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Property Gradients in Asphalt Pavements 

 Asphalt concrete exhibits heterogeneous behavior 

 Smooth gradients can be approximated for certain 
effects: 

– Oxidative Aging 

– Temperature Non-uniformity 
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Thin Bonded Asphalt Overlays (TBAO) 

 Use of specialized paving equipment for 
construction of TBAO  Graded System 
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          

 Kim and Paulino (2002)  
– Generalized isoparametric formulation (GIF) 

 Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements 
– Proposed patch tests 

– GIF elements should be preferred for multiphysics applications  
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          

 Kim and Paulino (2002)  
– Generalized isoparametric formulation (GIF) 

 Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements 
– Proposed patch tests 

– GIF elements should be preferred for multiphysics applications  

 Buttlar et al. (2006) demonstrated need of graded FE for 
asphalt pavements (elastic analysis) 

 Dave et al. (2011) presented viscoealstic graded elements 
using correspondence principle 
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Generalized Isoparametric Formulation for Finite 
Element Analysis of VFGMs 

 Material properties are sampled at the element nodes 

 Iso-parametric mapping provides material properties at 
integration points 

 Natural extension of the conventional isoparametric 
formulation 
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Constitutive Model 

 Constitutive Relationship: 

 

 

 

 

 Material Representation: Generalized Maxwell Model 

 

 

 

 

 

 Time-Temperature Superposition 
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Functionally Graded Viscoelastic Finite Element 

 Problem Description: 

 

 
 

 Solution approaches: 

1. Correspondence Principle (CP) 

 

 

 

 

 

 
 

2. Time-Integration Schemes 

 Direct Integration 

 Recursive Formulation 

 Recursive-Incremental Formulation 
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Time Integration Approach 

 Above could be solved sequentially using 
Newton-Cotes expansion (material history effect 
needs to be considered) 

 

 

 

 

 Alternatively, recursive formulation could be 
developed that requires only few previous 
solutions 
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Time-Integration Analysis 

Recursive Formulation (extension from Yi and Hilton, 1994): 

 

 

 

 

 

Where, 
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S. Yi, and H.H. Hilton, (1994) "Dynamic finite element analysis of 

viscoelastic composite plates in the time domain," International Journal for 
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Efficiency and Accuracy Comparison 

 Example: Cyclic Loading of Viscoelastic Body 
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Response of VE Body to Sinusoidal Loading 
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Response of VE Body to Sinusoidal Loading 
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Absolute Error and Simulation Time 
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Absolute Error and Simulation Time 
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Verification Example 
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Evaluation of Graded Properties of TBAO 

 Objective is to determine graded properties 

 

 

 

 

 

 

 

 

 

 Needed Information: 

– Quantification of tack-coat permeation into TBAO 

– Effect of tack coat on properties 
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Graded Property Determination 

 Research Approach: 

– Test asphalt concrete samples with different 
amounts of tack-coat emulsion 

– Use imaging technique to characterize tack-coat 
permeation 

 

 

 

 

 Experiment Matrix: 

–  2 Mixes 

 Gap Graded and Dense Graded 

–  Emulsion Added at 0, 0.5, 1.0, 1.5 and 2.0%  
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Effect of Tack Coat 
Viscoelastic Properties 
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Tack Coat Permeation 

 Scanned images from 
sliced field cores were 
utilized 

 Gray-scale intensities 
were determined using 
open-source software 
“Image J” 
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Graded Properties of TBAO 
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FE Pavement Model: Features 

 Asphalt: Viscoelastic FGM (Time, Temperature 
and Space Dependent) 

 Other Layers (PCC, Gran. Base, Subgrade): 
Elastic 

 Interfaces: Finite Slip Frictional Contact Interface  

 Fracture: Cohesive Zone Model 

 Pavement Temperature Variation 

– EICM (MEPDG) 
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Modeling Scenarios 

 Total four overlay types are simulated 

– Dense Graded 

 Homogeneous (Thin-Overlay) 

 Graded (TBAO) 

– Gap Graded 

 Homogeneous (Thin-Overlay) 

 Graded (TBAO) 

 Two loading scenario 

– Thermal cracking (critical event) 

– Reflective cracking (thermal + tire loading) 
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Simulation Results: Thermal Cracking 
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Simulation Results: Reflective Cracking 
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Summary and Findings 

 Viscoelastic functionally graded finite elements 
using recursive time integration scheme are 
proposed 

– Efficiency and accuracy is briefly demonstrated 

– Formulation and implementation is verified 

 Graded viscoelastic properties of thin bonded 
asphalt overlays have been estimated 

– VFGM finite elements were utilized for 
conducting simulations 

 TBAOs show better cracking resistance compared 
to thin overlays with same mixes and thickness 

– Testing and field data also supports this claim 

 Functionally graded material properties and 
models are needed for realistic analysis of TBAOs 
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Future Extensions 

 Improvement on evaluation of functionally 
graded bulk and fracture properties 

– NSF Project 1031218: A Hybrid Failure Approach 
using Digital Image Correlation for Functionally 
Graded Thin-Bonded Overlays  

 Improvements upon current testing and 
modeling approaches 

– Use of micromechanics to predict VFGM properties 

– Effect of material heterogeneity  
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Thank you for your attention!!! 
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Questions? 
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