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Property Gradients in Asphalt Pavements

= Asphalt concrete exhibits heterogeneous behavior

= Smooth gradients can be approximated for certain
effects:
— Oxidative Aging
— Temperature Non-uniformity
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Thin Bonded Asphalt Overlays (TBAO)

= Use of specialized paving equipment for
construction of TBAO - Graded System
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Brief Overview of Graded Finite Elements

Homogeneous Graded

= Graded Elements: Account for material
non-homogeneity within elements unlike
conventional (homogeneous) elements
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Brief Overview of Graded Finite Elements

Homogeneous Graded

Graded Elements: Account for material
non-homogeneity within elements unlike
conventional (homogeneous) elements

Lee and Erdogan (1995) and Santare and Lambros (2000)

— Direct Gaussian integration (properties sampled at integration points)

Y.D. Lee, and F. Erdogan, (1995) "Residual/thermal stresses in FGM and laminated thermal
barrier coatings," International Journal of Fracture, 69:145-65.

M.H. Santare, and J. Lambros, (2000) "Use of graded finite elements to model the behavior of
nonhomogeneous materials," Journal of Applied Mechanics, 67:819-22.
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Brief Overview of Graded Finite Elements

Homogeneous Graded

Graded Elements: Account for material
non-homogeneity within elements unlike
conventional (homogeneous) elements

Lee and Erdogan (1995) and Santare and Lambros (2000)

— Direct Gaussian integration (properties sampled at integration points)

Kim and Paulino (2002)

— Generalized isoparametric formulation (GIF)

Paulino and Kim (2007) and Silva et al. (2007) further
explored GIF graded elements

— Proposed patch tests

— GIF elements should be preferred for multiphysics applications

J.H. Kim, and G.H. Paulino, (2002) "Isoparametric graded finite elements for nonhomogeneous
isotropic and orthotropic materials," Journal of Applied Mechanics, 69:502-14.

G.H. Paulino, and J.H. Kim, (2007) "The weak patch test for nonhomogeneous materials modeled
with graded finite elements," Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 29:63-81.

E.C.N. Silva, R.C. Carbonari, and G.H. Paulino, (2007) "On graded elements for multiphysics
applications," Smart Materials and Structures, 16:2408-2428.
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Brief Overview of Graded Finite Elements

Homogeneous Graded

Graded Elements: Account for material
non-homogeneity within elements unlike
conventional (homogeneous) elements

Lee and Erdogan (1995) and Santare and Lambros (2000)
— Direct Gaussian integration (properties sampled at integration points)

Kim and Paulino (2002)

— Generalized isoparametric formulation (GIF)

Paulino and Kim (2007) and Silva et al. (2007) further
explored GIF graded elements

— Proposed patch tests

— GIF elements should be preferred for multiphysics applications

Buttlar et al. (2006) demonstrated need of graded FE for
asphalt pavements (elastic analysis)

Dave et al. (2011) presented viscoealstic graded elements

using correspondence principle

W.G. Buttlar, G.H. Paulino, and S.H. Song, (2006) "Application of graded finite elements for asphalt
pavements," Journal of Engineering Mechanics, 132:240-249.

E.V. Dave, G.H. Paulino and S.H. Song, (2011) “Viscoelastic Functionally Graded Finite-Element
Method Using Correspondence Principle,” Journal of Materials in Civil Engineering, 23:39-48
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Generalized Isoparametric Formulation for Finite

Element Analysis of VFGMs

= Material properties are sampled at the element nodes
= [so-parametric mapping provides material properties at

integration points

= Natural extension of the conventional isoparametric

formulation

,Y) = E,Exp[3x—2y]

GIF (FGM)

E(x
Material Properties (eg. E(x, y)) y g
L ;
/|
Z=E(X,y) X
/|
(0,0)
y /<°/ e Conventional
L= o c S | Homogeneous
X = A
m =
E(t)= 2N [E(1)] g E
1= > osp prvid
N, = Shape function corresponding to node, i o =
m = Number of nodes per element
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Constitutive Model

= Constitutive Relationship:

o(xt)= tjt c(x,g_g)a“’g’f)

o :Stresses, C(x,&): Relaxation Modulus, ¢: Strains

dt

= Material Representation: Generalized Maxwell Model

C(x.1)=3E, (X)Exp{_ Thzx)}

h=1

Relaxation Time, 7, = %

h

= Time-Temperature Superposition
.
Reduced Time, §(x,t)=_[a(T,x,t)dt'

0

11
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Functionally Graded Viscoelastic Finite Element

= Problem Description:

K; (% (1)) jKU (x E(t)-£(t ))auj (.tl)dt' =F (x,t)

ot

= Solution approaches:
1. Correspondence Principle (CP)

K (X)sK!(s) |, ; (s) = Fi(x.s)

a(s) is Laplace transform of a(t); s is transformation variable
a(s) = j a(t) Exp[—st]dt
0

2. Time-Integration Schemes
» Direct Integration
= Recursive Formulation
= Recursive-Incremental Formulation 12
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Time Integration Approach

K; (x,&)u; +jK., (x,&-¢&") ét( )dt_ F (xt)

= Above could be solved sequentially using
Newton-Cotes expansion (material history effect
needs to be considered)

(2R () -[K (6)- Ky (6 -4)Ju; (0)
RO S e BT

m N S .-

= Alternatively, recursive formulation could be
developed that requires only few previous
solutions

13
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Time-Integration Analysis

Recursive Formulation (extension from Yi and Hilton, 1994):

(i), [0 05, (0080 2 =)
m e ¢(t,) 1 2
:Z; H( : (X))h - [ (Tij (X))h ” {(Vij (X’tn_l))h [ui (tn_l)A_t i (tnl)}

S. Yi, and H.H. Hilton, (1994) "Dynamic finite element analysis of
viscoelastic composite plates in the time domain," International Journal for
Numerical Methods in Engineering, 37:4081-96.

14
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= Example: Cy
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Response of VE Body to Sinusoidal Loading
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Response of VE Body to Sinusoidal Loading
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Absolute Error and Stmulation Time
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Absolute Error and Stmulation Time
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Evaluation of Graded Properties of TBAO

= Objective is to determine graded properties

Thin bonded asphalt overlay

™~ Cracked pavement
T Wi ¥ T T,
SN e TR TR
A0 Sy o e B AN
o ¥

Soil subgrade

= Needed Information:

Upward migration of
Tack-Coat forming
graded overlay

S
- .
o
7

Asphalt binder
content

Tack-Coat (binder membrane) between
TBAO and existing pavement

— Quantification of tack-coat permeation into TBAO

— Effect of tack coat on properties

22



http://www.uiuc.edu/

Graded Property Determination

= Research Approach:
— Test asphalt concrete samples with different

= Experiment Matrix:

amounts of tack-coat emulsion

Use imaging technique to characterize tack-coat
permeation \
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2 Mixes
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Creep Compliance (1/MPa)

Effect of Tack Coat
Viscoelastic Properties
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Tack Coat Permeation

Scanned images from
sliced field cores were
utilized

Gray-scale intensities
were determined using
open-source software
“Image J”
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Creep Compliance (1/MPa)

Graded Properties of TBAO
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FE Pavement Model: Features
Asphalt: Viscoelastic FGM (Time, Temperature
and Space Dependent)

Other Layers (PCC, Gran. Base, Subgrade):
Elastic

Interfaces: Finite Slip Frictional Contact Interface
Fracture: Cohesive Zone Model

Pavement Temperature Variation

- EICM (MEPDG)
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Modeling Scenarios

= Total four overlay types are simulated
- Dense Graded
= Homogeneous (Thin-Overlay)
» Graded (TBAO)
— Gap Graded
= Homogeneous (Thin-Overlay)
» Graded (TBAO)

= Two loading scenario
— Thermal cracking (critical event)
— Reflective cracking (thermal + tire loading)

28
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Simulation Results: Thermal Cracking

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percent O/L Thickness Damaged

__Bs

DG-Thin DG-TBAO GG-Thin GG-TBAO
Overlay Overlay

29



http://www.uiuc.edu/

Simulation Results: Reflective Cracking

Percent O/L Thickness
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Summary and Findings

Viscoelastic functionally graded finite elements
using recursive time integration scheme are
proposed

— Efficiency and accuracy is briefly demonstrated
- Formulation and implementation is verified

Graded viscoelastic properties of thin bonded
asphalt overlays have been estimated

— VFGM finite elements were utilized for
conducting simulations

TBAOs show better cracking resistance compared
to thin overlays with same mixes and thickness

— Testing and field data also supports this claim

Functionally graded material properties and

models are needed for realistic analysis of TBAOs 2
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Future Extensions

= Improvement on evaluation of functionally
graded bulk and fracture properties
— NSF Project 1031218: A Hybrid Failure Approach
using Digital Image Correlation for Functionally
Graded Thin-Bonded Overlays
= Improvements upon current testing and
modeling approaches
— Use of micromechanics to predict VFGM properties
— Effect of material heterogeneity

33
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Thank you for your attention!!!

\w L‘ L‘(}‘ “//ﬂL 'l‘() l ‘;",

J" .',?\"
Yo
HTEE| B UL DOG S

HOMIE] Ol

Acknowledgements:
»Road Science LLC

Reference:
E. V. Dave, G. H. Paulino and W. G. Buttlar, “Viscoelastic Functionally Graded

Finite Element Method for Flexible Pavements — A Recursive Time Integration
Approach,” International Journal of Analytical and Numerical Methods in
Geomechanics. (Available Online, Article in Press)

34



http://www.uiuc.edu/

