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SUMMARY 

A new method for non-linear programming in general and structural optimization in particular is presented. 
In each step of the iterative process, a strictly convex approximating subproblem is generated and solved. The 
generation of these subproblems is controllcd by  so called ‘moving asymptotes’, which may both stabilize and 
speed up the convergence of the general process. 

1. INTRODUCTION 

In this paper a new method for structural optimization is presented. The method, which is called 
the ‘method of moving asymptotes’ and MMA, is based on a special type of convex approximation. 

Tdeally, a method for structural optimization should be flexible and general. It should be able to 
handle not only element sizes as design variables, but also, for instance, shape variables and 
material orientation angles. It should also be able to handle ‘all kinds’ of constraints, provided only 
that the derivatives of the constraint functions with respect to the design variables could be 
calculated (analytically or numerically). Thus, the method should be able to handle general non- 
linear programming problems. In addition, it should take into consideration the characteristics of 
structural optimization problems, e.g. usually very expensive function evaluations but still the 
possibility to calculate gradients. Further, the method should be ‘stable’ and generate a sequence of 
improved feasible (or almost feasible) solutions of the considered problem. 

We hope, and believe, that these requirements and wishes are to a rather large extent met by the 
method of moving asymptotes. Tn addition, MMA is easy to implement and use. 

The outline of the paper is as follows: in section 2 the method is prcsented in rather general terms, 
whereas a more tcchnical description is given in section 3. In section 4 a dual method is suggested 
for solving the subproblems generated by the method. In section 5 it is shown how to avoid the 
unpleasant situation that a subproblem becomes infeasible. Finally, in section 6,  some interesting 
numerical test results are presented. 

2. GENERAL DESCRTPTlON OF THE METHOD 

Consider a structural optimization problem of the following general form: 

P: minimize 

subject to 
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and 
xj G x j  < Xj, for j = 1,. . . , n 

where x = (xi,. . . , x,)* is the vector of design variables, fo(x) is the objective function, typically the 
structural weight, fi(x) < fi are behaviour constraints, typically limitations on stresses and 
displacements, ; y j  and Xj are given lower and upper bounds (‘technological constraints’) on the 
design variables. 

A well established general approach for attacking such problems is to generate and solve a 
sequence of explicit subproblems according to the following iterative scheme: 

Step 0. Choose a starting point x(*), and let the iteration index k = 0. 
Step I .  Given an iteration point xtk), calculate ,fi(x(kj) and the gradients V,fi(dk)) for i = 

0,1, ..., m. 
Step 11. Generate a subproblem P(k )  by replacing, in P, the (usually implicit) functions f ;  by 

approximating explicit functions f j k 1 ,  based on the calculations from step I. 
Step 111. Solve P ( k )  and let the optimal solution of this subproblem be the next iteration point 

x ( ~  I). Let k = k + 1 and go to step 1. 

The process is interrupted when some convergence criteria are fulfilled, or simply when the user is 
satisfied with the current solution x ( ~ ) .  

This general approach was suggested for element sizing problems already in Reference 1, where 
it was further suggested that, for i > 0, the approximating function . f ik’  should be obtained by a 
linearization (i.e. a first order Taylor expansion) in the reciprocal elemental sizes (l/xj) of .fi at the 
current iteration point x(~) ,  while f‘,“’ should be chosen identical to f,,. 

A generalization of the method in Reference 1, to other structural optimization problems than 
just element sizing, was recently proposed in Reference 2, where it was suggested that each f j k )  
should be obtained by a linearization of f ,  in ‘mixed’ variables; either x j  or I/xj dependent on the 
sign of the derivative af,,@xj at x ( ~ ) .  

The method suggested in this paper (M MA) may be interpreted as a further generalization of the 
method in Reference 2, In brief, each f i k )  is obtained by a linearization of f i  in variables of the type 
l/(xj - L j )  or l/(Uj - xj) dependent on the signs of the derivatives of fi at x ( ~ ) .  The values of the 
parameters Lj and U j  are normally changed between the iterations, and we will sometimes refer to 
Lj and U j  as ‘moving asymptotes’. 

It may easily be shown that the method of Reference 2 is obtained as a special case of MMA by 
letting Lj  = 0 and U j 4  co. 

However, by permitting also other values of Lj  and U j ,  a more flexible and powerful method is 
obtained. In particular, as will be demonstrated on a simple e x a w e ,  these parameters can be used 
to efficiently stabilize the general approach described above. 

It should perhaps also be noted that when MMA is used, the variables are not required to be 
non-negative. In fact, MMA is sensitive to neither translation nor scaling of the variables. 

3. TECHNICAL DESCRIPTION OF THE METHOD 

M M A  follows the general approach (steps 0-111) described in the previous section. Thus, to define 
the method, it must be described: 

(a) how the functions f ! k )  should be defined 
(b) how the subproblem Fk) should be solved, given that the f ! k )  have been chosen. 

We start with the first question, i.e. how to choosc f f k ) .  The question of how to solve Pk) is left to 
section 4. 
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Given the iteration point x ( ~ )  (at iteration k), values of the parameters Lf) and Uf) are chosen, for 
j = 1,. . . , n, such that 

Lf) < x$’ < up, (1) 

Different rules for how to choose these values are discussed in detail later. 
Then, for each i = 0,1,. . . , m, f j k )  is defined by 

where 

where all derivatives a f i / a x j  are evaluated at x = x(~ ) .  
Then, as is easily checked, f lk)  is a first order approximation of f i  at x(‘), i.e. 

f$’)(x(‘)’) = fi(x(’)’)  and a f l k ) / a x j  = a f i / a x j  at x = x ( ~ )  

for i = O , l ,  ..., m a n d j =  1 ,..., n. 
Further, the second derivatives off I k ) ,  at any point x such that Lf) < x j  < Uf) for all j, are given 

by 

and 
p f j k )  

= O i f j # l  ax j  ax, 
Thus, since p$) 2 0 and 4:;) 2 0, f i k )  is a convex function. In particular, at x = x ( ~ )  

Thus, the closer Lf) and Uf) are chosen to x $ ,  the larger become the second derivatives, the more 
curvature is given to the approximating functions f I k ) ,  and the more conservative becomes the 
approximation of the original problem. More precisely, the following holds. 

Assume that nk) and Tik) are two different approximating functions corresponding to the 
parameter values {Ejk), t7jk)} and {z!k), of)}, respectively. If it holds that zy) G z?) < x p  < 
oy) < 13(k) for all j ,  then, for all points x such that Ly) <xj< uf) for all j ,  it holds that 

The proof of this statement, which easily follows by straightforward calculations, is omitted here. 
Correspondingly, if Zk)  and U ( k )  are chosen ‘far away’ from x(~) ,  then f !k) becomes close to linear, 

i.e. without any curvature for all reasonable x ,  i.e. for those x which are close to x ( ~ )  compared to 

3 i k ) ( X )  &k)(X). 
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L(k) and C - ( k ) .  In the extreme case that ‘ I F )  = - m’ and ‘ C r y )  = + 02’ for all j ,  then the f 
(in the limit as I f ) +  -- z8 and Up)-+ + a) identical to the linear functions 

become 

i 

which are the approximating functions used in the well-known ‘sequence of linear programmes’ 
method, which has been used for structural optimization in Refcrencc (3 ) ,  for instance. 

If, instead, Ly) := 0 and ‘CJjk) = + m’ for all j ,  then the f i k )  become (in the limit as U p )  -+ co) 
identical to the approximating functions used in the method suggested in Reference 2. In this case 

f j k )  becomes linear in the variable xj if c?.fi,/dxj 2 0 and strictly convex in .xj if i3j;,/8xj < 0. 
In MMA, the values of LF) and UF) are always finite. Then each f $ k )  becomes strictly convex in 

all variables xi except in those for which 8fi/2xj = 0 at x = d k ) .  (If c? j’Ji?xj = 0 at x = x ( ~ )  thenf’ik) 
becomes independent of xj.) Now, with the approximating functions f j k )  defined by (2), the 
following subproblem, called Pk), is obtained: 

PkJ: minimize 

subject to 

and 

Here, the parameters x?) and are ‘move limits’ which are probably not very crucial. However, to 
avoid the possibility of any unexpccted ‘division by zero’ while solving the subproblem, up)  and pj”) 
should at least be chosen such that 

max (xJ, x y ) }  < x, < min { x J ,  [I?)) for j = I , .  . . , n 

LF’ < q’ < q’ < p:”’ < uy) (8) 

for example = 0.9Ljk) + 0.1 xy) and [ S P )  = 0.9 U p )  + 0.1 xy). 
It will now briefly be discussed how to choose values for the ‘moving asymptotes’ I t )  and US”’. 
Provided that the given lower and upper bounds xl - and ?cJ on the variables are ‘physically 

reasonable’, a simple choice is to let 

Lyj = xj - s,(X, - g,) and 

where so is a fixed real number, say so = 0.1. Here, !!?’ and U y )  do not depend on k,  i.e. they arc 
‘fixed asymptotes’ rather than ‘moving’. 

An important special case of ‘fixed asymptotes’ occurs when xJ stands for the transverse si/e of an 
element (or a group of elements). Then it is often reasonable to let 

Ujk) = X, + s,(XJ - 5,) (9) 

Ly) = 0 and Cry)  = ‘a large number’, say 10X, (10) 

Even if the simplicity of ‘fixed asymptotes’ is appealing, we believe that in order to fully exploit the 
flexibility of MMA, one must permit the asymptotes to move in some clever way between the 
iterations. 

A general (although heuristic) rule for how to change the values of Ly’ and Uy) is the following: 

(a) If the process tends to oscillate, then it needs to be stabilized. This stabilkation may be 
accomplished by moving the asymptotes closer to the current iteration point. 
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(b) If, instead, the process is monotone and slow, it needs to be ‘relaxed’. This may be 

A simple implcmentation of this ‘rule’ is the following. Here, s is a given real number less than unity, 
e.g. s = 0.7. 

accomplished by moving the asymptotes away from the current iteration point. 

For k = O  and k =  1, let 

Ly) = xp) - ( X j  - x j )  and up) = xp) + ( X j  - xj) (1 1) 

For k 3 2  

If the signs of xp) - xp- and I 

variable xj, then let 
- xp-2) are opposite, indicating an oscillation in the 

Lp’ = - ,<,p- 1) - L(F- 1 )  
1 )  

r/y ,  = xy)  + s(u(k 1) - , ( k - l ) )  
(12) 

1 X j  

If the’signs of xy) - xy- l )  and xf-  ’) - x Y - ~ )  are equal, indicating that the asymptotes are 
slowing down the convergence in the variable x j ,  then let 

Ljk) = q) - <.p - 1) - L‘k - 

u~’=xjk)+(u(k-’)-xp-l))/s (1 3)  

There are, of course, a lot of possible alternatives to this implementation. One could, for example, 
refuse to ‘relax’ the asymptotes unless all three of xy) - x jk- ’ ) ,xy- ’ )  - x j  ( k - 2 )  and xy-’) - x j  ( k - 3 )  

have equal signs, etc. 
One could also use, for instance, J s  instead of s in (13), so that it needs two ‘relaxations’ of 

the asymptotes to fully compensate for one ‘tightening’. (This makes the method more conservative 
and stable.) 

We have, so far, not worked very hard on the question of how to choose values for Ljk’ and 
Up) .  This is clearly a possible area for further investigations. However, even with the crude 
choices suggested above, (9)-(13), the method has indeed worked very well on different test 
problems. 

4. A DUAL METHOD TO SOLVE THE SUBPROBLEMS 

To simplify notation, we will in this section suppress the iteration index k on the coefficients in 
the subproblem. Further, we will write aj instead of max ( x j ,  aj }  Pj instead of min { Z j ,  f i j }  
and bi instead o fx  - ri. 

Then the subproblem Pk), defined in the previous section, may be written as follows: 
Fk): minimize 

subject to 

and 
r* j  < xj < Bj ,  

where p t j  2 0, qij 3 0 and Lj < a j  < pi < U j .  

for . j =  1, ..., n 
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P(k)  is a convex, separable problem. Therefore, a dual method analogous to the ones described 

The Lagrangian function corresponding to P(k) is given by 
in References 4 and 5 could be used for its solution. Such a method will here be described. 

m 

[(x, yj = fb"'(x, + 1 YjfIk'(X) 
i= 1 

which, after trivial calculations, equals 

y is the vector of Lagrange multipliers or 'dual variables'. 

W(y) = min (I(x, y); aj Q xj < / I j  

Next, the 'dual objective function' W is defined, for y 2 0 (i.e. all yi  O), as follows: 

for all j )  
X 

n 
= r o - y T b +  C W,(y) 

j = 1  

where 
Wj(y) = min{ Ij(xj, y); uj  Q x j  < Bj }  (14) 

-5 

It will now be shown that it is easy to write down, explicitly, the minimizing xi in (14). This 
minimizing xj, which clearly depends on y, will be denoted by xj(y). 

First note that since y 2 0 it follows that p o j  + yTpj >, 0 and qoj  + yTqj 2 0. Therefore, Ij(xj, y) is 
convex as a function of xj. Next, note that in the rare case that p o j  + yTpj = 0 and qoj + yTqj = 0 
(i.e. poi = 0, qoj = 0, y ip i j  = 0 and yiqi j  = 0 for all i) lJ(xj, y) does not depend on xi at all. Thus, in 
this rare case, any xj  between aj  and pj minimizes lj(x,,y). 

From now on, we may thus assume that at least one of p o j  + yTpj or qoj + yTqj is strictly positive. 
Then the derivative of lj(xj,y) with respect to xj is given by 

and the second derivative of lj(xj,y) with respect to xj is given by 

Since ly(xj, yj is strictly positive, the derivative Ei(xj, y) is strictly increasing in x j ,  and we may 
draw the following conclusions concerning the minimizing x j  in (14) (denoted by xj(y)): 



THE METHOD OF MOVING ASYMPTOTES 365 

I .  If I ; ( c c j ,  y) >, 0 then xj(y) = x i  

2. If l;(jj,y) d 0 then xj(y) = Bj  
3. If l:(ccj, y) < 0 and l’JbJ.y) > 0 then x,(y) is the unique solution of the equation ( ( x j ,  y) = 0. 

It is easy to verify that this unique solution is given by 

Now, since there is an explicit expression for xj(y), the minimizing xi in (14), there is also an explicit 
expression for the dual objective function W(y), namcly 

Furthermore, the derivatives of W(y), with respect to the dual variables y i ,  are given by: 

The dual problem corresponding to Pk) is the problem of maximizing W(y) ovcr the set of all 
y such that y b 0 (i.e. y i  b 0 for all i). 

D: maximize 
W(y) subject to y>,O 

Since x,(y) depends continuously on y (except in the rare case that p o j  + yTpj = qOj + yTqj = 0), 
it follows from (21) that W(y) is a ‘smooth’ function. It is also easy to prove that W(y) is a 
concave function (since it is the pointwise minimum of a collection of functions which are linear 
in y). 

D is therefore a rather ‘nice’ problem, which may be solved by an arbitrary gradient method. 
We have developed a Fortran subroutine based on a conjugate gradicnt method, the 
Fletcher--Reeves method, slightly modified to take care of the non-negativity constraints on the 
(dual) variables. Apparently, this routinc easily solves dual problems containing several hundreds 
of (dual) variables. 

Once the dual problem has been solved, the optimal solution of the (primal) subproblem P(k’ 
is directly obtained by just plugging in thc optimal dual solution y in the expressions for xj(y) 
above. 

5. ARTIFICIAL VARIABLES 

It may happen, in particular during the first iterations if the starting point x(O) is badly chosen, 
that a subproblem P(k)  becomes infeasible, i.e. without any feasible solutions. In that case, one 
would still like to obtain a reasonable next iteration point x ( ~ + ’ ) ,  typically a point which is (in 
some sense) ‘as close to feasible as possible’ to F). 

In order to accomplish this, it is suggested that each subproblem Pk) is modified by the 
introduction of ‘artificial variables’ zi, i = 1,.  . . , m, so that the subproblem instead looks as follows 
(using similar notation as in section 4): 
P’: minimize 

m 
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and 

g j < x ,  < / I j ,  for j =  1 ,..., n and z i 2 0 ,  for i =  1 ,..., m 

where pij 0, qij >, 0, Li < a, d P j  < U,, and d i  > 0. Each di should be a ‘relatively large’ fixed real 
number. Obviously, there are always feasible solutions of this problem. (For any x it is possible 
to choose z such that the constraints become satisfied.) 

It is easy to prove that if the coefficients di are sufficiently large, then all the artificial variables 
zi will automatically become zero in the optimal solution of P(k) ,  provided that the unmodified 
subproblem Pfk) (of section 4) is feasible. 

On the other hand, if the unmodified subproblem Pfk) is infeasible, then some of the zi will 
be strictly positive in the optimal solution of I?(k).  However, because of the high ‘cost’ of these 
variables, they will not be greater than absolutely necessary. Therefore, the corresponding 
x-solution is in some sense as close as possible to being feasible to the unmodified problem P(k) .  

It should be noted that the dual method described in section 4 may still be used, after some 
trivial modifications, to solve this new subproblem I?fk). In fact, since the number of dual 
variables y i  is still equal to rn, the dual problem of p(k) is not (significantly) harder to solve 
than the dual problem of Pfk). 

Concerning the question of how to choose values for the coefficients di, it is theoretically 
sufficient to choose them ‘very large’ compared to the other coefficients in the objective function. 
In practice, however, one should probably not choose them unnecessarily large (e.g. lo2’), since 
this in some cases might cause numerical difficulties. It is rather easy, however, to calculate 
rough estimates of reasonable values on each di. Then one might let di be equal to such an 
estimate multiplied by, say, 10 or 100. 

6. NUMERICAL TEST RESULTS 

MMA (the method of moving asymptotes) has ben coded in Fortran 77 and tested on different 
problems. 

In this section we will report on some (spectacular) results obtained on three different test 
problems. Even if these problems are purely ‘academic’, we believe that the obtained results give 
some insight into the nature of MMA, in particular they indicate a strong potentiality of the 
method. 

(The method has also been implemented at the Aircraft Division of SAAB-SCANIA and tested 
on some large scale problems containing thickness variables, geometric variables, angular 
orientation variables, stress constraints, displacement constraints and eigenfrequency constraints. 
The obtained results have been very satisfactory, but we are not yet ready to present the details 
concerning these tests.) 

Test problem 1 :  cantilever beam 

Consider a cantilever beam, built from 5 beam elements as shown in Figure 1. Each beam 

The beam is rigidly supported at node 1, and there is a given external vertical force acting at 
element has a quadratic cross-section as shown in Figure 1. 

node 6 (see Figure 1). 
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Node I Node 2 Node 3 Node 4 Node5 N o d e 6  

3 

X 

Figure 1. Cantilever beam (test problem 1) 

The design variables are the heights x, of the different beam elements, and the thicknesses are 

The objective function, to be minimized, is the weight of the beam. 
There is only one behaviour constraint, namely a given limit on the vertical displacement of 

node 6 (where the given load is acting). 
The lower bounds on the design variables are so small, and the upper bounds are so large, 

that they never become active in this problem. 
Using classical beam theory, this problem may in fact be stated analytically as follows (after 

some cleaning): 
P1: minimize 

held fixed. 

C,(x, + x, + x3 + x4 + x5), XI > 0 
subject to 

61/x: + 37/x; + 19/x: + 7/x: + l/xz < C, 

where C, and C, are constants whose values depend on material properties, the magnitude of 
the given load, etc. In our case, it turned out that C, = 0-0624 and C ,  = 1.0. 

P1 may easily be solved analytically. If C, = 1.0, the optimal solution is 

X, = 6.016, X, = 5.309, x3 = 4.494, x4 = 3.502, x5 = 2.1 53 (22) 
If, in addition, C, = 0.0624, the corresponding optimal objective value is 1.340. 

As a starting point in our tests, we used the feasible solution x:') = 5.0 for all j. Then the 
displacement constraint becomes satisfied with equality, and the total weight of this solution is 
1.560. 

In order to illuminate how the moving asymptotes influence the behaviour of the method, we 
used the following simple rule for choosing values of and Us"): 

Ls"' = txs"), ujk) = .s"'/t (23)  
where the parameter t must be chosen strictly between 0 and 1. 

the following values were compared: 
Several runs, with different values for the parameter t ,  have been performed. In particular, 

t = 111 6, t = 118, t = 114, t = 113, t = 112, t = 213, t = 314. 

A 'traditional' method was also included in the tests, namely the method of Reference 2 which, 
on this problem, coincides with the method of Reference 1. In fact, this method exactly corresponds 
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to the limit case t = 0 in (23) above. ( L y )  = 0 and U s )  -+ m) 
The move limits a?) and j3y) were, in all runs, chosen according to the following simple rule: 

(24) 
$1 = max{O.5xj,k), 1.01 Ly’> 

8:k) = mini 2 . 0 ~ s ) .  0.99 U y ) :  

For the ‘traditional’ method this means cxy) = 0.5 xp) and p(k) J = 2.0xy’. 
The results of the different runs (with different values for t) ,  are shown in Table I. Each iteration 

Table I. Results for test problem 1, ‘cantilever beam’. The upper entry of each pair is the weight arid the 
second is the infeasibility 

‘Traditional’ MMA MMA MMA MMA MMA MMA MMA 
Iteration method with with with with with with with 
number ( t  = 0) t=1/16 i = 1 / 8  t = l / 4  t = 1 / 3  / = 1 / 2  L=2/3 t = 3 / 4  

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 1  

12 

13 

1.560 
0.000 

1.265 
0.40 

1.251 
0.43 

1-259 
0.43 

1.250 
0.44 

1.258 
0.43 

1.249 
0.44 

1.258 
0.43 

1.259 
0.42 

1.250 
0.44 

1-259 
0.42 

1.560 
0.000 

1.274 
0.35 

1.270 
0.27 

1.304 
0.14 

1.319 
0.08 

1.329 
0.04 

1.333 
0.02 

1.336 
0.01 

1.340 
0.002 

1.340 
0.00 1 

1560 
0.000 

1.285 
0.23 

1-307 
0.11 

1.331 
0.03 

1.337 
0.008 

1.339 
0.002 

1.340 
0.001 
_ ~ _ _  

1.560 
0000 

1.309 
0 10 

1.335 
0.0 1 

1.340 
0.0005 

1.560 1.560 
0.000 0.000 

1.327 1.387 
005 0.000 

1-338 1.346 
0.004 0.000 

1.340 1.341 
00001 0.000 
~- 

1.560 
0.000 

1.448 
0.000 

1,386 
0~000 

1.358 
0-000 

1.347 
0.000 

1.343 
0.000 

1.341 
0.000 

1.560 
0.000 

1477 
0.000 

1.418 
0.000 

1.383 
0000 

1.363 
0.000 

1.352 
0.000 

1.346 
0.000 

1.343 
0.000 

1-342 
0.000 

1.341 
0.000 
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point x ( ~ )  is represented by two numbers: its objective value (weight) f o ( ~ ( k ) )  and its 'infeasibility', 
defined as follows: 

Infeas(x(k)) = max(0,max ~ ( f ~ ( x ( ~ ) )  - ji)/Ji] } (25) 
i 

with notations as in section 2. Clearly, x ( ~ )  is a feasible solution of the original problem P (defined 
in section 2) if and only if Infeas (x(~)) = 0. 

The termination criterion used for this problem is the following: the process is terminated, and 
the current iteration point x ( ~ )  is accepted as a sufficiently close to optimal solution, as soon as 
infeas (x'") < 0001 and f(x")) < l.OOlf*, where f *  is the (known) minimal weight, in our case 
1.340. 

The obtained results, shown in Table I, are somewhat remarkable. The 'traditional' method did 
not converge at all (!) whereas for all tested values of t(1/16 < t < 3/4) MMA converged to the 
optimal solution given by (22). 

What happened to the 'traditional' method was that, after some iterations, the process oscillated 
between mainly two different solutions, both being highly infeasible and non-optimal, so that 
x@) M x ( ~ )  M x ( ~ ) .  . . and x ( ~ )  M x@) x x(*). . . etc. This behaviour was efficiently stabilized by using 
MMA with a strictly positive t in (23). 

The 'best' values oft (for this specific problem!) were those between 1/4 and 1/2. With these values 
oft  the convergence was remarkably fast, only 3 iterations were needed. When t > 1/2 the method 
became somewhat 'too conservative', whereas the opposite was the case when t < 114. However, 
even for t = 1/8 and t = 2/3 only 6 iterations were needed. 

Test problem 2;8-bar truss 

Next, consider a simple truss structure containing 8 elements (bars) shown in Figure 2. 
Topology 

7 1  

6- 
/ I \  

f' 

6 l ( 2 )  9 ( 7 )  4(3) 8 

Figure 2. Eight-bar truss (test problem 2) 

Element Node 
number numbers 

1 5  
2 5  
3 5  
4 5  
6 5  
7 5  
8 5  
9 5  

Geometry 

Node Node 
number co-ordinates (mm) 

1 
2 

-250 -250 0 
-250 250 0 

250 250 0 
250 -250 0 

0 0 375 
- 375 0 0 

0 375 0 
375 0 0 

0 -375 0 
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There is only one single load case: an external force F = (F‘,, F’,, F,)  at the unsupported node 
(node 5): F ,  = 40 kN, F,  = 20 k N, F ,  = 200 kN. 

The design variables are the cross-sectional areas of the elements. There is no design variable 
linking. Thus, xi is the cross-sectional area of the jth bar. 

The lower bounds )c, on the design variables are 100 mm2 for all j, and the upper bounds Xj are so 
large that they never become active on this problem. 

The objective function, to be minimized, is the weight of the considered structure. 
The only behaviour constraints are stress constraints: the stress (tensile or compressive) must not 

The following rule is used for choosing values of the asymptotes: 

(a) if k = 0 or k = 1, then Ly) = 0 and Ujk) = 5xF) for all j. 
(b) if k 3 2, the rule described at the end of section 3 is applied, i.e. the rule defined by the 

To prevent possible numerical difficulties due to the ‘running away’ of the asymptotes, it is also 
required that 

be greater than 100N/mm2 in any element under the considered load case. 

formulae (12) and (13). 

- 50 xy) < Ly) < 0.4xjk) and 2.5xy) < Ujk) < 50xp) 

The move limits are simply chosen as follow: 

As a starting point, we let xy’= 400 mm2 for all j .  
Several runs have been performed, with different values of the parameter s in the formulae (12) 

and (1 3). In our tests, we also included the ‘traditional’ method of Reference 1 (i.e. linearizing the 
stress constraints in reciprocal design variables. 

It turned out that on this specific problem, the ‘traditional’ method (corresponding to Ly) = 0) is 
much too ‘conservative’, thereby seriously slowing down the convergence. 

When MMA was applied it turned out that, after some iterations, Ly) and Uy’moved away from 
xy), for all j. Very soon, all the LF) became very negative! It should be noted that the lower the value 
of the parameter s, the faster could Ljk) and U y )  move away from x?) (see (13)), the more negative 
become each Ly), the larger become each U p ) ,  and the less conservative become the 
approximations. 

The results from the different runs are given in Table TI. The starting solution x(O) was infeasible, 
but after that, all solutions x(~ ) ,  in all runs, were feasible. Therefore, each iteration point is, in 
Table 11, represented only by its weight. 

The optimal solution, obtained in all the runs, turned out to be (approximately) the following: 

x1 = 880 mm2, x2 = 720 mm2, x j  = 260 mm2, x4 = 520 mmz 
x5 = 100mm2, x6 = 100mm2, x7 = 100mm2, x8 = IOOmmz 

On this specific problem, it turned out that a non-conservative strategy, compared to the 
‘traditional’ method, is preferable. This problem is therefore in some respect ‘the opposite’ of the 
previous problem (the beam), where the ‘traditional’ method turned out to be much too non- 
conservative. 

Test problem 3: 2-bar truss 

one configuration variable (x2). 
Next, consider the simple 2-bar truss in Figure 3, containing one element sizing variable (xl) and 

There is one load case: an external force F = ( F x ,  F,) at the unsupported node (node 3), where 
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Table 11. Results (in kg) for test problem 2, ‘8-bar truss’ 

MMA MMA MMA 
Iteration ‘Traditional’ with with with 
number method S =  3/4 S =  112 S =  114 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

13.05 
11.68 
11.66 
11.64 
11.62 
11.60 
11.59 
11.57 
11.55 
11.53 
11.52 
11.50 
11.48 
11.46 
11.45 
1 1.43 
11.42 
11.40 
11.39 
11.37 
11.36 

30 11.27 

39 11.23 

13.05 
12.10 
11.67 
11.65 
1164 
11.62 
11.60 
11.56 
11.52 
11.47 
11-41 
11.36 
11.31 
1 1-24 
11.23 

13.05 13.05 
12.10 12.10 
11.67 11.67 
11.65 11.65 
11.63 11.61 
11.60 11.52 
11.53 11.42 
1 1.44 11.28 
11.35 11.23 
11.25 
11.23 

~~ 

Topology 

Element Node 
number numbers 

1 1 3  
2 2 3  

1.0 Geometry 

Node Node 
number co-ordinates(m) - 

-x2 0-0 
2 x2 0.0 

0-0 1.0 

x2 x 2  1 

Figure 3. Two-bar truss (test problem 3) 3 

F ,  = 24.8 kN and F ,  = 198.4 kN. (F ,  = 8 F ,  and IF1 = 200 kN.) 
There are two design variables: xlr the cross-sectional area (cm2) of the bars, and x2,  half of the 

distance (m) between the two nodes 1 and 2. 
The lower hounds on the variables are 0.2 cm2 and 0.1 m, respectively. The upper bounds on the 

variables are 4.0cm2 and 1.6m, respectively. None of these four bounds becomes active at the 
optimal solution. 

The objective function, to be minimized, is the weight of the bars. 
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Table 111. Results for test problem 3, ‘2-bar truss’ 

Iteration 
number 

Reference MMA (without 
SLP 2 MMA move limits) 

0 X l  : 1.50 
x2 : 0.50 
c1 : 0.92 
W : 1.68 

1 XI : 1.38 
x2 : 0-25 

W : 1.42 

X1 : 1.14 

el : 1.11 

x2 : 050 
V I  : 1.22 
W : 1.27 

X1 : 1.34 
x2 : 0-25 
01 : 1.14 
W : 1.38 

X1 : 1.15 
x2 : 0.50 

W : 1.28 

X1 : 1.34 
x2 : 0.25 
0 1  : 1.14 
W : 1.38 

0 1  : 1.21 

6 

7 

1.50 1.50 
0.50 050 
0.92 0.92 
1.68 1.68 

1.39 1.39 
0.25 0-25 
1.1 1 1.10 
1.43 1.43 

1.33 1.22 
0.50 0.50 
1.04 1.13 
1.49 1.37 

1-39 1.39 
0.25 0.25 
1.1 1 1.10 
1.43 1.44 

1.33 1.37 
0.50 0.38 
1 04 1.03 
1.49 1.47 

1.39 1.41 
0.25 0.38 
1.1 1 1 .oo 
1.43 1.51 

X1 : 1.15 1.33 
x2 : 0.50 0.50 
el : 1.21 1.04 
W : 1.28 1.49 

XI : 1-34 1.39 
x2 : 0-25 0.25 

W : 1.38 1.43 
6 1  : 1-14 1.11 

1.50 
0.50 
0.92 
1-68 

1-39 
010 
1.62 
1.40 

0.63 
0.62 
2.23 
0.74 

1.45 
010 
1.54 
1.46 

1.04 
0,34 
1.38 
1.10 

1.42 
0.40 
0.99 
1.53 

1.41 
0.38 
1 .oo 
1.51 

The (tensile) stress must not be greater than 100 N/mm2 in either of the two bars, under the 

Again, this small problem may be formulated analytically (but this is of course not necessary for 

minimize 

considered load case. 

the method to work!) as follows: 

w ( x , , x , )  = c , x ,  J(l+ x;> 
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subject to 

373 

and 

0-2 < x1 < 4-0, 0.1 < x2 < 1.6 

where C, = 1.0 and C, = 0.124. 
It is obvious from this formulation that the second constraint (i.e. the stress constraint in bar 2) 

will never become active, since the stress in bar 1 is always strictly greater than the stress in bar 2. 
A feasible starting point was chosen, namely x1 = 1.5 cm2 and x2 = 0.5 m, with w = 1.677 and 

c1 = 0.925. 
In MMA, the asymptotes for the sizing variable x1 were chosen according to the simple 

formula (23) with t = 0.2, whereas the asymptotes for the configuration variable x2 were chosen 
according to (ll),  (12) and (13) with s = 0.5 in (12) and s = 0.75 in (13). 

Two other methods were also tried in the tests: SLP (sequence of linear programmes), which 
corresponds to L j p  - co and U j p  + co, and the method of Reference 2, which corresponds to 
Lj = 0 and U j - +  + 00. 

In all the three methods, move limits given by MY) = xy)/2 and 
The results of the tests are shown in Table 111. On this problem, neither SLP nor the method of 

Reference 2 converged. MMA, however, did converge to the optimal solution in about 5 iterations. 
MMA was also tried without the move limits mentioned above, and it still converged nicely, now in 
about 6 iterations (the last column in Table 111). 

= 2xy) were used. 

7. CONCLUSIONS 

We do not claim that the results obtained on the test problems in the previous section are typical in 
general. On many problems, the method of Reference 2 is known to work very well (i.e. the choice 
Lj = 0 and U j  = co works very well). 

However, we believe that the obtained results clearly illuminate the importance of the flexibility 
of MMA, which gives the user some control of the convergence properties of the overall 
optimization process. 
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