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Property Gradients in Asphalt Pavements 

 Asphalt concrete exhibits heterogeneous behavior 

 Smooth gradients can be approximated for certain 
effects: 

– Oxidative Aging 

– Temperature Non-uniformity 
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Thin Bonded Asphalt Overlays (TBAO) 

 Use of specialized paving equipment for 
construction of TBAO  Graded System 
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          

 Kim and Paulino (2002)  
– Generalized isoparametric formulation (GIF) 

 Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements 
– Proposed patch tests 

– GIF elements should be preferred for multiphysics applications  
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Brief Overview of Graded Finite Elements 
 Graded Elements: Account for material 

non-homogeneity within elements unlike 
conventional (homogeneous) elements 
 

 Lee and Erdogan (1995) and Santare and Lambros (2000)  

– Direct Gaussian integration (properties sampled at integration points)          

 Kim and Paulino (2002)  
– Generalized isoparametric formulation (GIF) 

 Paulino and Kim (2007) and Silva et al. (2007) further 
explored GIF graded elements 
– Proposed patch tests 

– GIF elements should be preferred for multiphysics applications  

 Buttlar et al. (2006) demonstrated need of graded FE for 
asphalt pavements (elastic analysis) 

 Dave et al. (2011) presented viscoealstic graded elements 
using correspondence principle 
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Generalized Isoparametric Formulation for Finite 
Element Analysis of VFGMs 

 Material properties are sampled at the element nodes 

 Iso-parametric mapping provides material properties at 
integration points 

 Natural extension of the conventional isoparametric 
formulation 
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Constitutive Model 

 Constitutive Relationship: 

 

 

 

 

 Material Representation: Generalized Maxwell Model 

 

 

 

 

 

 Time-Temperature Superposition 
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Functionally Graded Viscoelastic Finite Element 

 Problem Description: 

 

 
 

 Solution approaches: 

1. Correspondence Principle (CP) 

 

 

 

 

 

 
 

2. Time-Integration Schemes 

 Direct Integration 

 Recursive Formulation 

 Recursive-Incremental Formulation 
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Time Integration Approach 

 Above could be solved sequentially using 
Newton-Cotes expansion (material history effect 
needs to be considered) 

 

 

 

 

 Alternatively, recursive formulation could be 
developed that requires only few previous 
solutions 
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Time-Integration Analysis 

Recursive Formulation (extension from Yi and Hilton, 1994): 
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Efficiency and Accuracy Comparison 

 Example: Cyclic Loading of Viscoelastic Body 
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Response of VE Body to Sinusoidal Loading 
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Response of VE Body to Sinusoidal Loading 
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Absolute Error and Simulation Time 
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Absolute Error and Simulation Time 

19 

Direct Integration 

Recursive Scheme 

Computation Time 

Absolute Error 

http://www.uiuc.edu/


Verification Example 
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Evaluation of Graded Properties of TBAO 

 Objective is to determine graded properties 

 

 

 

 

 

 

 

 

 

 Needed Information: 

– Quantification of tack-coat permeation into TBAO 

– Effect of tack coat on properties 
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Graded Property Determination 

 Research Approach: 

– Test asphalt concrete samples with different 
amounts of tack-coat emulsion 

– Use imaging technique to characterize tack-coat 
permeation 

 

 

 

 

 Experiment Matrix: 

–  2 Mixes 

 Gap Graded and Dense Graded 

–  Emulsion Added at 0, 0.5, 1.0, 1.5 and 2.0%  

 
23 

~
3

5
 m

m
 

~
1

0
 m

m
 

Asphalt binder 

content 

Upward migration of 

Tack-Coat forming 

graded overlay 

http://www.uiuc.edu/


Effect of Tack Coat 
Viscoelastic Properties 
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Tack Coat Permeation 

 Scanned images from 
sliced field cores were 
utilized 

 Gray-scale intensities 
were determined using 
open-source software 
“Image J” 
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Graded Properties of TBAO 
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FE Pavement Model: Features 

 Asphalt: Viscoelastic FGM (Time, Temperature 
and Space Dependent) 

 Other Layers (PCC, Gran. Base, Subgrade): 
Elastic 

 Interfaces: Finite Slip Frictional Contact Interface  

 Fracture: Cohesive Zone Model 

 Pavement Temperature Variation 

– EICM (MEPDG) 
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Modeling Scenarios 

 Total four overlay types are simulated 

– Dense Graded 

 Homogeneous (Thin-Overlay) 

 Graded (TBAO) 

– Gap Graded 

 Homogeneous (Thin-Overlay) 

 Graded (TBAO) 

 Two loading scenario 

– Thermal cracking (critical event) 

– Reflective cracking (thermal + tire loading) 
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Simulation Results: Thermal Cracking 
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Simulation Results: Reflective Cracking 
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Summary and Findings 

 Viscoelastic functionally graded finite elements 
using recursive time integration scheme are 
proposed 

– Efficiency and accuracy is briefly demonstrated 

– Formulation and implementation is verified 

 Graded viscoelastic properties of thin bonded 
asphalt overlays have been estimated 

– VFGM finite elements were utilized for 
conducting simulations 

 TBAOs show better cracking resistance compared 
to thin overlays with same mixes and thickness 

– Testing and field data also supports this claim 

 Functionally graded material properties and 
models are needed for realistic analysis of TBAOs 
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Future Extensions 

 Improvement on evaluation of functionally 
graded bulk and fracture properties 

– NSF Project 1031218: A Hybrid Failure Approach 
using Digital Image Correlation for Functionally 
Graded Thin-Bonded Overlays  

 Improvements upon current testing and 
modeling approaches 

– Use of micromechanics to predict VFGM properties 

– Effect of material heterogeneity  
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Thank you for your attention!!! 
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Questions? 
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