11th US National Congress on Computational Mechanics:

ON RESTRICTION METHODS FOR TWO-PHASE OPTIMAL SHAPE PROBLEMS

Cameron Talischi, Glaucio H. Paulino

Department of Civil and Environmental Engineering
University of Illinois at Urbana-Champaign

Minneapolis, Minnesota, July 25th, 2011

Motivation

\square Recently there has been great interest in level set methods for shape and topology optimization

Motivation

\square Recently there has been great interest in level set methods for shape and topology optimization
\square The ill-posedness of such problems, in particular non-existence of solutions, is often neglected in the formulations

Motivation

\square Recently there has been great interest in level set methods for shape and topology optimization
\square The ill-posedness of such problems, in particular non-existence of solutions, is often neglected in the formulations

- Many formulations do not feature an explicit limiting length parameter (and so dependence of the complexity of initial guess is not surprising)
- To obtain a reasonable behavior, the methods frequently resort to heuristics without appropriate justification

Motivation

\square Recently there has been great interest in level set methods for shape and topology optimization
\square The ill-posedness of such problems, in particular non-existence of solutions, is often neglected in the formulations

- Many formulations do not feature an explicit limiting length parameter (and so dependence of the complexity of initial guess is not surprising)
- To obtain a reasonable behavior, the methods frequently resort to heuristics without appropriate justification

> The main motivation of this talk is to explore the existence issue, within the restriction framework, for the implicit function description of the problem
\square Recently there has been great interest in level set methods for shape and topology optimization
\square The ill-posedness of such problems, in particular non-existence of solutions, is often neglected in the formulations

- Many formulations do not feature an explicit limiting length parameter (and so dependence of the complexity of initial guess is not surprising)
- To obtain a reasonable behavior, the methods frequently resort to heuristics without appropriate justification

```
The main motivation of this talk is to explore the existence issue, within the restriction framework, for the implicit function description of the problem
```

\square For example, we show that a consequence of the ill-posedness is that smearing of Heaviside function transforms the topology problem into the variable thickness problem

Problem statement

\square The two-phase optimal shape problem is defined as:

$$
\inf _{\chi \in \mathcal{A}} J\left(\chi, \mathbf{u}_{\chi}\right) \quad \text { where } \mathbf{u}_{\chi} \in \mathcal{V} \text { solves } \mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\ell(\mathbf{v}), \forall \mathbf{v} \in \mathcal{V}
$$

Problem statement

\square The two-phase optimal shape problem is defined as:

$$
\inf _{\chi \in \mathcal{A}} J\left(\chi, \mathbf{u}_{\chi}\right) \quad \text { where } \mathbf{u}_{\chi} \in \mathcal{V} \text { solves } \mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\ell(\mathbf{v}), \forall \mathbf{v} \in \mathcal{V}
$$

$\mathcal{A} \subseteq L^{\infty}(\Omega ;\{0,1\})$ is the given space of admissible designs,

$$
\mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}):\left[\chi \mathbf{C}^{+}+(1-\chi) \mathbf{C}^{-}\right]: \boldsymbol{\epsilon}(\mathbf{v}) \mathrm{d} \mathbf{x}, \quad \ell(\mathbf{v})=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{v} \mathrm{~d} \mathbf{s}
$$

are the bilinear and linear forms, and $\mathcal{V}=\left\{\mathbf{u} \in H^{1}\left(\Omega ; \mathbb{R}^{d}\right):\left.\mathbf{u}\right|_{\Gamma_{D}}=\mathbf{0}\right\}$

Problem statement

\square The two-phase optimal shape problem is defined as:

$$
\inf _{\chi \in \mathcal{A}} J\left(\chi, \mathbf{u}_{\chi}\right) \quad \text { where } \mathbf{u}_{\chi} \in \mathcal{V} \text { solves } \mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\ell(\mathbf{v}), \forall \mathbf{v} \in \mathcal{V}
$$

$\mathcal{A} \subseteq L^{\infty}(\Omega ;\{0,1\})$ is the given space of admissible designs,

$$
\mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}):\left[\chi \mathbf{C}^{+}+(1-\chi) \mathbf{C}^{-}\right]: \boldsymbol{\epsilon}(\mathbf{v}) \mathrm{d} \mathbf{x}, \quad \ell(\mathbf{v})=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{v d} \mathbf{s}
$$

are the bilinear and linear forms, and $\mathcal{V}=\left\{\mathbf{u} \in H^{1}\left(\Omega ; \mathbb{R}^{d}\right):\left.\mathbf{u}\right|_{\Gamma_{D}}=\mathbf{0}\right\}$
\square The objective function $J(\chi, \mathbf{u})$ is assumed to be continuous in strong topology of $L^{1}(\Omega) \times H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$

Problem statement

\square The two-phase optimal shape problem is defined as:

$$
\inf _{\chi \in \mathcal{A}} J\left(\chi, \mathbf{u}_{\chi}\right) \quad \text { where } \mathbf{u}_{\chi} \in \mathcal{V} \text { solves } \mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\ell(\mathbf{v}), \forall \mathbf{v} \in \mathcal{V}
$$

$\mathcal{A} \subseteq L^{\infty}(\Omega ;\{0,1\})$ is the given space of admissible designs,

$$
\mathcal{B}(\mathbf{u}, \mathbf{v} ; \chi)=\int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}):\left[\chi \mathbf{C}^{+}+(1-\chi) \mathbf{C}^{-}\right]: \boldsymbol{\epsilon}(\mathbf{v}) \mathrm{d} \mathbf{x}, \quad \ell(\mathbf{v})=\int_{\Gamma_{N}} \mathbf{t} \cdot \mathbf{v} \mathrm{~d} \mathbf{s}
$$

are the bilinear and linear forms, and $\mathcal{V}=\left\{\mathbf{u} \in H^{1}\left(\Omega ; \mathbb{R}^{d}\right):\left.\mathbf{u}\right|_{\Gamma_{D}}=\mathbf{0}\right\}$
\square The objective function $J(\chi, \mathbf{u})$ is assumed to be continuous in strong topology of $L^{1}(\Omega) \times H^{1}\left(\Omega ; \mathbb{R}^{d}\right)$

- The objective function for the minimum compliance is given by

$$
J\left(\chi, \mathbf{u}_{\chi}\right)=\ell\left(\mathbf{u}_{\chi}\right)+\lambda \int_{\Omega} \chi \mathrm{d} \mathbf{x}
$$

where λ is the volume penalty parameter

III-posedness

\square It is well-known that the optimal shape problem is ill-posed if $\mathcal{A}=L^{\infty}(\Omega ;\{0,1\})$
\square It is well-known that the optimal shape problem is ill-posed if $\mathcal{A}=L^{\infty}(\Omega ;\{0,1\})$
\square Consider the following counterexample:

$$
J\left(\chi, \mathbf{u}_{\chi}\right)=\ell\left(\mathbf{u}_{\chi}\right)+\lambda_{\frac{1}{2}} \int_{\Omega} \chi d \mathbf{x}, \quad \Gamma_{D}=\emptyset, \quad \mathbf{t}=\left(\mathbf{e}_{d} \otimes \mathbf{n}\right) \cdot t_{0} \mathbf{e}_{d}
$$

Let $\varphi_{n}(\mathbf{x})=\alpha \sin \left(n x_{1}\right)$. Then $\chi_{n}=H\left(\varphi_{n}\right)$ is a minimizing sequence that does not converge to an element of \mathcal{A}
\square It is well-known that the optimal shape problem is ill-posed if $\mathcal{A}=L^{\infty}(\Omega ;\{0,1\})$
\square Consider the following counterexample:

$$
J\left(\chi, \mathbf{u}_{\chi}\right)=\ell\left(\mathbf{u}_{\chi}\right)+\lambda_{\frac{1}{2}} \int_{\Omega} \chi d \mathbf{x}, \quad \Gamma_{D}=\emptyset, \quad \mathbf{t}=\left(\mathbf{e}_{d} \otimes \mathbf{n}\right) \cdot t_{0} \mathbf{e}_{d}
$$

Let $\varphi_{n}(\mathbf{x})=\alpha \sin \left(n x_{1}\right)$. Then $\chi_{n}=H\left(\varphi_{n}\right)$ is a minimizing sequence that does not converge to an element of \mathcal{A}

\square The optimal design for this problem is a rank-1 laminate, whose stiffness is precisely the H-limit of $\chi_{n} \mathbf{C}^{+}+\left(1-\chi_{n}\right) \mathbf{C}^{-}$

Restriction methods

\square To exclude such oscillations, $L^{\infty}(\Omega ;\{0,1\})$ must be replaced by a smaller space that satisfies some suitable compactness property

Restriction methods

\square To exclude such oscillations, $L^{\infty}(\Omega ;\{0,1\})$ must be replaced by a smaller space that satisfies some suitable compactness property

$$
\begin{aligned}
& \text { PROPOSITION: Let } \chi_{n}, \hat{\chi} \in L^{\infty}(\Omega ;[0,1]) \text { be such that } \chi_{n} \rightarrow \hat{\chi} \text { in } L^{1}(\Omega) \text {. } \\
& \text { Then, up to a subsequence, the associated state solutions also converge, } \\
& \text { i.e., } \mathbf{u}_{\chi_{n}} \rightarrow \mathbf{u}_{\hat{\chi}} \text { in } H^{1}(\Omega) \text {. }
\end{aligned}
$$

Restriction methods

\square To exclude such oscillations, $L^{\infty}(\Omega ;\{0,1\})$ must be replaced by a smaller space that satisfies some suitable compactness property

PROPOSITION: Let $\chi_{n}, \hat{\chi} \in L^{\infty}(\Omega ;[0,1])$ be such that $\chi_{n} \rightarrow \hat{\chi}$ in $L^{1}(\Omega)$. Then, up to a subsequence, the associated state solutions also converge, i.e., $\mathbf{u}_{\chi_{n}} \rightarrow \mathbf{u}_{\hat{\chi}}$ in $H^{1}(\Omega)$.
\square It follows that compactness in $L^{1}(\Omega)$ topology is a sufficient condition for existence of solutions:

- Given a minimizing sequence χ_{n}, one can extract a convergent subsequence such that $\chi_{n} \rightarrow \hat{\chi}$ and $J\left(\chi_{n}, \mathbf{u}_{\chi_{n}}\right) \rightarrow J\left(\hat{\chi}, \mathbf{u}_{\hat{\chi}}\right)$

Restriction methods

\square To exclude such oscillations, $L^{\infty}(\Omega ;\{0,1\})$ must be replaced by a smaller space that satisfies some suitable compactness property

PROPOSITION: Let $\chi_{n}, \hat{\chi} \in L^{\infty}(\Omega ;[0,1])$ be such that $\chi_{n} \rightarrow \hat{\chi}$ in $L^{1}(\Omega)$. Then, up to a subsequence, the associated state solutions also converge, i.e., $\mathbf{u}_{\chi_{n}} \rightarrow \mathbf{u}_{\hat{\chi}}$ in $H^{1}(\Omega)$.
\square It follows that compactness in $L^{1}(\Omega)$ topology is a sufficient condition for existence of solutions:

- Given a minimizing sequence χ_{n}, one can extract a convergent subsequence such that $\chi_{n} \rightarrow \hat{\chi}$ and $J\left(\chi_{n}, \mathbf{u}_{\chi_{n}}\right) \rightarrow J\left(\hat{\chi}, \mathbf{u}_{\hat{\chi}}\right)$
\square A well-known example is the space of designs with bounded perimeter:

$$
\mathcal{A}=\left\{\chi \in B V(\Omega\{0,1\}): \int_{\Omega}|\nabla \chi| d \mathbf{x} \leq \bar{P}\right\}
$$

Restriction of implicit function field

\square Another choice (Liu et al. 2003) is to set $\mathcal{A}=H(\mathcal{F})$ where the implicit functions $\varphi \in \mathcal{F} \subseteq W^{1+\theta, 2}$ satisfy:

$$
\begin{array}{ll}
\text { (R1) : } & \|\varphi\|_{W^{1+\theta, 2}(\Omega)} \leq M \\
\text { (R2) : } & |\varphi(\mathbf{x})|+|\nabla \varphi(\mathbf{x})| \geq \nu \quad \text { a.e. } \mathbf{x} \in \Omega
\end{array}
$$

for some positive constants θ, M and ν

Restriction of implicit function field

\square Another choice (Liu et al. 2003) is to set $\mathcal{A}=H(\mathcal{F})$ where the implicit functions $\varphi \in \mathcal{F} \subseteq W^{1+\theta, 2}$ satisfy:

$$
\begin{array}{ll}
\text { (R1) : } & \|\varphi\|_{W^{1+\theta, 2}(\Omega)} \leq M \\
\text { (R2) : } & |\varphi(\mathbf{x})|+|\nabla \varphi(\mathbf{x})| \geq \nu \quad \text { a.e. } \mathbf{x} \in \Omega
\end{array}
$$

for some positive constants θ, M and ν
\square (R1) excludes the possibility of rapid oscillations of the implicit functions:

- Note that in the counterexample, $\left\|\varphi_{n}\right\|_{W^{1+\theta, 2}(\Omega)} \rightarrow \infty$
\square Another choice (Liu et al. 2003) is to set $\mathcal{A}=H(\mathcal{F})$ where the implicit functions $\varphi \in \mathcal{F} \subseteq W^{1+\theta, 2}$ satisfy:

$$
\begin{array}{ll}
\text { (R1) : } & \|\varphi\|_{W^{1+\theta, 2}(\Omega)} \leq M \\
\text { (R2) : } & |\varphi(\mathrm{x})|+|\nabla \varphi(\mathrm{x})| \geq \nu \quad \text { a.e. } \mathrm{x} \in \Omega
\end{array}
$$

for some positive constants θ, M and ν
\square (R1) excludes the possibility of rapid oscillations of the implicit functions:

- Note that in the counterexample, $\left\|\varphi_{n}\right\|_{W^{1+\theta, 2}(\Omega)} \rightarrow \infty$
\square (R2) ensures that the phase boundary

$$
\{\mathrm{x} \in \Omega: \varphi(\mathrm{x})=0\}
$$

which is where the Heaviside is discontinuous, has zero measure:

- Without it, $\varphi_{n}(\mathbf{x})=\left(\alpha / n^{2+\theta}\right) \sin \left(n x_{1}\right)$ gives a minimizing sequence that satisfies (R1) but does not converge

Approximation of the Heaviside

\square If no restrictions are placed on φ, the usual approximation of the Heaviside by

$$
H_{w}(\varphi)(\mathbf{x})= \begin{cases}0, & \varphi(\mathbf{x})<-w \\ h_{w}(\varphi(\mathbf{x})), & |\varphi(\mathbf{x})| \leq w \\ 1, & \varphi(\mathbf{x})>w\end{cases}
$$

transforms the problem into the variable thickness problem regardless of w :

Approximation of the Heaviside

\square If no restrictions are placed on φ, the usual approximation of the Heaviside by

$$
H_{w}(\varphi)(\mathbf{x})= \begin{cases}0, & \varphi(\mathbf{x})<-w \\ h_{w}(\varphi(\mathbf{x})), & |\varphi(\mathbf{x})| \leq w \\ 1, & \varphi(\mathbf{x})>w\end{cases}
$$

transforms the problem into the variable thickness problem regardless of w :

- For any $\rho \in L^{\infty}(\Omega ;[0,1])$, there exists $\varphi \in L^{\infty}(\Omega ;[-\alpha, \alpha])$ such that $\rho=H_{w}(\varphi)$. Conversely, $H_{w}(\varphi)$ represents a thickness function
- Note also that the conditions of optimality are the same:

$$
H_{w}^{\prime}(\varphi)[\lambda-E(\mathbf{u})]=0 \quad \text { when }-w<\varphi<w
$$

where $E(\mathbf{u})=\boldsymbol{\epsilon}(\mathbf{u}):\left(\mathbf{C}^{+}-\mathbf{C}^{-}\right): \epsilon(\mathbf{u})$

Approximation of the Heaviside

\square If no restrictions are placed on φ, the usual approximation of the Heaviside by

$$
H_{w}(\varphi)(\mathbf{x})= \begin{cases}0, & \varphi(\mathbf{x})<-w \\ h_{w}(\varphi(\mathbf{x})), & |\varphi(\mathbf{x})| \leq w \\ 1, & \varphi(\mathbf{x})>w\end{cases}
$$

transforms the problem into the variable thickness problem regardless of w :

- For any $\rho \in L^{\infty}(\Omega ;[0,1])$, there exists $\varphi \in L^{\infty}(\Omega ;[-\alpha, \alpha])$ such that $\rho=H_{w}(\varphi)$. Conversely, $H_{w}(\varphi)$ represents a thickness function
- Note also that the conditions of optimality are the same:

$$
H_{w}^{\prime}(\varphi)[\lambda-E(\mathbf{u})]=0 \quad \text { when }-w<\varphi<w
$$

where $E(\mathbf{u})=\boldsymbol{\epsilon}(\mathbf{u}):\left(\mathbf{C}^{+}-\mathbf{C}^{-}\right): \epsilon(\mathbf{u})$

> Therefore the optimal solution with such approximation will contain large "grey" regions filled by the intermediate phases

Smoothness, transversality

\square (R1) can be imposed via convolution with a smooth filter, i.e., by defining $\mathcal{F}=\left\{K \star \eta: \eta \in L^{\infty}(\Omega ;[-\alpha, \alpha])\right\}$

Smoothness, transversality

\square (R1) can be imposed via convolution with a smooth filter, i.e., by defining $\mathcal{F}=\left\{K \star \eta: \eta \in L^{\infty}(\Omega ;[-\alpha, \alpha])\right\}$
\square To impose transversality, we can augment the objective function

$$
J_{\beta}\left(\chi, \mathbf{u}_{\chi}\right)=J\left(\chi, \mathbf{u}_{\chi}\right)+\beta \int_{\Omega} \chi(1-\chi) \mathrm{d} \mathbf{x}
$$

OR change the state equation to penalize the intermediate stiffnesses:

$$
\mathcal{B}_{p}(\mathbf{u}, \mathbf{v} ; \chi)=\int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}):\left[\chi^{p} \mathbf{C}^{+}+\left(1-\chi^{p}\right) \mathbf{C}^{-}\right]: \boldsymbol{\epsilon}(\mathbf{v}) \mathrm{d} \mathbf{x}
$$

Smoothness, transversality

\square (R1) can be imposed via convolution with a smooth filter, i.e., by defining $\mathcal{F}=\left\{K \star \eta: \eta \in L^{\infty}(\Omega ;[-\alpha, \alpha])\right\}$
\square To impose transversality, we can augment the objective function

$$
J_{\beta}\left(\chi, \mathbf{u}_{\chi}\right)=J\left(\chi, \mathbf{u}_{\chi}\right)+\beta \int_{\Omega} \chi(1-\chi) \mathrm{d} \mathbf{x}
$$

OR change the state equation to penalize the intermediate stiffnesses:

$$
\mathcal{B}_{p}(\mathbf{u}, \mathbf{v} ; \chi)=\int_{\Omega} \boldsymbol{\epsilon}(\mathbf{u}):\left[\chi^{p} \mathbf{C}^{+}+\left(1-\chi^{p}\right) \mathbf{C}^{-}\right]: \boldsymbol{\epsilon}(\mathbf{v}) \mathrm{d} \mathbf{x}
$$

In both cases, separation of phases and thus transversality is achieved in the optimal regime.
\square The condition of optimality for $\{-w<\varphi<w\}$ respectively are:

$$
\begin{gathered}
H_{w}^{\prime}(\varphi)\left\{\lambda+\beta\left[1-2 H_{\omega}(\varphi)\right]-E(\mathbf{u})\right\}=0 \\
H_{w}^{\prime}(\varphi)\left\{\lambda-p\left[H_{w}(\varphi)\right]^{p-1} E(\mathbf{u})\right\}=0
\end{gathered}
$$

\square The continuum parameters (i.e., those independent of the mesh size) are:

- α : bound for implicit function field
- R : radius of filtering kernel K
- w : width of the approximate Heaviside
- p : parameter for penalization of intermediate stiffnesses
\square It is not be easy to establish an explicit relationship between ν with above parameters in general
\square However the compliance problem, the transversality constant ν is directly related to α / R (which is why we set w to be fixed fraction of α / R)

Some numerical results

Initial guess:

Values of parameters used: $\quad \alpha=1, \quad w=0.0375 \alpha / R, \quad p=4$

Some numerical results

Initial guess:

$$
\alpha=1, \quad w=0.0375 \alpha / R, \quad p=4
$$

Initial guess:

Values of parameters used: $\alpha=1, \quad w=0.0375 \alpha / R, \quad p=4$

Initial guess:

Values of parameters used: $\quad \alpha=1, \quad w=0.0375 \alpha / R, \quad p=4$

Initial guess:

Values of parameters used: $\quad \alpha=1, \quad w=0.0375 \alpha / R, \quad p=4$

Some numerical results

$H_{w}(\varphi)$

$R=0.075$

$R=0.100$

$R=0.150$

$$
\varphi=K_{R} \star \eta
$$

$H_{w}(\varphi)$

$R=0.075$

$$
R=0.100
$$

$R=0.150$

$R=0.200$

$$
\varphi=K_{R} \star \eta
$$

Initial guess
Final solution

Concluding remarks

\square The nature of the continuum optimal shape problem has implications for the numerical formulations and algorithms
\square In addition to smoothness, a uniform "transversality" condition must be imposed on the implicit function field
\square Within the restriction framework, the Ersatz material model (filling the voids with compliant material \mathbf{C}^{-}) can be justified

Approximation of the Heaviside

\square This fact can be illustrated numerically:

Final solution
\square With transversality condition (R2) imposed, however, we can prove that as $w \rightarrow 0$, the optimal solution $\chi_{w}^{*}=H_{w}\left(\varphi^{*}\right)$ converge to solution of problem with $\mathcal{A}=H(\mathcal{F})$

