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Outline
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! Problem formulation: regularization maps and interpolation functions

! Spatial discretization and the discrete optimization problem

! Modular framework: separation of formulation and analysis

! Code structure: inputs and implementation

! Demo, results and performance
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! The topology optimization problem is of the form:

inf
ω∈O

f(ω,uω) subject to gi(ω,uω) ≤ 0, i = 1, . . . , K

where uω solves the boundary value problem:
ˆ

ω

C∇uω : ∇vdx =

ˆ

Γ̃N

t · vds, ∀v ∈ Vω

with Vω =
˘

v ∈ H1(ω; Rd) : v|∂ω∩ΓD
= 0

¯
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Reformulation as sizing problem
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! The problem is reformulated as:

inf
ρ∈A

f(ρ,uρ) subject to gi(ρ,uρ) ≤ 0, i = 1, . . . , K

where A = {P(η) : η ∈ L∞(Ω; [ρ, ρ])} and the state equation is
ˆ

Ω

mE(ρ)C∇uρ : ∇vdx =

ˆ

ΓN

t · vds, ∀v ∈ V

with V =
˘

v ∈ H1(Ω; Rd) : v|ΓD
= 0

¯
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! We impose regularity on the space of admissible sizing function A implicitly by
means of “regularization” map P, e.g.,

PF (η)(x) :=

ˆ

Ω

F (x,x)η(x)dx

where F is a prescribed smooth kernel
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◦ Even if η is rough, ρ = P(η) is guaranteed to be smooth thereby
eliminating the need to explicitly enforce regularity on ρ

◦ It is the discretization of η that produces the set of design variables for the
optimization problem



Mapping P

PolyTop: A Matlab implementation of topology optimization – 5

! We impose regularity on the space of admissible sizing function A implicitly by
means of “regularization” map P, e.g.,

PF (η)(x) :=

ˆ

Ω

F (x,x)η(x)dx

where F is a prescribed smooth kernel

◦ Even if η is rough, ρ = P(η) is guaranteed to be smooth thereby
eliminating the need to explicitly enforce regularity on ρ

◦ It is the discretization of η that produces the set of design variables for the
optimization problem

! Other layout constraints such as symmetry can be achieved in the same way,
for example,

Ps(η)(x) = η(x1, |x2|)

and these can be combined, P = PF ◦ Ps
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SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ
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! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

! “Nonlinear” filtering can also be cast in the same framework: for example, the
approach Guest et a.l (2004) is equivalent to defining

mE(ρ) = ε + (1 − ε) [H(ρ)]p , mV (ρ) = H(ρ)

where H(x) = 1 − exp (−βx) + x exp (−β) since ρ is already of the form
ρ = PF (η)
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! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

! “Nonlinear” filtering can also be cast in the same framework: for example, the
approach Guest et a.l (2004) is equivalent to defining

mE(ρ) = ε + (1 − ε) [H(ρ)]p , mV (ρ) = H(ρ)

where H(x) = 1 − exp (−βx) + x exp (−β) since ρ is already of the form
ρ = PF (η)

◦ Observe fact that SIMP penalization plays a crucial role since with p = 1,
we have mE(ρ) ≈ mV (ρ) and so optimal solutions will consist mostly of
“grey” no matter how large β is
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N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
∪!Ω! = Ω
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! Consider Th = {Ω!}
N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
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finite element subspace Vh and A replaced by

Ah =
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Ph(ηh) : ρ ≤ ηh ≤ ρ, η|Ω!
= const ∀!

¯

where Ph is an approximation to P
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! Consider Th = {Ω!}
N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
∪!Ω! = Ω

! The discrete problem is the same optimization as before with V replaced by the
finite element subspace Vh and A replaced by

Ah =
˘

Ph(ηh) : ρ ≤ ηh ≤ ρ, η|Ω!
= const ∀!

¯

where Ph is an approximation to P

! Each piecewise constant ηh can be represented by vector z = [z!] since
ηh(x) =

PN
!=1

z!χΩ!
(x) and similarly each ρh ∈ Ah can be defined by

elemental values y = Pz where

(P)!k = P(χΩk
)(x∗

! )



Ph(ηh) =
N�

�=1

y�χΩ�

P(ηh)

Discretization
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ηh =
N�

�=1

z�χΩ�
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◦ A clear advantage of this approach is that the analysis functions can be
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! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

◦ The analysis functions need not know about the choice of interpolations
functions or the mapping P

◦ A clear advantage of this approach is that the analysis functions can be
extended, developed and modified independently

! The sensitivity analysis can be “separated” along the same lines:

∂gi

∂z
=

∂E

∂z

∂gi

∂E
+

∂V

∂z

∂gi

∂V

where ∂gi/∂E and ∂gi/∂V are sensitivities with respect to analysis parameters
and

∂E

∂z
= P

T JmE
(Pz),

∂V

∂z
= P

T JmV
(Pz)
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! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

◦ The analysis functions need not know about the choice of interpolations
functions or the mapping P

◦ A clear advantage of this approach is that the analysis functions can be
extended, developed and modified independently

! The sensitivity analysis can be “separated” along the same lines:

∂gi

∂z
=

∂E

∂z

∂gi

∂E
+

∂V

∂z

∂gi

∂V

where ∂gi/∂E and ∂gi/∂V are sensitivities with respect to analysis parameters
and

∂E

∂z
= P

T JmE
(Pz),

∂V

∂z
= P

T JmV
(Pz)

! The optimizer should also be kept separate but this is more common
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! The input to the main kernel PolyTop consists of two Matlab structure arrays
containing the optimization and analysis fields:

fem opt

fem.NNode opt.zMin
fem.NElem opt.zMax
fem.Node opt.zIni
fem.Element opt.MatIntFnc
fem.Supp opt.P
fem.Load opt.MaxIter
fem.ShapeFnc opt.Tol
... ...
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! The input to the main kernel PolyTop consists of two Matlab structure arrays
containing the optimization and analysis fields:

fem opt

fem.NNode opt.zMin
fem.NElem opt.zMax
fem.Node opt.zIni
fem.Element opt.MatIntFnc
fem.Supp opt.P
fem.Load opt.MaxIter
fem.ShapeFnc opt.Tol
... ...

! Given an input vector y, MatIntFnc function returns arrays E = mE(y) and
V = mV (y) and the sensitivity vectors ∂E/∂y := m′

E(y) and ∂V/∂y := m′
V (y)
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! PolyTop possesses fewer than 190 lines, of which 116 lines pertain to the finite
element analysis including 81 lines for the element stiffness calculations for
polygonal elements
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Appendix D: PolyTop

1 %----------------------------- PolyTop -----------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyTop: A Matlab %
3 % implementation of a general topology optimization framework using %
4 % unstructured polygonal finite element meshes", Struct Multidisc Optim, %
5 % Vo. ?? No. ?? pp. ??-??, 2011 %
6 %-------------------------------------------------------------------------%
7 function [z,V,fem] = PolyTop(fem,opt)
8 Iter=0; Tol=opt.Tol*(opt.zMax-opt.zMin); Change=2*Tol; z=opt.zIni; P=opt.P;
9 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);

10 [FigHandle,FigData] = InitialPlot(fem,z);
11 while (Iter<opt.MaxIter) && (Change>Tol)
12 Iter = Iter + 1;
13 %Compute cost functionals and analysis sensitivities
14 [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V);
15 [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,opt.VolFrac);
16 %Compute design sensitivities
17 dfdz = P'*(dEdy.*dfdE + dVdy.*dfdV);
18 dgdz = P'*(dEdy.*dgdE + dVdy.*dgdV);
19 %Update design variable and analysis parameters
20 [z,Change] = UpdateScheme(dfdz,g,dgdz,z,opt);
21 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);
22 %Output results
23 fprintf('It: %i \t Objective: %1.3f\tChange: %1.3f\n',Iter,f,Change);
24 set(FigHandle,'FaceColor','flat','CData',1-V(FigData)); drawnow
25 end
26 %------------------------------------------------------- OBJECTIVE FUNCTION
27 function [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V)
28 [U,fem] = FEAnalysis(fem,E);
29 f = dot(fem.F,U);
30 temp = cumsum(-U(fem.i).*fem.k.*U(fem.j));
31 temp = temp(cumsum(fem.ElemNDof.^2));
32 dfdE = [temp(1);temp(2:end)-temp(1:end-1)];
33 dfdV = zeros(size(V));
34 %------------------------------------------------------ CONSTRAINT FUNCTION
35 function [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,VolFrac)
36 if ¬isfield(fem,'ElemArea')
37 fem.ElemArea = zeros(fem.NElem,1);
38 for el=1:fem.NElem
39 vx=fem.Node(fem.Element{el},1); vy=fem.Node(fem.Element{el},2);
40 fem.ElemArea(el) = 0.5*sum(vx.*vy([2:end 1])-vy.*vx([2:end 1]));
41 end
42 end
43 g = sum(fem.ElemArea.*V)/sum(fem.ElemArea)-VolFrac;
44 dgdE = zeros(size(E));
45 dgdV = fem.ElemArea/sum(fem.ElemArea);
46 %----------------------------------------------- OPTIMALITY CRITERIA UPDATE
47 function [zNew,Change] = UpdateScheme(dfdz,g,dgdz,z0,opt)
48 zMin=opt.zMin; zMax=opt.zMax;
49 move=opt.OCMove*(zMax-zMin); eta=opt.OCEta;
50 l1=0; l2=1e6;

39
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! PolyTop possesses fewer than 190 lines, of which 116 lines pertain to the finite
element analysis including 81 lines for the element stiffness calculations for
polygonal elements



Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once



Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once

! This is accomplished in PolyTop by computing vector fem.i, fem.j, fem.k and
fem.e with assembly computed by command:

K = sparse(fem.i,fem.j,E(fem.e).*fem.k);



Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once

! This is accomplished in PolyTop by computing vector fem.i, fem.j, fem.k and
fem.e with assembly computed by command:

K = sparse(fem.i,fem.j,E(fem.e).*fem.k);

! The isoparametric polygonal elements can be viewed as extension of the
common linear triangles and bilinear quads to all convex n-gons

◦ This element stiffness calculations add very little overhead
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total time of PolyTop 15.5 40.7 187 1016

total time of 88 line 14.8 44.4 360 4463
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! Matlab demo

! Comparison of efficiency with 88 line:

mesh size 90 × 30 150 × 50 300 × 100 600 × 200

total time of PolyTop 15.5 40.7 187 1016

total time of 88 line 14.8 44.4 360 4463

! Source of discrepancy is the computation of volume constraint inside the OC
optimizer:

V (z) =
N

X

!=1

(Pz)! = 1
T (Pz) =

“

1
T
P

”

z =
“

P
T
1

”T

z

◦ Though the above expression is not explicitly used in PolyTop, the
decoupling of the OC scheme from the analysis routine naturally leads to
the more efficient calculation
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! We have a general framework for topology optimization using unstructured
meshes in arbitrary domains

! The analysis routine and optimization algorithm are separated from the specific
choice of topology optimization formulation

! The FE and sensitivity analysis routines can be extended, maintained,
developed, and/or modified independently

QUESTIONS?


