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Motivation

• Microfluidics consists of handling and analyzing fluids in structures at the 

micro scale. The microscale offers new design opportunities as the existing 

devices may not work properly.
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A device constructed using in situ construction 

techniques shows a channel network

with external fluidic connections
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Device for micro channel network for 

biochemical analysis
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– biochemical;

Kuczenski, B., W.C. Ruder, W.C. Messner, e P.R. LeDuc. “Probing Cellular Dynamics

with a Chemical Signal Generator.” PLoS ONE 4(3): e4847, 2009

Mixing system with a feedback control loop



Motivation

• Numerical instabilities such the “checkerboard” problem could appear in 

mixed variational formulation (pressure-velocity) of the Stokes flow 

problems.

Checkerboard on pressure distribution:
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Motivation

• The “checkerboard” problem also appears in topology optimization 

depending on the choice of dicretizations for design and response fields.
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Motivation

• In this work, we examine the use of polygonal discretization for solving the 

fluid flow problem.

• Our developments are based on PolyMesher/Polytop framework. A general 

topology optimization framework using unstructured polygonal finite element 

meshes.

• In particular, we consider constant pressure and velocity  based on 
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• In particular, we consider constant pressure and velocity  based on 

isoparametric polygonal elements.



Outline

• Polygonal Finite Element

• Stokes flow problems

• Implementation aspects
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• Numerical Results

• Concluding remarks

• Ongoing work



Polygonal Finite Element

• Isoparametric finite element formulation constructed using Laplace shape 

function.
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Pentagon Hexagon Heptagon

• The reference elements are regular n-gons inscribed in unit circles.

N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal finite element interpolants. 

2006. Archives of Computational Methods in Engineering, 13(1):129--163



Polygonal Finite Element

• Isoparametric finite element formulation constructed using Laplace shape 

function.
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• Isoparametric mapping

N. Sukumar and E. A. Malsch. Recent advances in the construction of polygonal finite element interpolants. 

2006. Archives of Computational Methods in Engineering, 13(1):129--163



Polygonal Finite Element

• Laplace shape function
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Non-negative

Linear completeness



Polygonal Finite Element

• Laplace shape function for regular polygons
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• Closed-form expressions can be obtained by employing a symbolic 

program such as Maple.



Polygonal Finite Element

• Numerical Integration
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Stokes flow problems

The dynamic properties of velocity and pressure for incompressible fluidic flows 

can be expressed using the incompressible Navier–Stokes equations as:

Tuu ⋅∇=∇⋅ρ

0u =⋅∇
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[ ]T
p uuIT ∇+∇+−= µ

where

u velocity field

p fluidic pressure

ρ fluidic density

µ fluidic viscosity



Implementation aspects

•Our implementation is based on PolyMesher and PolyTop.

• Automatic identification of 

boundary nodes and 
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elements

• Simplify the task of 

application of the boundary 

conditions



Numerical results:  In/Out Flow Problem
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Example:  In/Out Flow Problem (cont.)

Finite Element Meshes
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25x25 = 625 elements (4-gons)

625 elements (n-gons)



Contour Plot: Velocity Field (15x15 grid, 225 elements)

Example:  In/Out Flow Problem (cont.)
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(a) Q4/1D

(b) n-gons/1D



Contour Plot: Pressure Field (15x15 grid, 225 elements)

Example:  In/Out Flow Problem (cont.)
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(a) Q4/1D

(b) n-gons/1D



Contour Plot: Velocity Field (150x150 grid, 22500 elements)

Example:  In/Out Flow Problem (cont.)
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(a) Q9/3D

(b) n-gons/1D



Contour Plot: Pressure Field (150x150 grid, 22500 elements)

Example:  In/Out Flow Problem (cont.)
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(a) Q9/3D

(b) n-gons/1D



Convergence Analysis: In/Out Flow Problem 
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Coordinates of Point C:  (L/2, H/2)

Convergence Analysis:   Compute Velocity  “ux”  at Point  C



Convergence Analysis: In/Out Flow Problem (cont.) 

Results using Q4 (treated as 4-gons), Q9 and n-gons:
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Examples with “More Complex” Domains
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Curved Boundary



Examples with “More Complex” Domains
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Velocity Field



Examples with “More Complex” Domains
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Pressure Field



Examples with “More Complex” Domains
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Curved Domain



Examples with “More Complex” Domains
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Curved Domain: Velocity Field



Examples with “More Complex” Domains
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Curved Domain: Pressure Field



Concluding remarks

• Solutions of fluid flows problems may suffer from numerical 
instabilities depending on the choice of finite element approximation;

• The topology optimization formulation for design of milifluidics is part 
of ongoing work
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• Polygonal elements offer an attractive avenue for FEM formulation 
of fluids

• The present goal is to extend the PolyMesher/PolyTop framework 
for topology optimization of special fluids
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