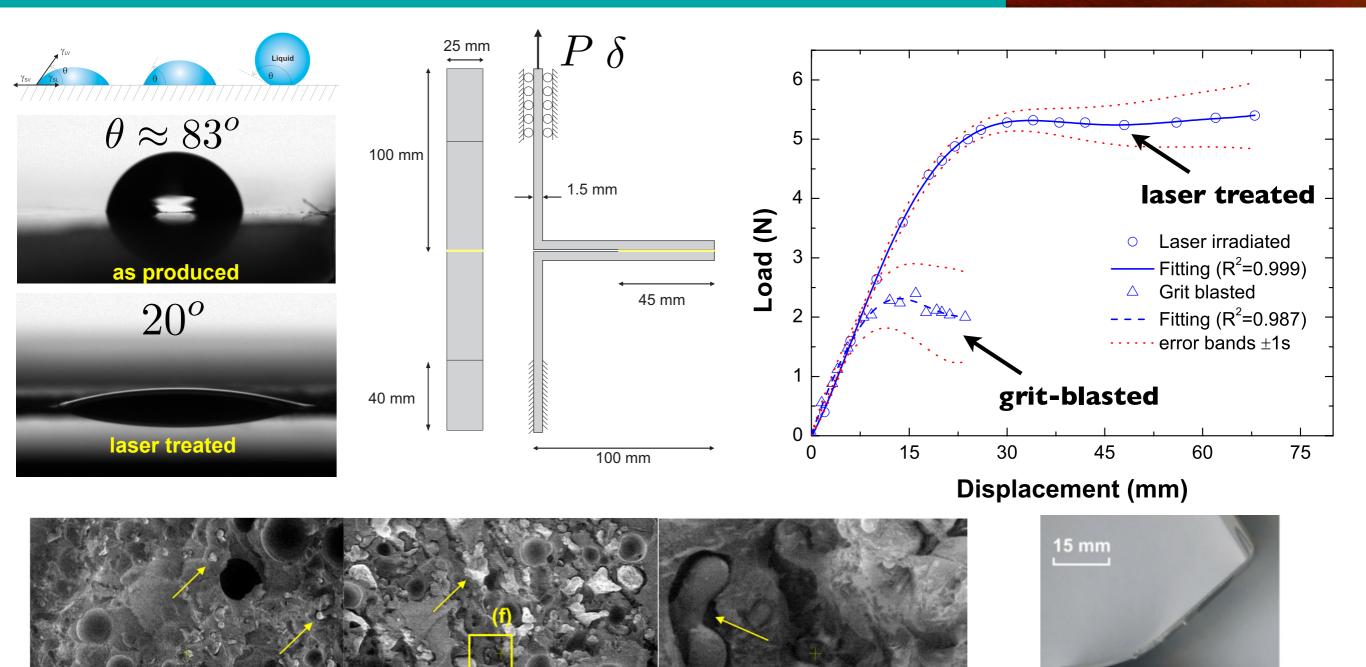
Minneapolis, July 25th 2011

- 1. Introduction and motivation
- 2. Objective
- 3. Proposed approach
- 4. Algorithm and implementation of the inverse procedure
- 5. Target applications and experimental set-up (current status)
- 6. Follow-up work

Introduction and motivations (1/4)

Mechanical testing

11th US NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS



Alfano M, Furgiuele F, Lubineau G, Paulino GH. Role of laser surface preparation on damage and decohesion of Al/epoxy joints. *Submitted for Journal publication*.

جامعة الملك عبدالله للعلوم والتقنية

AI/AI-Laser-2

Introduction and motivations (2/4)

Units

N/m

MPa

μm

40

30

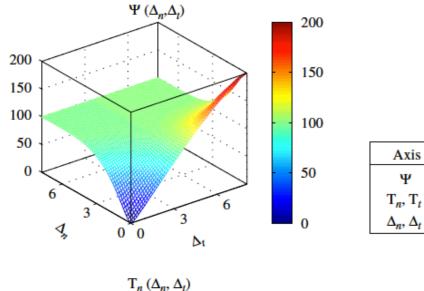
20

10

0

PPR based cohesive model

$$\Psi(\Delta_{n}, \Delta_{t}) = \min(\phi_{n}, \phi_{t}) + \left[\Gamma_{n}\left(1 - \frac{\Delta_{n}}{\delta_{n}}\right)^{\alpha}\left(\frac{m}{\alpha} + \frac{\Delta_{n}}{\delta_{n}}\right)^{m} + \langle\phi_{n} - \phi_{t}\rangle\right] \times \left[\Gamma_{t}\left(1 - \frac{|\Delta_{t}|}{\delta_{t}}\right)^{\beta}\left(\frac{n}{\beta} + \frac{|\Delta_{t}|}{\delta_{t}}\right)^{n} + \langle\phi_{t} - \phi_{n}\rangle\right].$$



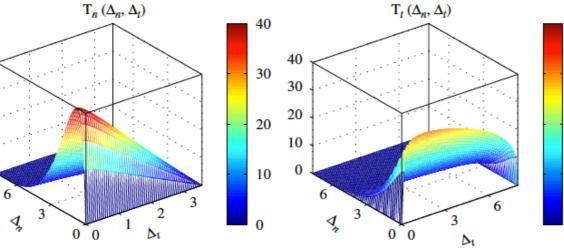
40

30

20

10

0



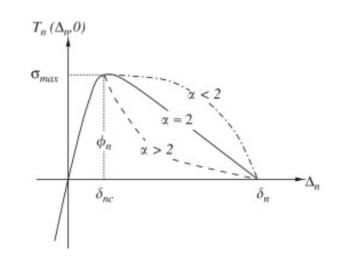
Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. *Journal of the Mechanics and Physics of Solids*. 2009;57(6):891-908.

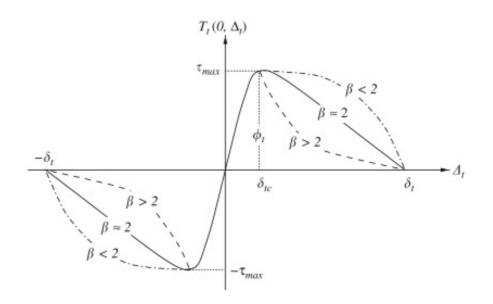
11th US NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS

- δ_n , δ_t characteristic length scale parameters
- $\bar{\delta}_n, \bar{\delta}_t$ normal and tangential conjugate final crack opening widths
- λ_{n}, λ_{t} initial slope indicators

 σ_{\max} , τ_{\max} normal and tangential cohesive strengths

- $\phi_{\rm n}, \phi_{\rm t}$ modes I and II fracture energies
- Ψ potential function for cohesive fracture
- α , β shape parameters in the PPR model





Introduction and motivations (3/4)

PPR for mode I fracture

$$\Psi(\Delta_n) = \phi_n + \Gamma_n \left(1 - \frac{\Delta_n}{\delta_n}\right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta_n}{\delta_n}\right)^m$$

$$\begin{aligned} T(\Delta_n) &= \frac{\partial \Psi}{\partial \Delta_n} = \\ &= \frac{\Gamma_n}{\delta_n} \left[m \left(1 - \frac{\Delta_n}{\delta_n} \right)^{\alpha} \left(\frac{m}{\alpha} + \frac{\Delta_n}{\delta_n} \right)^{m-1} - \alpha \left(1 - \frac{\Delta_n}{\delta_n} \right)^{\alpha-1} \left(\frac{m}{\alpha} + \frac{\Delta_n}{\delta_n} \right)^m \right] \end{aligned}$$

$$\Gamma_n = -\phi_n \left(\frac{\alpha}{m}\right)^m$$

$$m = \frac{\alpha \left(\alpha - 1\right) \lambda_n^2}{1 - \alpha \lambda_n^2}$$

$$\phi_n \to \omega \alpha^{-1} \left(\frac{\alpha}{m} - 1\right)$$

energy constant;

non-dimensional exponent;

 $\delta_n = \frac{\phi_n}{\sigma_{max}} \alpha \lambda_n \left(1 - \lambda_n\right)^{\alpha - 1} \left(\frac{\alpha}{m} + 1\right) \cdot \left(\frac{\alpha}{m} \lambda_n + 1\right)^{m - 1}$

final crack opening width;

$$\mathbf{X} = \{\phi_n, \sigma_{max}, \lambda_n, \alpha\}$$

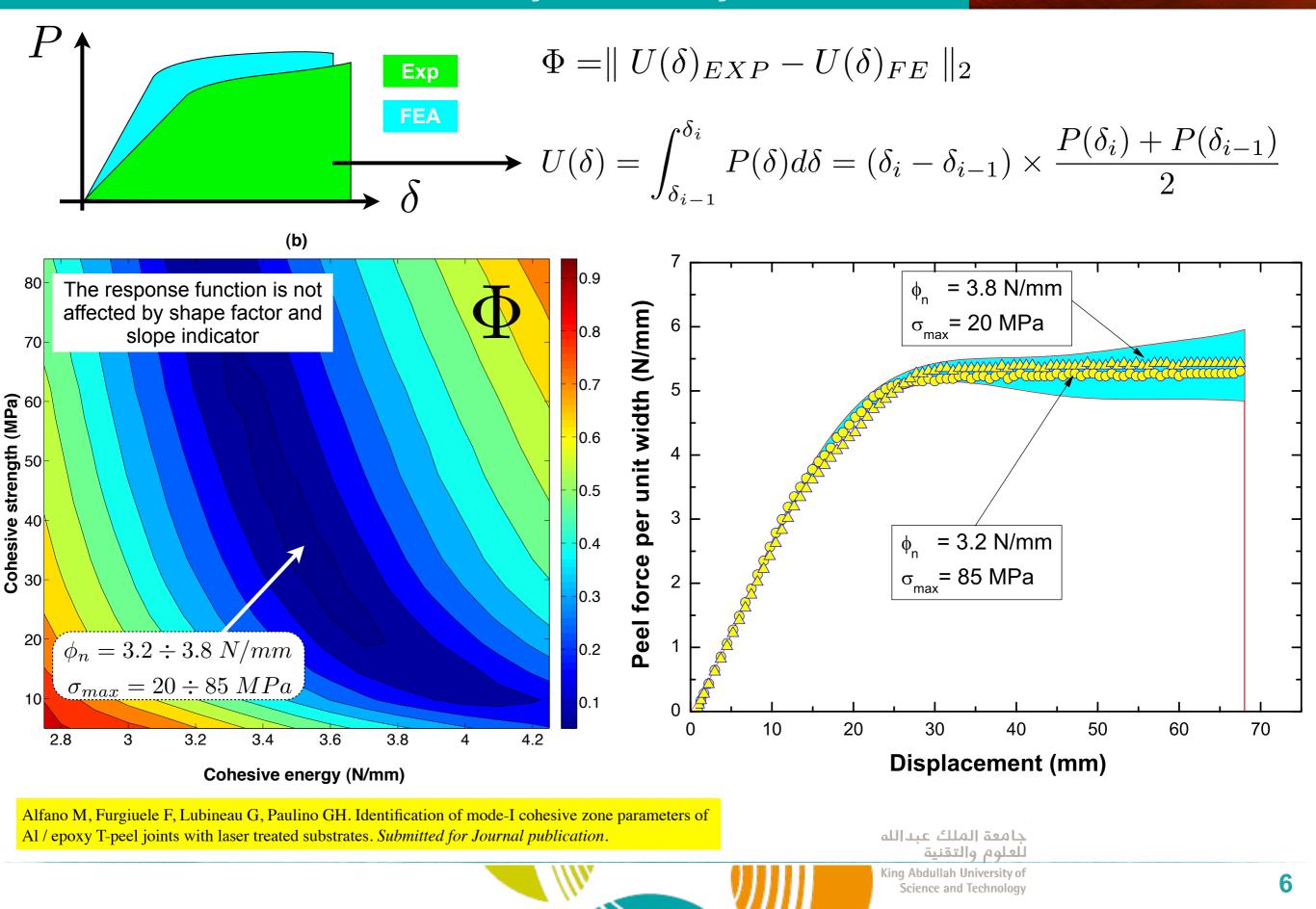
unknown properties to be identified

Park K, Paulino GH, Roesler JR. A unified potential-based cohesive model of mixed-mode fracture. *Journal of the Mechanics and Physics of Solids*. 2009;57(6):891-908.

Introduction and motivations (4/4)

Identification of bond toughness using the CZM

11th US NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS



➡ A global response is often obtained from experiments, however, it may have low sensitivity to certain cohesive properties.

➡The uniqueness of the obtained cohesive zone model is not guaranteed.

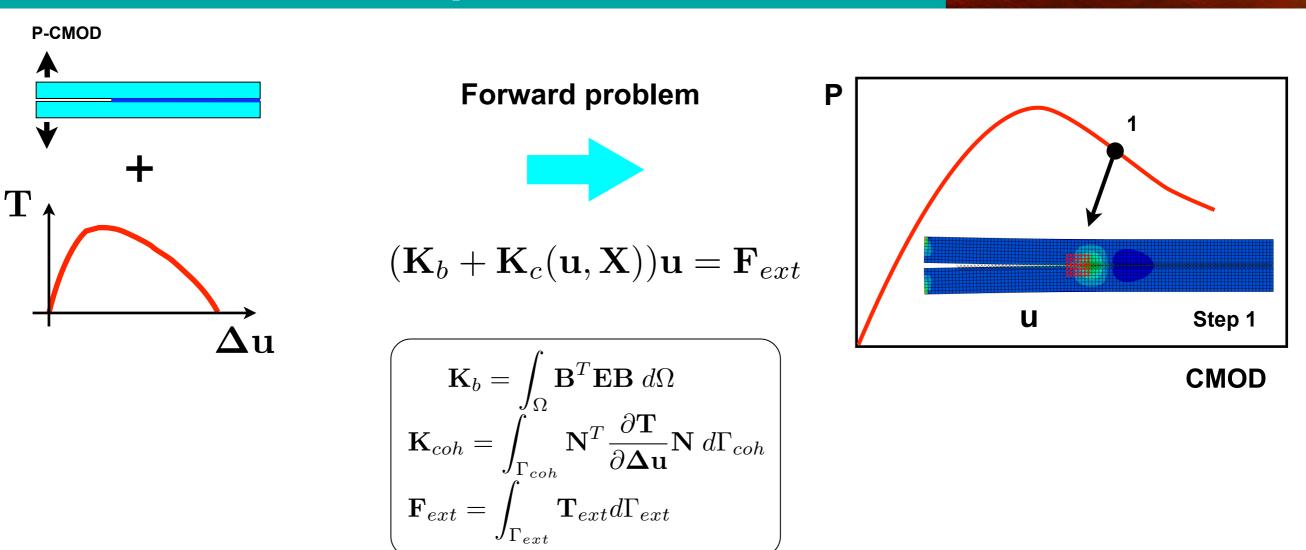
Although the cohesive models obtained using global data can yield satisfactory predictive capabilities in FEA simulations of fracture, the **development of an alternative procedure is needed**, e.g. to determine cohesive strength.

A solution may be provided by the original combination of experimental **full-field measurements** techniques and **inverse problems**.

Gain AL, Carroll J, Paulino GH, Lambros J. A hybrid experimental / numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials. *International Journal of Fracture*. 2011;169:113-131. Shen B, Paulino GH. Direct Extraction of Cohesive Fracture Properties from Digital Image Correlation: A Hybrid Inverse Technique. *Experimental Mechanics*. 2011;51(2):143-161.

Forward versus inverse problem

Forward problem



Principle of virtual work

$$\int_{\Omega} \boldsymbol{\sigma} : \delta \boldsymbol{\epsilon} \ d\Omega - \int_{\Gamma_{ext}} \mathbf{T}_{ext} \cdot \delta \boldsymbol{\Delta} \boldsymbol{u} \ d\Gamma_{ext} + \int_{\Gamma_{coh}} \mathbf{T}_{coh} \cdot \delta \boldsymbol{\Delta} \boldsymbol{u} \ d\Gamma_{coh} = 0$$

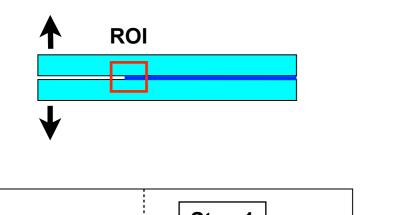
 $\begin{array}{l} \Omega: \text{specimen domain} \\ \Gamma_{ext}: \text{external boundary} \\ \Gamma_{coh}: \text{cohesive surfaces} \\ \boldsymbol{\Delta u}: \text{cohesive surfaces opening displacement} \\ \boldsymbol{\sigma}: \text{stress tensor} \\ \boldsymbol{\epsilon}: \text{strain tensor} \end{array}$

جامعة الملك عبدالله

للعلوم والتقنية

Forward versus inverse problem

Inverse problem (objective of the work)

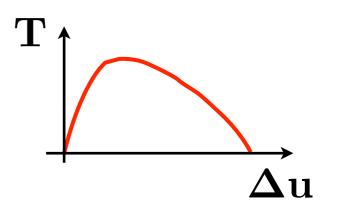


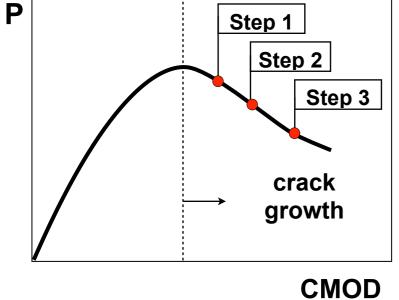
P-CMOD



 $\hat{\mathbf{X}} = \underset{\mathbf{X} \in \mathbb{R}^{M}}{\arg\min} \{ \Pi = \sum_{i=1} \omega_{i} \left(\mathbf{X} \right) \}$

$$\mathbf{X} = \{\phi_n, \sigma_{max}, \alpha, \lambda_n\}$$





 $\omega_i (\mathbf{X}) = \frac{1}{(U_{max,i})^2} \sum_{j=1}^{n_n} [u_{exp} - u(\mathbf{X})]_j^2$ m: available measurement instants (load levels) n_n : nodal displacements in the ROI

$$egin{aligned} \mathbf{u}(\mathbf{X}) = \mathbf{K}_b^{-1} \hat{\mathbf{F}}^{ext}(\mathbf{u}_{exp} \ ; \mathbf{X}) \ \hat{\mathbf{F}}^{ext}(\mathbf{u}_{exp} \ ; \mathbf{X}) = \mathbf{F}^{ext} - \mathbf{K}_c(\mathbf{u}_{exp} \ ; \mathbf{X}) \mathbf{u}_{exp} \end{pmatrix}$$

Optimization algorithm?

Exploration algorithm based on the mechanism of natural selection and genetics: the strongest **individuals (chromosomes)** in a **population** survive and generate offsprings.

A **chromosome** represents a generic solution of the problem, in our context a set of cohesive fracture parameters (**X**):

X
$$\Phi_n$$
 σ_{max} λ_n α

Basic steps of the GA

1. Random generation of the **initial population** (individuals **X**) satisfying suitable restraint conditions (e.g. fracture energy must not be negative);

2. The chromosomes are evaluated, using some measures of **fitness**. We defined the following **objective function (or cost function)**:

$$\begin{split} \omega_{i}\left(\mathbf{X}\right) &= \frac{1}{\left(U_{max,i}\right)^{2}} \sum_{j=1}^{n_{n}} \left[u_{exp} - u\left(\mathbf{X}\right)\right]_{j}^{2} \\ \hat{\mathbf{X}} &= \operatorname*{arg\,min}_{\mathbf{X} \in \mathbb{R}^{M}} \{\Pi = \sum_{i=1}^{m} \omega_{i}\left(\mathbf{X}\right)\} \\ m : \text{ available measurement instants (load levels)} \\ n_{n} : \text{ nodal displacements in the ROI} \end{split}$$

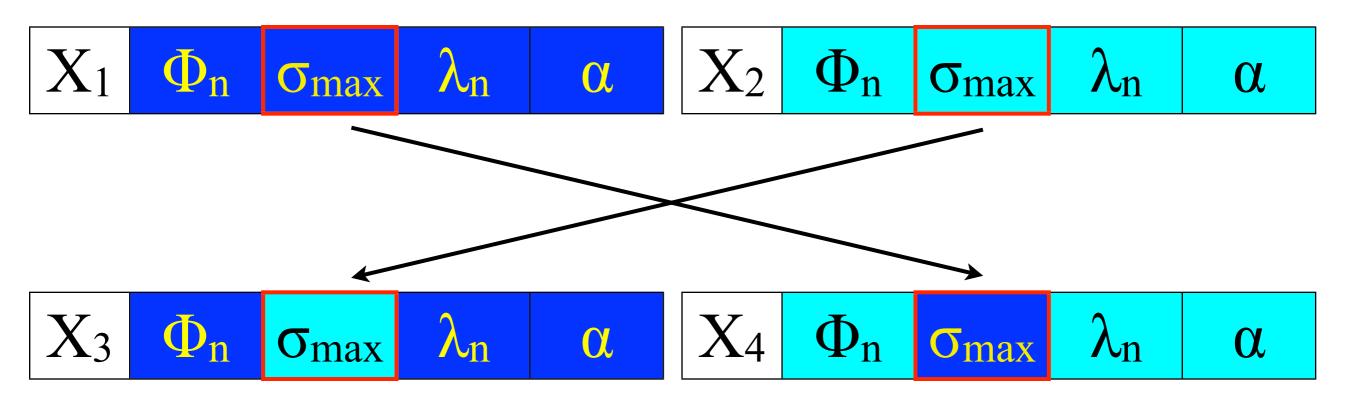
3. Individuals for **reproduction** are firstly chosen based on their fitness

4. and some of them are processed by means of **genetic operators** (crossover and mutation) to create a new populations

حامعة الملك عندالله

5. New chromosomes, called **offspring**, are formed by merging two chromosomes from current generation

Crossover (type 1)

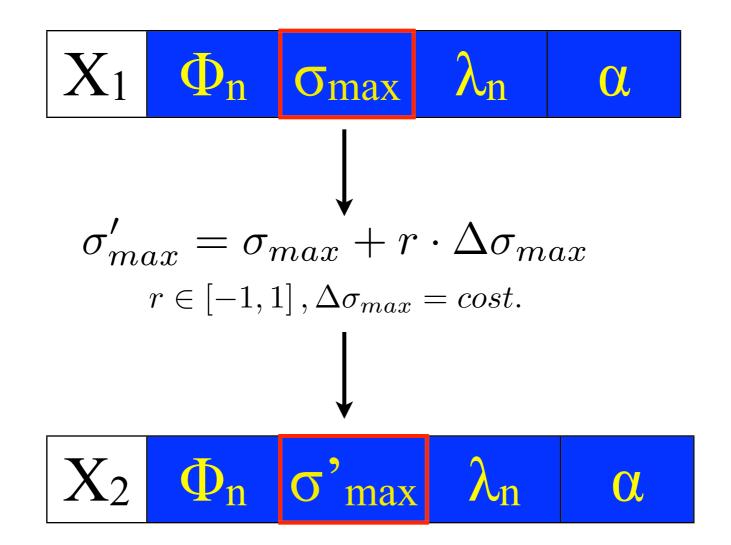


Crossover (type 2)

$$\mathbf{X}_3 = a \cdot \mathbf{X}_1 + (1 - a) \cdot \mathbf{X}_2$$
$$\mathbf{X}_4 = (1 - a) \cdot \mathbf{X}_1 + a \cdot \mathbf{X}_2$$

$$a \in [0,1]$$

5. New chromosomes are also formed by modifying a chromosome using a mutation operator

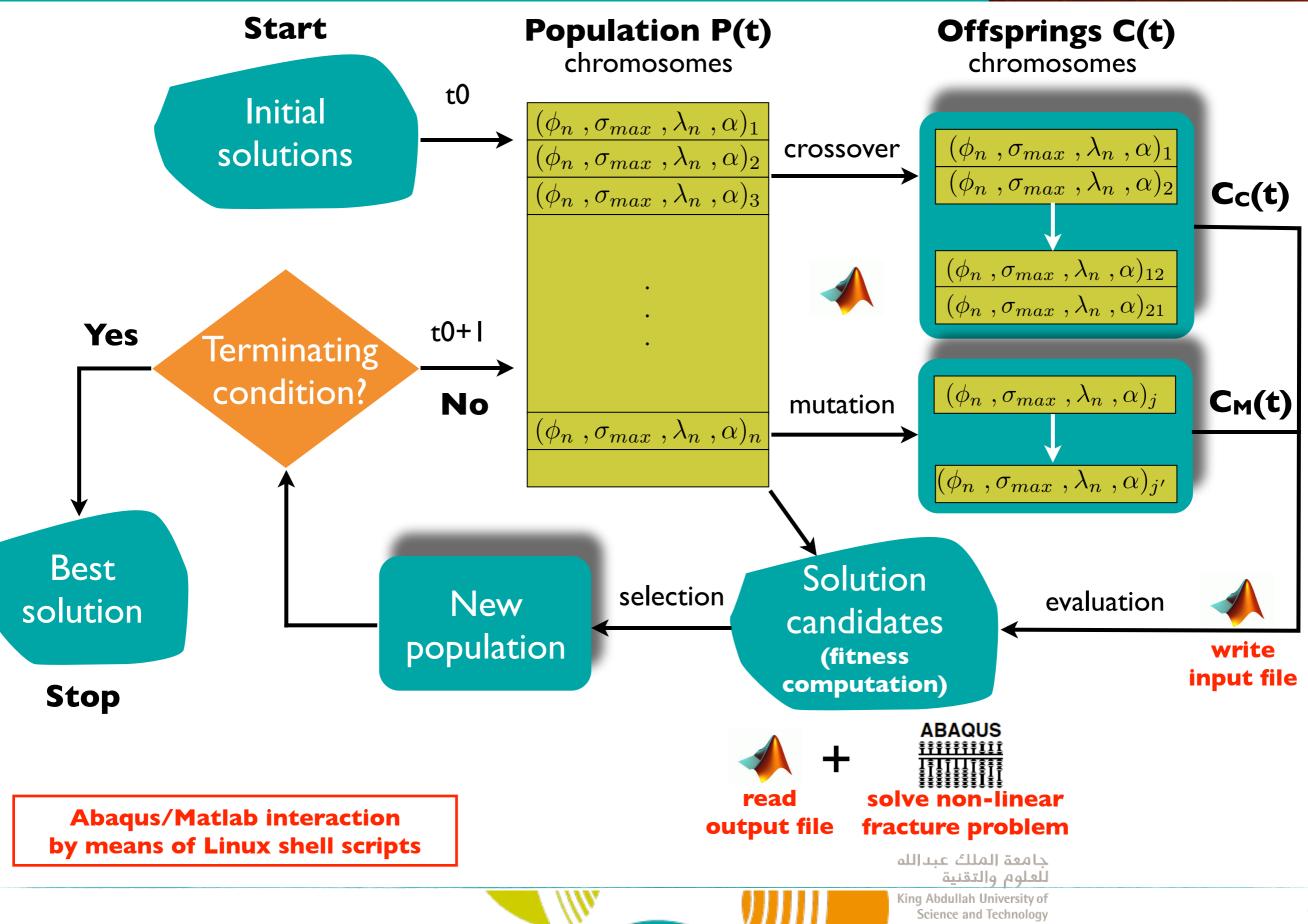


6. The newly created population replace the old one and the process restarts.

Genetic algorithm

Fundamentals concepts

11th US NATIONAL CONGRESS ON COMPUTATIONAL MECHANICS



Target applications and experimental set-up

current status

Material processing - DCB with metal and composites substrates

Full-field experimental measurements

(http://cohmas.kaust.edu.sa)

Science and Technology

