
11th US National Congress on Computational Mechanics:

PolyTop: A Matlab implementation of a general topology optimization
framework using unstructured polygonal finite element meshes

Ivan Menezesb, Cameron Talischia, Anderson Pereirab, Glaucio H Paulinoa

aUniversity of Illinois at Urbana-Champaign, USA
bTecgraf, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

Minneapolis, Minnesota, July 26th, 2011

Outline

PolyTop: A Matlab implementation of topology optimization – 2

! Problem formulation: regularization maps and interpolation functions

! Spatial discretization and the discrete optimization problem

! Modular framework: separation of formulation and analysis

! Code structure: inputs and implementation

! Demo, results and performance

Topology optimization problem

PolyTop: A Matlab implementation of topology optimization – 3

! The topology optimization problem is of the form:

inf
ω∈O

f(ω,uω) subject to gi(ω,uω) ≤ 0, i = 1, . . . , K

where uω solves the boundary value problem:
ˆ

ω

C∇uω : ∇vdx =

ˆ

Γ̃N

t · vds, ∀v ∈ Vω

with Vω =
˘

v ∈ H1(ω; Rd) : v|∂ω∩ΓD
= 0

¯

ΓN

ΓD

Ω

ω

ΓN

ΓD

Ω

ω

C−

C+

Reformulation as sizing problem

PolyTop: A Matlab implementation of topology optimization – 4

! The problem is reformulated as:

inf
ρ∈A

f(ρ,uρ) subject to gi(ρ,uρ) ≤ 0, i = 1, . . . , K

where A = {P(η) : η ∈ L∞(Ω; [ρ, ρ])} and the state equation is
ˆ

Ω

mE(ρ)C∇uρ : ∇vdx =

ˆ

ΓN

t · vds, ∀v ∈ V

with V =
˘

v ∈ H1(Ω; Rd) : v|ΓD
= 0

¯

Mapping P

PolyTop: A Matlab implementation of topology optimization – 5

! We impose regularity on the space of admissible sizing function A implicitly by
means of “regularization” map P, e.g.,

PF (η)(x) :=

ˆ

Ω

F (x,x)η(x)dx

where F is a prescribed smooth kernel

Mapping P

PolyTop: A Matlab implementation of topology optimization – 5

! We impose regularity on the space of admissible sizing function A implicitly by
means of “regularization” map P, e.g.,

PF (η)(x) :=

ˆ

Ω

F (x,x)η(x)dx

where F is a prescribed smooth kernel

◦ Even if η is rough, ρ = P(η) is guaranteed to be smooth thereby
eliminating the need to explicitly enforce regularity on ρ

◦ It is the discretization of η that produces the set of design variables for the
optimization problem

Mapping P

PolyTop: A Matlab implementation of topology optimization – 5

! We impose regularity on the space of admissible sizing function A implicitly by
means of “regularization” map P, e.g.,

PF (η)(x) :=

ˆ

Ω

F (x,x)η(x)dx

where F is a prescribed smooth kernel

◦ Even if η is rough, ρ = P(η) is guaranteed to be smooth thereby
eliminating the need to explicitly enforce regularity on ρ

◦ It is the discretization of η that produces the set of design variables for the
optimization problem

! Other layout constraints such as symmetry can be achieved in the same way,
for example,

Ps(η)(x) = η(x1, |x2|)

and these can be combined, P = PF ◦ Ps

Interpolation functions

PolyTop: A Matlab implementation of topology optimization – 6

! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

Interpolation functions

PolyTop: A Matlab implementation of topology optimization – 6

! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

Interpolation functions

PolyTop: A Matlab implementation of topology optimization – 6

! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

! “Nonlinear” filtering can also be cast in the same framework:

Interpolation functions

PolyTop: A Matlab implementation of topology optimization – 6

! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

! “Nonlinear” filtering can also be cast in the same framework: for example, the
approach Guest et a.l (2004) is equivalent to defining

mE(ρ) = ε + (1 − ε) [H(ρ)]p , mV (ρ) = H(ρ)

where H(x) = 1 − exp (−βx) + x exp (−β) since ρ is already of the form
ρ = PF (η)

Interpolation functions

PolyTop: A Matlab implementation of topology optimization – 6

! Interpolation functions relate the sizing function to ρ to the material properties
(e.g. stiffness and volume)

! Examples include

SIMP: mE(ρ) = ε + (1 − ε)ρp, mV (ρ) = mP (ρ) = ρ

RAMP: mE(ρ) = ε + (1 − ε)
ρ

1 + q(1 − ρ)
, mV (ρ) = ρ

! “Nonlinear” filtering can also be cast in the same framework: for example, the
approach Guest et a.l (2004) is equivalent to defining

mE(ρ) = ε + (1 − ε) [H(ρ)]p , mV (ρ) = H(ρ)

where H(x) = 1 − exp (−βx) + x exp (−β) since ρ is already of the form
ρ = PF (η)

◦ Observe fact that SIMP penalization plays a crucial role since with p = 1,
we have mE(ρ) ≈ mV (ρ) and so optimal solutions will consist mostly of
“grey” no matter how large β is

Discretization

PolyTop: A Matlab implementation of topology optimization – 7

! Consider Th = {Ω!}
N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
∪!Ω! = Ω

Discretization

PolyTop: A Matlab implementation of topology optimization – 7

! Consider Th = {Ω!}
N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
∪!Ω! = Ω

! The discrete problem is the same optimization as before with V replaced by the
finite element subspace Vh and A replaced by

Ah =
˘

Ph(ηh) : ρ ≤ ηh ≤ ρ, η|Ω!
= const ∀!

¯

where Ph is an approximation to P

Discretization

PolyTop: A Matlab implementation of topology optimization – 7

! Consider Th = {Ω!}
N
!=1

a partition of Ω such that Ω! ∩ Ωk = ∅ for ! #= k and
∪!Ω! = Ω

! The discrete problem is the same optimization as before with V replaced by the
finite element subspace Vh and A replaced by

Ah =
˘

Ph(ηh) : ρ ≤ ηh ≤ ρ, η|Ω!
= const ∀!

¯

where Ph is an approximation to P

! Each piecewise constant ηh can be represented by vector z = [z!] since
ηh(x) =

PN
!=1

z!χΩ!
(x) and similarly each ρh ∈ Ah can be defined by

elemental values y = Pz where

(P)!k = P(χΩk
)(x∗

!)

Ph(ηh) =
N�

�=1

y�χΩ�

P(ηh)

Discretization

PolyTop: A Matlab implementation of topology optimization – 8

ηh =
N�

�=1

z�χΩ�

Modular framework

PolyTop: A Matlab implementation of topology optimization – 9

! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

Modular framework

PolyTop: A Matlab implementation of topology optimization – 9

! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

◦ The analysis functions need not know about the choice of interpolations
functions or the mapping P

◦ A clear advantage of this approach is that the analysis functions can be
extended, developed and modified independently

Modular framework

PolyTop: A Matlab implementation of topology optimization – 9

! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

◦ The analysis functions need not know about the choice of interpolations
functions or the mapping P

◦ A clear advantage of this approach is that the analysis functions can be
extended, developed and modified independently

! The sensitivity analysis can be “separated” along the same lines:

∂gi

∂z
=

∂E

∂z

∂gi

∂E
+

∂V

∂z

∂gi

∂V

where ∂gi/∂E and ∂gi/∂V are sensitivities with respect to analysis parameters
and

∂E

∂z
= P

T JmE
(Pz),

∂V

∂z
= P

T JmV
(Pz)

Modular framework

PolyTop: A Matlab implementation of topology optimization – 9

! For the minimum compliance problem, E := mE(Pz) and V := mV (Pz) are
the only design related information that need to be provided to the analysis
functions

◦ The analysis functions need not know about the choice of interpolations
functions or the mapping P

◦ A clear advantage of this approach is that the analysis functions can be
extended, developed and modified independently

! The sensitivity analysis can be “separated” along the same lines:

∂gi

∂z
=

∂E

∂z

∂gi

∂E
+

∂V

∂z

∂gi

∂V

where ∂gi/∂E and ∂gi/∂V are sensitivities with respect to analysis parameters
and

∂E

∂z
= P

T JmE
(Pz),

∂V

∂z
= P

T JmV
(Pz)

! The optimizer should also be kept separate but this is more common

Inputs to PolyTop

PolyTop: A Matlab implementation of topology optimization – 10

! The input to the main kernel PolyTop consists of two Matlab structure arrays
containing the optimization and analysis fields:

fem opt

fem.NNode opt.zMin
fem.NElem opt.zMax
fem.Node opt.zIni
fem.Element opt.MatIntFnc
fem.Supp opt.P
fem.Load opt.MaxIter
fem.ShapeFnc opt.Tol
... ...

Inputs to PolyTop

PolyTop: A Matlab implementation of topology optimization – 10

! The input to the main kernel PolyTop consists of two Matlab structure arrays
containing the optimization and analysis fields:

fem opt

fem.NNode opt.zMin
fem.NElem opt.zMax
fem.Node opt.zIni
fem.Element opt.MatIntFnc
fem.Supp opt.P
fem.Load opt.MaxIter
fem.ShapeFnc opt.Tol
... ...

! Given an input vector y, MatIntFnc function returns arrays E = mE(y) and
V = mV (y) and the sensitivity vectors ∂E/∂y := m′

E(y) and ∂V/∂y := m′
V (y)

PolyTop

PolyTop: A Matlab implementation of topology optimization – 11

! PolyTop possesses fewer than 190 lines, of which 116 lines pertain to the finite
element analysis including 81 lines for the element stiffness calculations for
polygonal elements

Submitted to Journal of Structural and Multidisciplinary Optimization

Appendix D: PolyTop

1 %----------------------------- PolyTop -----------------------------------%
2 % Ref: C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyTop: A Matlab %
3 % implementation of a general topology optimization framework using %
4 % unstructured polygonal finite element meshes", Struct Multidisc Optim, %
5 % Vo. ?? No. ?? pp. ??-??, 2011 %
6 %---%
7 function [z,V,fem] = PolyTop(fem,opt)
8 Iter=0; Tol=opt.Tol*(opt.zMax-opt.zMin); Change=2*Tol; z=opt.zIni; P=opt.P;
9 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);

10 [FigHandle,FigData] = InitialPlot(fem,z);
11 while (Iter<opt.MaxIter) && (Change>Tol)
12 Iter = Iter + 1;
13 %Compute cost functionals and analysis sensitivities
14 [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V);
15 [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,opt.VolFrac);
16 %Compute design sensitivities
17 dfdz = P'*(dEdy.*dfdE + dVdy.*dfdV);
18 dgdz = P'*(dEdy.*dgdE + dVdy.*dgdV);
19 %Update design variable and analysis parameters
20 [z,Change] = UpdateScheme(dfdz,g,dgdz,z,opt);
21 [E,dEdy,V,dVdy] = opt.MatIntFnc(P*z);
22 %Output results
23 fprintf('It: %i \t Objective: %1.3f\tChange: %1.3f\n',Iter,f,Change);
24 set(FigHandle,'FaceColor','flat','CData',1-V(FigData)); drawnow
25 end
26 %--- OBJECTIVE FUNCTION
27 function [f,dfdE,dfdV,fem] = ObjectiveFnc(fem,E,V)
28 [U,fem] = FEAnalysis(fem,E);
29 f = dot(fem.F,U);
30 temp = cumsum(-U(fem.i).*fem.k.*U(fem.j));
31 temp = temp(cumsum(fem.ElemNDof.^2));
32 dfdE = [temp(1);temp(2:end)-temp(1:end-1)];
33 dfdV = zeros(size(V));
34 %-- CONSTRAINT FUNCTION
35 function [g,dgdE,dgdV,fem] = ConstraintFnc(fem,E,V,VolFrac)
36 if ¬isfield(fem,'ElemArea')
37 fem.ElemArea = zeros(fem.NElem,1);
38 for el=1:fem.NElem
39 vx=fem.Node(fem.Element{el},1); vy=fem.Node(fem.Element{el},2);
40 fem.ElemArea(el) = 0.5*sum(vx.*vy([2:end 1])-vy.*vx([2:end 1]));
41 end
42 end
43 g = sum(fem.ElemArea.*V)/sum(fem.ElemArea)-VolFrac;
44 dgdE = zeros(size(E));
45 dgdV = fem.ElemArea/sum(fem.ElemArea);
46 %--- OPTIMALITY CRITERIA UPDATE
47 function [zNew,Change] = UpdateScheme(dfdz,g,dgdz,z0,opt)
48 zMin=opt.zMin; zMax=opt.zMax;
49 move=opt.OCMove*(zMax-zMin); eta=opt.OCEta;
50 l1=0; l2=1e6;

39

PolyTop

PolyTop: A Matlab implementation of topology optimization – 11

! PolyTop possesses fewer than 190 lines, of which 116 lines pertain to the finite
element analysis including 81 lines for the element stiffness calculations for
polygonal elements

Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once

Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once

! This is accomplished in PolyTop by computing vector fem.i, fem.j, fem.k and
fem.e with assembly computed by command:

K = sparse(fem.i,fem.j,E(fem.e).*fem.k);

Comment about FEM implementation

PolyTop: A Matlab implementation of topology optimization – 12

! Certain quantities used in the analysis functions such as element stiffness
matrices as well as the connectivity of the global stiffness matrix K need to be
computed only once

! This is accomplished in PolyTop by computing vector fem.i, fem.j, fem.k and
fem.e with assembly computed by command:

K = sparse(fem.i,fem.j,E(fem.e).*fem.k);

! The isoparametric polygonal elements can be viewed as extension of the
common linear triangles and bilinear quads to all convex n-gons

◦ This element stiffness calculations add very little overhead

Demo, results and efficiency

PolyTop: A Matlab implementation of topology optimization – 13

! Matlab demo

Demo, results and efficiency

PolyTop: A Matlab implementation of topology optimization – 13

! Matlab demo

! Comparison of efficiency with 88 line:

mesh size 90 × 30 150 × 50 300 × 100 600 × 200

total time of PolyTop 15.5 40.7 187 1016

total time of 88 line 14.8 44.4 360 4463

Demo, results and efficiency

PolyTop: A Matlab implementation of topology optimization – 13

! Matlab demo

! Comparison of efficiency with 88 line:

mesh size 90 × 30 150 × 50 300 × 100 600 × 200

total time of PolyTop 15.5 40.7 187 1016

total time of 88 line 14.8 44.4 360 4463

! Source of discrepancy is the computation of volume constraint inside the OC
optimizer:

V (z) =
N

X

!=1

(Pz)! = 1
T (Pz) =

“

1
T
P

”

z =
“

P
T
1

”T

z

◦ Though the above expression is not explicitly used in PolyTop, the
decoupling of the OC scheme from the analysis routine naturally leads to
the more efficient calculation

Concluding remarks

PolyTop: A Matlab implementation of topology optimization – 14

! We have a general framework for topology optimization using unstructured
meshes in arbitrary domains

! The analysis routine and optimization algorithm are separated from the specific
choice of topology optimization formulation

! The FE and sensitivity analysis routines can be extended, maintained,
developed, and/or modified independently

QUESTIONS?

