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Motivation

• Voronoi diagrams offer a simple way to discretize geometries. They have 

been widely used to describe the material structure in:

– polycrystalline microstructures,

– cellular foams,

– and other materials that exhibit cell-like features.

• For such applications, numerical modeling and simulation of Voronoi

meshes is a natural choice.
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meshes is a natural choice.

• Finite element analyses can also be based on the Delaunay/Voronoi dual 

tessellations for both defining the computational mesh and approximating 

the field quantity within each element.



Motivation

• Recently, polygonal meshes were used in topology optimization yielding good 

results.
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Motivation

• Our main goal here is to provide the users a self-contained Matlab implementation 

of a general topology optimization framework using  unstructured polygonal finite 

element meshes. In this presentation we will explain PolyMesher, responsible for 

the polygonal discretization.
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The concept of Voronoi diagrams plays a central role in our meshing algorithm.

Given a set of n distinct points of seeds PPPP, a Voronoi cell V
yyyy

consists of points in the 

plane closer to y than any other point in PPPP.

Voronoi diagrams, CVTs and Lloyd’s algorithm
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Centroidal Voronoi tesselations (CVTs) enjoy a higher level of regularity which are 

suitable for use in finite element analysis.

A Voronoi tesselation is centroidal if,  for every yyyy ∈ PPPP:    

Voronoi diagrams, CVTs and Lloyd’s algorithm
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For computing CVTs we used the Lloyd’s algorithm, which iteratively replaces the 

given generating seeds by the centroids of the corresponding Voronoi regions. Lloyd’s 

algorithm can be thought of as a fixed point iteration for the mapping:



Initial Random points First iteration After 80 iterations

Voronoi diagrams, CVTs and Lloyd’s algorithm
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Voronoi diagrams, CVTs and Lloyd’s algorithm
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Voronoi diagrams, CVTs and Lloyd’s algorithm
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Voronoi diagrams, CVTs and Lloyd’s algorithm
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Meshing approach: basic ideas

A polygonal discretization can be obtained from the Voronoi diagram of a given set of 

seeds and their reflections.

• We first reflect each point in PPPP about 

the closest boundary point of Ω and 

denote the resulting set of points by 

R
Ω
(PPPP).

•We then construct the Voronoi diagram 
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•We then construct the Voronoi diagram 

of the plane by including the original 

point set as well as its reflection.

•Finally we incorporate Lloyd’s 

iterations to obtain a point set PPPP that 

produces a CVT.



Implicit representation

One of the main ingredients of our mesh generator is the implicit representation of the 

domain:
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The signed distance function contains all the essential information about the meshing 

domain needed in our mesh algorithm.



Implicit representation: construction of signed distance functions 

For many simple geometries, the signed distance function can be readily  identified, for 

example:
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Implicit representation: construction of signed distance functions 

Moreover, set operations such as union, intersection, and complementation can be used to

piece together and combine different geometries:
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Matlab implementation

Based on the previous considerations, an algorithm was proposed and implemented in 

Matlab.

The code has fewer than 135 lines and it is composed by the following main functions:

PolyMesher Meshing kernel
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PolyMshr_RndPtSet generate initial random points

PolyMshr_Rflct reflect the seeds

PolyMshr_CntrdPly compute areas and centroids



Matlab implementation: meshing kernel

function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)

if ~exist('P','var'), P=PolyMshr_RndPtSet(NElem,Domain); end

NElem = size(P,1);

Tol=5e-3; It=0; Err=1; c=1.5;

BdBox = Domain('BdBox');

Area = (BdBox(2)-BdBox(1))*(BdBox(4)-BdBox(3));

Pc = P; figure;

while(It<=MaxIter && Err>Tol)

Alpha = c*sqrt(Area/NElem);

P = Pc;                                       %Lloyd's update

R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha);   %Generate the reflections 
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R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha);   %Generate the reflections 

[Node,Element] = voronoin([P;R_P]);           %Construct Voronoi diagram

[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);

Area = sum(abs(A));

Err = sqrt(sum((A.^2).*sum((Pc-P).*(Pc-P),2)))*NElem/Area^1.5;

fprintf('It: %3d   Error: %1.3e\n',It,Err); It=It+1;

if NElem<=2000, PolyMshr_PlotMsh(Node,Element,NElem); end; 

end

[Node,Element] = PolyMshr_ExtrNds(NElem,Node,Element);  %Extract node list

[Node,Element] = PolyMshr_CllpsEdgs(Node,Element,0.1);  %Remove small edges

[Node,Element] = PolyMshr_RsqsNds(Node,Element);        %Reoder Nodes

BC=Domain('BC',Node); Supp=BC{1}; Load=BC{2};           %Recover BC arrays

PolyMshr_PlotMsh(Node,Element,NElem,Supp,Load);         %Plot mesh and BCs
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Matlab implementation: Domain function

All domain-related information are included in Domain defined outside the meshing 

kernel.
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Example: Wrench
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Example: Wrench
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28



Examples

• Matlab demo
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Example: symmetric Michell cantilever
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P = [Pc(1:NElem/2,:);[Pc(1:NElem/2,1),-Pc(1:NElem/2,2)]];

function [Node,Element,Supp,Load,P] = PolyMesher(Domain,NElem,MaxIter,P)

...

while(It<=MaxIter && Err>Tol)

Alpha = c*sqrt(Area/NElem);

P = Pc;                                       %Lloyd's update

R_P = PolyMshr_Rflct(P,NElem,Domain,Alpha);   %Generate the reflections 

[Node,Element] = voronoin([P;R_P]);           %Construct Voronoi diagram

[Pc,A] = PolyMshr_CntrdPly(Element,Node,NElem);

...

end
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Example: uniform discretizations

>> nelx = 30; nely = 10;

>> dx = 3/nelx; dy = 1/nely;

>> [X,Y] = meshgrid(dx/2:dx:3,dy/2:dy:1);

>> P = [X(:) Y(:)];

>> [Node,Element,Supp,Load] = PolyMesher(@MbbDomain,0,0,P);
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Example: non-uniform meshes
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Concluding remarks

• Voronoi models arise in nature in various situations. In particular, 
polygonal meshes have been prominent in modeling structural 
problems;

• A simple and robust code based on the concept of Voronoi diagrams 
was presented. Using a simple and effective approach allows to 
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was presented. Using a simple and effective approach allows to 
discretize two-dimensional geometries with convex polygons;

• Its range of applications is broad, including optimization (shape, 
topology, etc), and other applications.
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