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! Recently there has been great interest in level set methods for shape and
topology optimization

! The ill-posedness of such problems, in particular non-existence of solutions, is
often neglected in the formulations

◦ Many formulations do not feature an explicit limiting length parameter (and
so dependence of the complexity of initial guess is not surprising)

◦ To obtain a reasonable behavior, the methods frequently resort to
heuristics without appropriate justification

The main motivation of this talk is to explore the existence issue,
within the restriction framework, for the implicit function description
of the problem

! For example, we show that a consequence of the ill-posedness is that smearing
of Heaviside function transforms the topology problem into the variable
thickness problem
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! The objective function J(χ,u) is assumed to be continuous in strong topology
of L1(Ω) × H1

`

Ω; Rd
´

◦ The objective function for the minimum compliance is given by

J(χ,uχ) = "(uχ) + λ

ˆ

Ω

χdx

where λ is the volume penalty parameter
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! It is well-known that the optimal shape problem is ill-posed if A = L∞(Ω; {0, 1})

! Consider the following counterexample:

J(χ,uχ) = "(uχ) + λ 1
2

´

Ω
χdx, ΓD = ∅, t = (ed ⊗ n) · t0ed

Let ϕn(x) = α sin(nx1). Then χn = H(ϕn) is a minimizing sequence that does
not converge to an element of A

! The optimal design for this problem is a rank-1 laminate, whose stiffness is
precisely the H−limit of χnC

+ + (1 − χn)C−

t

Ω
xd

x1

C+

C−
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PROPOSITION: Let χn, χ̂ ∈ L∞(Ω; [0, 1]) be such that χn → χ̂ in L1(Ω).
Then, up to a subsequence, the associated state solutions also converge,
i.e., uχn → uχ̂ in H1(Ω).

! It follows that compactness in L1(Ω) topology is a sufficient condition for
existence of solutions:

◦ Given a minimizing sequence χn, one can extract a convergent
subsequence such that χn → χ̂ and J(χn,uχn) → J(χ̂,uχ̂)

! A well-known example is the space of designs with bounded perimeter:

A =
˘

χ ∈ BV (Ω {0, 1}) :
´

Ω
|∇χ| dx ≤ P

¯
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! Another choice (Liu et al. 2003) is to set A = H(F) where the implicit functions
ϕ ∈ F ⊆ W 1+θ,2 satisfy:

(R1) : ‖ϕ‖W1+θ,2(Ω) ≤ M

(R2) : |ϕ(x)| + |∇ϕ(x)| ≥ ν a.e. x ∈ Ω

for some positive constants θ, M and ν

! (R1) excludes the possibility of rapid oscillations of the implicit functions:

◦ Note that in the counterexample, ‖ϕn‖W1+θ,2(Ω) → ∞

! (R2) ensures that the phase boundary

{x ∈ Ω : ϕ(x) = 0} ,

which is where the Heaviside is discontinuous, has zero measure:

◦ Without it, ϕn(x) = (α/n2+θ) sin(nx1) gives a minimizing sequence that
satisfies (R1) but does not converge
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◦ For any ρ ∈ L∞(Ω; [0, 1]), there exists ϕ ∈ L∞(Ω; [−α, α]) such that
ρ = Hw(ϕ). Conversely, Hw(ϕ) represents a thickness function

◦ Note also that the conditions of optimality are the same:

H ′
w(ϕ) [λ − E(u)] = 0 when − w < ϕ < w

where E(u) = ε(u) :
`

C
+ − C

−
´

: ε(u)

Therefore the optimal solution with such approximation will con-
tain large "grey" regions filled by the intermediate phases



Smoothness, transversality

RESTRICTION METHODS FOR OPTIMAL SHAPE DESIGN – 9

! (R1) can be imposed via convolution with a smooth filter, i.e., by defining
F = {K ! η : η ∈ L∞(Ω; [−α, α])}



Smoothness, transversality

RESTRICTION METHODS FOR OPTIMAL SHAPE DESIGN – 9

! (R1) can be imposed via convolution with a smooth filter, i.e., by defining
F = {K ! η : η ∈ L∞(Ω; [−α, α])}

! To impose transversality, we can augment the objective function

Jβ(χ,uχ) = J(χ,uχ) + β

ˆ

Ω

χ (1 − χ) dx

OR change the state equation to penalize the intermediate stiffnesses:

Bp(u,v; χ) =

ˆ

Ω

ε(u) :
ˆ

χp
C

+ + (1 − χp)C−
˜

: ε(v)dx



Smoothness, transversality

RESTRICTION METHODS FOR OPTIMAL SHAPE DESIGN – 9

! (R1) can be imposed via convolution with a smooth filter, i.e., by defining
F = {K ! η : η ∈ L∞(Ω; [−α, α])}

! To impose transversality, we can augment the objective function

Jβ(χ,uχ) = J(χ,uχ) + β

ˆ

Ω

χ (1 − χ) dx

OR change the state equation to penalize the intermediate stiffnesses:

Bp(u,v; χ) =

ˆ

Ω

ε(u) :
ˆ

χp
C

+ + (1 − χp)C−
˜

: ε(v)dx

In both cases, separation of phases and thus transversality is achieved in the
optimal regime.

! The condition of optimality for {−w < ϕ < w} respectively are:

H ′
w(ϕ) {λ + β [1 − 2Hω(ϕ)] − E(u)} = 0

H ′
w(ϕ)

˘

λ − p [Hw(ϕ)]p−1E(u)
¯

= 0
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! The continuum parameters (i.e., those independent of the mesh size) are:

◦ α: bound for implicit function field
◦ R: radius of filtering kernel K
◦ w: width of the approximate Heaviside
◦ p: parameter for penalization of intermediate stiffnesses

! It is not be easy to establish an explicit relationship between ν with above
parameters in general

! However the compliance problem, the transversality constant ν is directly
related to α/R (which is why we set w to be fixed fraction of α/R)
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Initial guess Final solution
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! The nature of the continuum optimal shape problem has implications for the
numerical formulations and algorithms

! In addition to smoothness, a uniform “transversality” condition must be imposed
on the implicit function field

! Within the restriction framework, the Ersatz material model (filling the voids with
compliant material C−) can be justified

QUESTIONS?



Approximation of the Heaviside

RESTRICTION METHODS FOR OPTIMAL SHAPE DESIGN – 8

! This fact can be illustrated numerically:

! With transversality condition (R2) imposed, however, we can prove that as
w → 0, the optimal solution χ∗

w = Hw(ϕ∗) converge to solution of problem with
A = H(F)

Initial ϕ

Final solution


