
PolyMesher: A General-Purpose Mesh

Generator for Polygonal Elements

Written in Matlab

Anderson Pereira, Cameron Talischi, Ivan F. M. Menezes and Glaucio H. Paulino

Motivation

• Voronoi diagrams offer a simple way to discretize geometries. They have

been widely used to describe the material structure in:

2

Motivation

• Voronoi diagrams offer a simple way to discretize geometries. They have

been widely used to describe the material structure in:

– polycrystalline microstructures,

3

PR Bueno and JA Varela. Electronic ceramics

based on polycrystalline SnO2, TiO2 and (Sn

xTi1-x)O2 solid solution. Mat. Res. [online].

2006, vol.9, n.3, pp. 293-300

Motivation

• Voronoi diagrams offer a simple way to discretize geometries. They have

been widely used to describe the material structure in:

– polycrystalline microstructures,

– cellular foams,

4

Cellular polyethylene

http://www.koepp.de

Motivation

• Voronoi diagrams offer a simple way to discretize geometries. They have

been widely used to describe the material structure in:

– polycrystalline microstructures,

– cellular foams,

– and other materials that exhibit cell-like features.

• For such applications, numerical modeling and simulation of Voronoi

meshes is a natural choice.

5

meshes is a natural choice.

• Finite element analyses can also be based on the Delaunay/Voronoi dual

tessellations for both defining the computational mesh and approximating

the field quantity within each element.

Motivation

• Recently, polygonal meshes were used in topology optimization yielding good

results.

Polygonal Elements T6 Elements

6

C. Talischi, G. Paulino, A. Pereira and IFM Menezes. Polygonal finite elements for topology

optimization: A unifying paradigm. IJNME, 82(6):671-698, 2010

Motivation

• Recently, polygonal meshes were used in topology optimization yielding good

results.

7

C. Talischi, G. Paulino, A. Pereira and IFM Menezes. Polygonal finite elements for topology

optimization: A unifying paradigm. IJNME, 82(6):671-698, 2010

18 dofs – %51 error

20 dofs – %27 error

3 quads and 1 pentagon

Motivation

• Our main goal here is to provide the users a self-contained Matlab implementation

of a general topology optimization framework using unstructured polygonal finite

element meshes. In this presentation we will explain PolyMesher, responsible for

the polygonal discretization.

8

C Talischi, GH Paulino, A Pereira, IFM Menezes, "PolyTop: A Matlab implementation of a general

topology optimization framework using unstructured polygonal finite element meshes", JSMO, 2011

PolyMesher PolyTop

Outline

• Voronoi diagrams, CVTs and Lloyd’s algorithm

• Meshing algorithm

• Implicit representation

• Matlab implementation

9

• Matlab implementation

• Examples

• Concluding remarks

• Ongoing work

The concept of Voronoi diagrams plays a central role in our meshing algorithm.

Given a set of n distinct points of seeds PPPP, a Voronoi cell V
yyyy

consists of points in the

plane closer to y than any other point in PPPP.

Voronoi diagrams, CVTs and Lloyd’s algorithm

10

Centroidal Voronoi tesselations (CVTs) enjoy a higher level of regularity which are

suitable for use in finite element analysis.

A Voronoi tesselation is centroidal if, for every yyyy ∈ PPPP:

Voronoi diagrams, CVTs and Lloyd’s algorithm

11

For computing CVTs we used the Lloyd’s algorithm, which iteratively replaces the

given generating seeds by the centroids of the corresponding Voronoi regions. Lloyd’s

algorithm can be thought of as a fixed point iteration for the mapping:

Initial Random points First iteration After 80 iterations

Voronoi diagrams, CVTs and Lloyd’s algorithm

12

Initial Random points First iteration After 80 iterations

Voronoi diagrams, CVTs and Lloyd’s algorithm

13

Voronoi diagrams, CVTs and Lloyd’s algorithm

14

Voronoi diagrams, CVTs and Lloyd’s algorithm

15

Meshing approach: basic ideas

A polygonal discretization can be obtained from the Voronoi diagram of a given set of

seeds and their reflections.

• We first reflect each point in PPPP about

the closest boundary point of Ω and

denote the resulting set of points by

R
Ω
(PPPP).

•We then construct the Voronoi diagram

16

•We then construct the Voronoi diagram

of the plane by including the original

point set as well as its reflection.

•Finally we incorporate Lloyd’s

iterations to obtain a point set PPPP that

produces a CVT.

Implicit representation

One of the main ingredients of our mesh generator is the implicit representation of the

domain:

17

The signed distance function contains all the essential information about the meshing

domain needed in our mesh algorithm.

Implicit representation: construction of signed distance functions

For many simple geometries, the signed distance function can be readily identified, for

example:

18

Implicit representation: construction of signed distance functions

Moreover, set operations such as union, intersection, and complementation can be used to

piece together and combine different geometries:

19

Matlab implementation

Based on the previous considerations, an algorithm was proposed and implemented in

Matlab.

The code has fewer than 135 lines and it is composed by the following main functions:

PolyMesher Meshing kernel

20

PolyMshr_RndPtSet generate initial random points

PolyMshr_Rflct reflect the seeds

PolyMshr_CntrdPly compute areas and centroids

Matlab implementation: meshing kernel

function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)

if ~exist('P','var'), P=PolyMshr_RndPtSet(NElem,Domain); end

NElem = size(P,1);

Tol=5e-3; It=0; Err=1; c=1.5;

BdBox = Domain('BdBox');

Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));

Pc = P; figure;

while(It<=MaxIter && Err>Tol)

Alpha = c*sqrt(Area/NElem);

P = Pc; %Lloyd's update

R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); %Generate the reflections

06

07

08

09

10

11

12

13

14

15

16

21

R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); %Generate the reflections

[Node,Element] = voronoin([P;R_P]); %Construct Voronoi diagram

[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);

Area = sum(abs(A));

Err = sqrt(sum((A.^2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area^1.5;

fprintf('It: %3d Error: %1.3e\n',It,Err); It=It+1;

if NElem<=2000, PolyMshr_PlotMsh(Node,Element,NElem); end;

end

[Node,Element] = PolyMshr_ExtrNds(NElem,Node,Element); %Extract node list

[Node,Element] = PolyMshr_CllpsEdgs(Node,Element,0.1); %Remove small edges

[Node,Element] = PolyMshr_RsqsNds(Node,Element); %Reoder Nodes

BC=Domain('BC',Node); Supp=BC{1}; Load=BC{2}; %Recover BC arrays

PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load); %Plot mesh and BCs

16

17

18

19

20

21

22

23

24

25

26

27

28

Matlab implementation: Domain function

All domain-related information are included in Domain defined outside the meshing

kernel.

22

Example: Wrench

23

Example: Wrench

24

Example: Wrench

25

Example: Wrench

26

Example: Wrench

27

Example: Wrench

28

Examples

• Matlab demo

29

Example: symmetric Michell cantilever

30

P = [Pc(1:NElem/2,:);[Pc(1:NElem/2,1),-Pc(1:NElem/2,2)]];

function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)

...

while(It<=MaxIter && Err>Tol)

Alpha = c*sqrt(Area/NElem);

P = Pc; %Lloyd's update

R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha); %Generate the reflections

[Node,Element] = voronoin([P;R_P]); %Construct Voronoi diagram

[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);

...

end

6

...

13

14

15

16

17

18

...

23

15

Example: uniform discretizations

>> nelx = 30; nely = 10;

>> dx = 3/nelx; dy = 1/nely;

>> [X,Y] = meshgrid(dx/2:dx:3,dy/2:dy:1);

>> P = [X(:) Y(:)];

>> [Node,Element,Supp,Load] = PolyMesher(@MbbDomain,0,0,P);

31

Example: non-uniform meshes

32

Concluding remarks

• Voronoi models arise in nature in various situations. In particular,
polygonal meshes have been prominent in modeling structural
problems;

• A simple and robust code based on the concept of Voronoi diagrams
was presented. Using a simple and effective approach allows to

33

was presented. Using a simple and effective approach allows to
discretize two-dimensional geometries with convex polygons;

• Its range of applications is broad, including optimization (shape,
topology, etc), and other applications.

Acknowledgment

Tecgraf - Computer Graphics Technology

Group at the Pontifical Catholic University

of Rio de Janeiro - PUC-Rio - Brazil

34

Department of Energy Computational

Science Graduate Fellowship Program of

the Office of Science and National Nuclear

Security Administration in the Department

of Energy.

