
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 23,409-428 (1986) 

STRUCTURAL OPTIMIZATION: A NEW DUAL 
METHOD USING MIXED VARIABLES 

CLAUDE FLEURY? 

University of California, Los Angela, U.S.A. 

VINCENT BRAIBANT~ 

Aerospace Laboratory, Uniaersity of LiBge, Belgium 

SUMMARY 

A new and powerful mathematical programming method is described, which is capable of solving a broad 
class of structural optimization problems. The method employs mixed directlreciprocal design variables 
in order to get conservative, first-order approximations to the objective function and to the constraints. 
By this approach the primary optimization problem is replaced with a sequence of explicit subproblems. 
Each subproblem being convex and separable, it can be efficiently solved by using a dual formulation. An 
attractive feature of the new method lies in its inherent tendency to generate a sequence of steadily improving 
feasible designs. Examples of application to real-life aerospace structures are offered to demonstrate the 
power and generality of the approach presented. 

1. BACKGROUND 

It is now widely recognized that many optimal sizing problems can be accurately approximated 
by a mathematical programming problem having a simple algebraic structure: linear objective 
function and separable constraints.’T2 This explicit subproblem is generated by linearizing the 
behaviour constraints with respect to the reciprocals of the design variables. On the other hand, 
it is often useful, for fabricational reasons, to link the design variables through linear inequality 
constraints. Therefore at each stage of the iterative optimization process, the approximate 
subproblem to be dealt with exhibits the following explicit form: 

n 

i =  1 
minimize W ( x ) =  c wixi 

subject to 

In these expressions the x:s denote the design variables, which correspond to the transverse 
sizes of the structural members (bar cross-sectional areas, membrane thicknesses). The structural 
weight (I) is a linear objective function, because the weight coefficients wi are prescribed parameters 
related to the material mass density and to geometrical quantities (bar lengths, membrane areas). 
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The inequalities (2) represent high-quality explicit approximations of the behaviour constraints 
that impose limitations on the stresses and the displacements under static loading cases. The 
linear constraints ( 3 )  permit taking into consideration some technological limitations on the 
design variables, such as a linear progressivity rule for the thicknesses of contiguous structural 
members (e.g. increase in the number of layers in a laminate). Finally, the design variables are 
also bounded by the side constraints (4), where .xi and XI are positive lower and upper limits 
that reflect fabricational or analysis validity considerations. It should be noted that these side 
constraints constitute a particular case of the linear constraints (3) .  However, they are written 
separately in our explicit problem statement, because the dual method approach described later 
can handle them more efficiently when considered apart from the general constraints (2) and (3) .  

The approximate constraints (2) can be obtained by virtual work considerations, in which 
case the cij coefficients can be interpreted as virtual strain energy densities in the structural 
members.I The ciis can also be identified as the first derivatives of the response quantities c j  
with respect to the reciprocal of the design variables: 

(5)  

The approximate constraints (2) correspond therefore to first-order Taylor series expansions in 
terms of the intermediate variables 1/xi:' 

(the symbol ' denotes quantities evaluated at the current design point xo where the structural 
analysis is made). At each stage of the optimization process, the ciJs are considered as constant 
coefficients, and so, inequalities (2) represent explicit approximate forms of the true behaviour 
constraints. Note that in the case of a statically determinate structure, the ci,'s are really constant 
coefficients, so that a single structural analysis is sufficient to get the optimal design. 

Until recently we have been faced with structural optimization problems that did not have to 
take into account the linear constraints (3) .  In this case, when adopting the reciprocal variables 
l/xi, the explicit problem amounts to minimizing a nonlinear oojective function subject to linear 
constraints. Such a problem can be efficiently solved by using a gradient projection algorithm 
(primal approach). A second possibility is to take advantage of the objective function and 
constraints being separable and to resort to a dual approach. The dual problem consists in 
maximizing an auxiliary function that depends only on the Lagrangian multipliers associated with 
the main primal constraints (2). These Lagrangian multipliers-also called dual variables-have 
to remain n~n-negative.'-~ 

When introducing the linear constraints (3) ,  the primal problem (1 - 4) can no longer be directly 
solved by using a primal projection method. Formulated either in terms of the direct variables xi or 
in terms of the reciprocal variables l/xI, it always involves nonlinear constraints. A possible 
strategy would be to formulate the problem in terms of the reciprocal variables and to linearize the 
explicit constraints (3)  just as the behaviour constraints (2). The resulting approximate problem 
involves then linear constraints only, and it can be solved by using the same primal projection 
algorithm as before. However, this strategy suffers from a major drawback: the explicit constraints 
( 3 )  can no longer be exactly satisfied so that the feasible subdomain might become artificially empty 
because of incompatible constraints. An alternative strategy is to linearize the behaviour 
constraints (2) with respect to the direct variables. The resulting explicit subproblem becomes then 
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a linear programming problem, and it can be solved by the well-known SIMPLEX method. 
However such a conventional linearization technique converges only if the optimum of the 
primary problem lies at a vertex of the design space. 

The research work reported in Reference 4 was devoted to dealing with the linear constraints ( 3 )  
in an exact manner. To this end the separable nature of the explicit problem (1-4) was exploited by 
resorting to a specially devised dual method approach. However, it is shown in Reference 4 that, 
the primal problem (1-4) being non-convex, the dual problem happens to be non-differentiable and 
therefore difficult to solve by conventional maximization algorithms. One important conclusion of 
Reference 4 was that further research was needed to convexify the explicit constraints (3) ,  for 
example by linearizing them partially with respect to reciprocal variables: 

where c(c) means ‘summation over the variables for which reciprocal linearization is (not) 

used’. However, no criterion was suggested to select groups (1) and (2). 
At this stage the concept of hybrid approximation proposed in Reference 5, and later on 

exploited in References 6-7, was rediscovered with the spirit of achieving convexity. The original 
idea set forth in Reference was to get conservative approximation to the behaviour constraints 
(specially buckling constraints) by resorting to mixed direct/reciprocal variables in the lineariz- 
ation process. Instead of employing the conventional first-order Taylor series expansions (6) in 
terms of direct or reciprocal variables, the following hybrid approximation was suggested 

( 2 )  (1) 

where 

According to Reference 5, ‘with this hybrid approximation, a given constraint may have a linear 
approximation with respect to one design variable and an inverse approximation with respect to 
another design variable’. It was shown that this approximation ‘always uses the more conservative 
of the two approximations considered‘ (direct and reciprocal). 

As previously mentioned, the aim in Reference 5 was conservativeness. However, it is 
remarkable that the conservative explicit approximation (8,9) is also convex and separable. This 
constitutes the basis for the convex linearization method proposed in this paper. After giving the 
mathematical backgrounds in Section 2, the method is described in Section 3 .  The key idea is to 
employ the hybrid approximation (8,9) not only for the behaviour constraints, but also for the 
objective function and for any other constraint function [e.g. linear constraints ( 3 ) ] ,  so that the 
resulting explicit subproblem is convex and separable. Therefore, the dual solution scheme 
developed in Section 4 is particularly efficient. Section 5 introduces a simple modification that can 
be brought to the basic method in order to make it capable of dealing with infeasible starting 
points. In Section 6, the new approach is applied to optimal sizing problems. Because of its 
generality, it is shown to further reconcilate mathematical programming and optimality criteria 
approaches to structural weight minimization.* Finally, Section 7 is concerned with various 
numerical applications, including real-life aerospace structures. Applications to shape optimal 
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design problems are offered in a companion paper.g From all the examples treated up to now, it can 
be concluded that the convex linearization method usually converges within ten finite element 
analyses. 

2. MIXED VARIABLES 

Considering a differentiable function g(x), direct linearization consists of replacing it with the first- 
order Taylor series expansion 

i =  1 

By this technique the function g(x)  is approximated as a linear function of the variables. In 
structural optimization another form of approximation that is often used i s  a linear function of the 
reciprocals of the design variables, which can be named reciprocal linearization: 

Let us now assume that for the linearization purpose the variables are arbitrarily split into two 
groups: groui) (1) continues to contain the original direct design variables, while group (2) is 
concerned w Lh intermediate reciprocal variables. Performing then a first-order Taylor series 
expansion of the function g(x),  the following mixed linearization is obtained: 

where C[C] means 'summation over the variables belonging to group (1) [(2)3'. 

It is important to recognize that reciprocal linearization (1 1) yields a convex approximation only 
if all the first derivatives (ag/axi)xo are non-negative. This feature cannot be controlled: it is an entry 
in the linearization process. On the other hand, mixed linearization is always capable of generating 
a convex approximation provided that groups (1) and (2) are appropriately chosen. Hence the idea 
of conuex linearization, which is achieved when group (1) is selected as containing the variables for 
which (ag/dxi)so is positive, and group (2) contains the remaining variables: 

( 1 )  ( 2 )  

&(x) = g(x") + c -- ( X i  - xp) + 1 - --(xi - X P )  
+ ( ;:i)so - (;:i)s": 

Note that this apparently tricky linearization scheme takes advantage of the trivial fact that 

An attractive property of convex linearization is that it also yields the most conservative 
approximation among all the possible combinations of direct/reciprocal variables [i.e. selection of 
group (1) and group (2)]. This remarkable property is easy to prove by substracting (12) from (1 3) to 
get 

By requiring that the xi.s are non-negative variables-a simple translation can do it-, the first 
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Figure 1. Linearization in mixed variables 

summation in (14) will contain only positive terms from group (2), and the second, negative terms 
from group (1). Therefore it can be concluded that g,(x) is always greater than gM(x). In other 
words, convex linearization is the most conservative approximation of any mixed linearization, 
including the two extreme cases: direct linearization (10) and reciprocal linearization (1 1). 

As an illustrative example, let us approximate the following constraint function at the current 
point xo = (2, 2)T: 

g(X) E 5x2 - X: d 10 

There exist four possible combinations of mixed variables, that lead to the approximate 
constraints: 

1 in e a r : 5x2 - 4x1 < 6 
reciprocal: - 20/x2 + 16/x, d 2 
concave: 
convex: 

- 201x2 - 4x1 < - 14 
5X2 + l6/x, d 22 

From Figure 1, where these four constraint surfaces are plotted, it can be intuitively verified that 
convex linearization yields the most conservative approximation. 

In summary then, when one wants a function g(x) to be approximated in a conservative way by 
using mixed direct/reciprocal variables, the only possible scheme is to employ convex linearization. 
The word ‘only’ is important, because it is the basis for the generality of the method proposed in the 
sequel. Indeed, this method intrinsically contains a rational scheme to select by itself the mixed 
variables. 

3. CONVEX LINEARIZATION METHOD 

Considering a general mathematical programming problem 

minimize f (4 (15) 
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subject to 

the new approach presented in this paper proceeds by transforming it into a sequence of ‘linearized’ 
subproblems having a simple explicit algebraic structure. Because the method employs the convex 
linearization scheme described in Section2, it is very general and easy to use: the algorithm 
inherently chooses itself the intermediate linearization variables. Therefore, the only input data are 
the initial values of the objective function and constraint functions: 

f” = f(xo) and hg = hj(xo) (18) 
as well as their first derivatives: 

where xo denotes the current point, is. the design point where the problem is linearized. 
Conventional linearization methods also benefit from these attractive properties of generality 

and simplicity, and it is probably the reason why they have met with considerable success in 
engineering design (see, for example, Reference 10). However, because such a technique replaces 
the primary problem with a sequence of linear programming problems, it suffers from severe 
limitations. It does not converge to a local minimum unless the latter occurs at a vertex of the 
feasible domain. Otherwise, the optimization process either converges to a non-optimal vertex or it 
oscillates indefinitely between two or more vertices. One way of avoiding this undesirable 
behaviour is to add artificial side constraints (called ‘move limits’) to the linear subproblem 
statement. These move limits must then be gradually tightened at each stage of the process by using 
some properly chosen update formula (see Figure 2). 

Because it introduces some convex curvature in the approximate functions, the approach 
proposed herein does not require any control parameters such as move limits. The key idea of the 
method is to perform the linearization process with respect to mixed variables, either direct (xi) 
or reciprocal (tlx,), independently for each function involved in the problem, so that a convex and 
separable subproblem is generated. Separability is automatically obtained because first-order 
Taylor series expansions are employed, while convexity is achieved by using ad hoc criteria to select 
the mixed linearization variables (see equation 13): 

objective function f ( x )  

xi if f , > O  
l/xi if f , < O  

c x2 c x2 

I , .  
X1 

Figure 2. Conventional vs. convex linearization 



STRUCTURAL OPTIMIZATION 41 5 

constraints hj(x) 

xi if h,<O 
l/xi if hij>O 

Adopting these simple rules and normalizing the variables xi so that they become equal to unity at 
the current point xo, the following conuex, separable subproblem is generated: 

min Cfixi - x- J; 
+ - xi 

xi d xi <I( (22) 

where 

Kj = hy + C hij - hij 
i - 

In these expressions the symbol C(C) means 'summation over all positive (negative) terms'. It is 

important to notice that, even if the main variables in the primary problem statement had been 
chosen as the reciprocal variables, nothing would be changed in the explicit subproblem statement. 

As shown in Section 2, the first-order explicit approximations of the objective function (i.e. 
equation 20) and of the constraint functions (i.e. equation 21), because they result from convex 
linearization, are locally conservative. This means that they tend to overestimate the values of the 
true functions. In other words, the 'linearized' feasible domain corresponding to the explicit 
subproblem (20-22) is generally inside the true feasible domain corresponding to the primary 
problem (15-17). This property is illustrated in Figure 2. As a result, the convex linearization 
method has a tendency to generate a sequence of design points that 'funnel down the middle' of the 
feasible region. The primal philosophy, i.e. sequence of steadily improved feasible designs, is 
maintained. l z 3 * *  This represents an attractive feature from an engineering point of view, since the 
designer may stop the optimization process at any stage, and still get an acceptable non-critical 
design, better than its initial estimate. 

It is quite fascinating to realize that the convex linearization method is inherently very general. It 
is even capable of solving rather efficiently a linear programming problem. For all the linear 
problems that have been employed to validate the approach-only to validate, competition with 
SIMPLEX is not expected!-, as well as for many other nonlinear problems, order two 
convergence was surprisingly observed. As an illustration, let us consider the following linear 
programming problem: 

+ -  

min x ,+4x2 
s.t. x2 -x i  2 0  

3x1 -.2x2 2 1 

As shown in Figure 3, the optimum point x* = (1,l) '  lies at a very 'sharp angle' at the intersection 
of the two constraints. Nevertheless, starting from xo = (3,4)', the method exhibits order two 
convergence, furnishing the following sequence of design points: (3, 4)T; (2.390, 2*852)T; 

(1.000, 1.1000)'. Figure 3 shows the trajectory of these successive iteration points. It also represents 
(1.888,2.132)'; (1.526, 1.660)T; (1.281, 1.352)'; (1.127, 1.159)'; (1.042, 1.053)T; (1*007,1*009)T; 
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0 1 2 3 4 -  
Figure 3. Application to linear programming 

the first explicit subproblem: 

min x1 +4x, 

16 

x2 
s.t. x1 + - d 8 

27 
- + 2 ~ , < 1 7  
X I  

In summary then, the explicit subproblem (20-22) exhibits the following remarkable properties: 
(a) high-quality, first-order approximation; (b) conservative feasible subdomain; (c) convexity; 
(d) separability. 

4. DUAL SOLUTION SCHEME 

Because of its properties of convexity and separability, the explicit problem (20-22) can be: 
efficiently solved by dual methods of mathematical programming (see, for example, References 2 
and 1 1 and Section 7.2 of Reference 12). Because the side constraints can be treated separately, the 
dual variables are restricted to the Lagrangian multipliers associated with the approximate 
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behaviour constraints (21). Therefore, the Lagrangian function can be written: 

Corresponding to the primal minimization problem (20-22) the dual maximization problem 
exhibits the following form: 

s.t. A j  3 0 (24) 
where ~ ( 1 , )  denotes the primal point solution of the auxiliary minimization problem (for given A): 

min L(x,L) 
s.t. xi d xi d xi 

Because the Lagrangian function is separable, this n-variable problem can be decomposed in n 
single variable problems: 

min L,(xi,  A )  
?,< x,s:f, 

The explicit statement of this minimization problem depends upon the sign of f j :  

Pi 
xi 

f j  > O:L,(x, ,A)  = . f j X i  + - + qjxi 

f i  Pi 
f ;  < o : L i ( x i ,  n) = - - + - + qixj 

xi xi 

where pi and qi are positive constants for given feasible ,Ij: 
p .  = 1 h.  .Ii. 

'J  J 

q. - X h . . n .  
11 J - 

It turns out that each one-dimensional minimization problem (25) can be solved in closed form, 
yielding explicitly the primal variables xi in terms of the dual variables A j :  

p i - f i  1/2 P i - f i  - 5' < -_____ < X' f j  < 0 : x i  = (,> if 
4i 

if pi < fi + qi$  (274 

if p i  3 f i  + q ix f  (27b) 

x . =  x .  

x .  = x .  
1 - 1  

- 
1 1  

For the sake of completeness, it is worth noticing that in the special case where f i = O ,  both 
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formulae (26) or (27) can be used. The two following particular cases should also be mentioned: 

x i =  x i  if p i = O  and f i > O  
xi = Xi if qi = 0 and , f i < O  

Knowing x(A) the dual problem (24) is explicitly defined. It is a quasi-unconstrained problem and 
it can therefore be readily solved by using a steepest ascent algorithm, slightly modified to handle 
the non-negativity constraints on the dual variables. Such a gradient method requires the first 
derivatives of the dual function to be available. Fortunately an interesting feature of the dual 
formulation is that these derivatives are extremely simple to compute, because they are given by the 
primal constraints 

At this point it is worth pointing out that the convex linearization method can be used when 
some or all of the design variables, instead of varying continuously, can only take on discrete 
values. In such a case the dual method formulation becomes still more attractive.’j The discrete 
primal variables continue to be explicitly related to the continuous dual variables. The dual 
function remains continuous, but it has discontinuous first derivatives. A first-order gradient 
projection type algorithm is under development, which is based on the DUAL 1 optimizer 
available in ACCESS-3 l4 and SAMCEF.’ Because the dual function gradient discontinuities can 
be shown to occur on specific hyperplanes in the dual space, DUAL 1 determines ascent directions 
by projecting the dual function gradient on the intersection of the successively encountered 
discontinuity planes. The DUAL 1 optimizer remains applicable to pure continuous variable 
problems, in which case it reduces to a special form of the conjugate gradient method. 

However, in the pure continuous case, a second order Newton-type algorithm similar to the 
DUAL 2 optimizer available in ACCESS-314 and SAMCEF” has been developed to solve more 
efficiently the dual problem (24). It uses the gradient and the Hessian of the dual function. The 
components of the gradient vector are given by (28), while the elements of the Hessian matrix can be 
shown to be 

where C means summation over all the terms involving positive values of the quantities f i ,  hij and 

hikt and (. . .) denotes similar terms depending upon the signs of these quantities. It should be added 
that the summation in (29) is restricted to the free primal variables, i.e. the variables x i  that have not 
taken on their lower or upper bound value (xi or Xi). This means that the Hessian is discontinuous 
whenever a free primal variable becomes fixed, or conversely (see, for example, References 2,8 and 
11). Hence it is apparent that while l(A) is continuously differentiable in all feasible dual space, it is 
not, in general, twice continuously differentiable everywhere. The DUAL 2 optimizer is capable of 
coping with this difficulty by resorting to a specially devised and quite simple line search technique. 
DUAL 2 operates in a sequence of dual subspaces with gradually increasing dimension, so that the 
effective dimensionality of the dual problem never exceeds the number of active behaviour 
constraints. Because this number is relatively low for many optimization problems of practical 
interest, the DUAL 2 Optimizer is very efficient. It is, in addition, general and reliable. 

(+) 
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5. CONSTRAINT RELAXATION 

In practical applications a difficulty that frequently occurs is that the initial design violates some of 
the constraints. Very often it is difficult to get a feasible design point because two or more 
constraints are incompatible. In the convex linearization method, this difficulty might be accute 
because of the conservative character of the approximate constraints. It can even lead to a 
breakdown of the optimization process. In fact, although conservativeness is most of the time a 
desirable property, it is not so when the initial starting point is seriously infeasible. In such a case it 
can happen that the linearized feasible subdomain be empty, so that the method can no longer be 
applied. To cope with this difficulty an additional relaxation variable is introduced into the explicit 
subproblem statement, which becomes 

min 6 f ( x )  
s.t. K j ( X )  < 6Kj 

Ei d xi d xi 
6 2 1  

where f ( x )  and Kj(x) represent the approximate functions appearing in (20) and (21). Clearly, if the 
relaxation variable 6 hits lower bound (6 = I), nothing is changed in the problem statement, which 
will usually happen when the starting point xo is feasible or nearly feasible. On the other hand, if the 
starting point xo is seriously infeasible, the algorithm will find a value of 6 greater than unity, which 
means that the linearized feasible domain will be artificially enlarged. Taking the solution of the 
current explicit subproblem (30-33) as a new linearization point, the next feasible subdomain will 
generally be non empty. The method can then be applied as initially stated in Section 3, yielding 
unit values of the relaxation variable 6 at each subsequent iterations. 

To solve the modified explicit problem (30-33), it is sufficient to increase the number of variables 
by one, and to add to the definitions (19): 

The dual solution scheme of Section 4 can then be employed without any transformation. Another 
possibility is to modify the dual algorithm by explicitly introducing the effects of the relaxation 
variable 6 in the convex linearization method. Assuming f ( x o )  and 6 positive, the new explicit 
problem (30-33) will be transformed as follows after convex linearization with respect to 6: 

min f (xo)6  + f ( x )  (34) 
I 

s.t. K j ( X ) d  Kj 2 - 9 6 (35) 

It is easily seen that 6 is given in terms of the dual variables by the relation (see equation 26) 

6 = 1  

As implemented herein, relaxation is uniformly applied to all the constraints and its purpose is 
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simply to balance the effect of cons~at~veness  in the convex linearization method. F< 
uniform reiaxation being effective, it i s  implicitly assumed that the feasible domain correspc 
to the primary problem is non-empty. If it not the case, for example because two or 
constraints are really in conflict, then uniform relaxation is not a satisfactory technique. CI 
research is directed toward other relaxation methods that would be capable of finding a mi 
relaxation for an infeasible problem. These methods imply introducing several addi 
relaxation variables S j ,  one for each constraint that the user accepts to relax. 

6. APPLICATION TO OPTIMAL SIZING 

Coming back to the optimal sizing problem (1-41, it can be seen that, the weight coefficier 
being positive, the linear objective function (1) will remain linear in the explicit subpro 
statement (see equation 20). Conversely, when applying convex ~ ~ n ~ ~ z a ~ i o n  to the beha3 
constraints~ they will be mainly expressed in terms of the reciprocal wriables. Indeed, struc 
mechanics indicates that when the co~ponent  sizes are increased the stresses and dispkicen: 
usually decrease. Numerical experiments support this intuitive interpretation: the first deriva 
of the behaviour constraints with respect to the member sizes are most of the time positive { 
that h l x )  = Zj - CXxj). As a result the reciprocal variables will dominate in the convex lineariza 
scheme (c in equation 21). On the other side, those variables for which a linear expansion is I 

(x in equation 21) generally will be sized at the lower bound 2 ,  btxause increasing them w( 

raise the stresses and dispIacements values, Of course, this is only a global understanding. The 
situation is much more difficult, and it is the purpose and function of a good optimizer to find 
best compromise. 

These considerations permit justifying a posteriori the now well-established approximar 
concepts approach, where the behavjour constra~nts are linearized with respect to the reciprc 

It is worth recalling that the a p ~ ~ o x ~ m a t i o n  concepts approach, when eombi 
with dual methods, has proven to provide a highly efficient structural synthesis capability 
usually generates a nearly optimal design within less than ten finite element analyses. In additj 
this method has led to a perspective where optimality criteria techniques are seen to reside wit 
the general framework of a mathematical pro~rammin~ approach to structural optimization.'.' 
FinaIIy, the method has been successfully extended to deal with pure discrete and rnb 
~ o n t ~ n u o u s - d ~ s € r ~ t ~  variabte problems (e-g. avaitable standard gauge sizes; number of plies 
laminated composite structures). l 3  

It i s  apparent that the convex linearization method proposed in this paper can be viewed as 
enhanced approxima~~on concepts approach, keeping all its attractive properties. It can also 
interpreted as a further generalization of optimality criteria techniques. By writing down t 
Kuhn-Tucker conditions for the explicit subproblem (20-22), the fotlowing generalized optimaX 
criterion is obtained: 

i" 

- 

and 
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These explicit redesign relations give the sizing variables xi in terms or the Lagrangian 
multipliers l j .  They must of course be employed in conjunction with the side constraints, which 
have always to be enforced (see equations 26 and 27). To help fix ideas let us consider Berke's 
optimality criteria technique for the minimum weight design of a truss subject to a single 
displacement constraint.' In this technique the bar cross-sectional areas are subdivided into a 
group of active (or free) variables (i = 1, i i) and a group of passive (or fixed) variables ( i  > 5). 
With this formulation the explicit problem depends only on the f i  active design variables [see 
problem (t-4)]: 

(40) 

where c" denotes the contribution of the passive members to the constrained displacement. The 
stationarity conditions of the Lagrangian function 

L(Xi,l*) = c wixi + 1 
i 

provide the solution to the problem: 

The value of the positive Lagrangian multiplier I is obtained by substituting (43) into the 
constraint condition (41). 

In (equation (43)) the coefficients ci have to be positive for the square root to be extracted, 
which yields a means to distinguish between the active and passive variables. Note that the 
contribution c" of the passive variables to the constrained displacement is negative, so that they 
must obviously take on the minimum possible cross-section. The condition that an active variable 
is characterized by ci > 0 is the same as the one used in convex linearization to select direct and 
reciprocal variables. In fact, the explicit problem (40,41) that furnishes Berke's optimality criterion 
(43) is identical to the convex subproblem (20, 21 j considered in this paper. Also, the redesign 
relations (38), when restricted to the particular case under consideration, are equivalent to (43) 
(with , f i  = wi > 0 and hi, = ci). The idea of active/passive design variables is thus one way of 
achieving convexity. 

Berkel' has also proposed a correct optimality criterion for the case of multiple displacement 
constraints. However, he noticed that, conversely to the previous case, it is no longer possible 
to achieve a closed form solution to the explicit problem. Also it becomes difficult to select the 
active and passive design variable groups and to detect the strictly critical displacement 
constraints. From this time all the optimality criteria school has attempted for many years to 
derive explicit redesign relations that could solve at least approximately any structural 
optimization problem (see, for example, References 19 and 20). The key in fact, lies in dual 
methods. Since the dual maximization problem (24) is quasi-unconstraineet and explicit, its exact 
solution can be generated at a low computational cost, which is comparable to that required by 
the recursive techniques of conventional optimality criteria approaches. The dual algorithms 
can handle a large number of inequality constraints. They are inherently capable of identifying 
the active behaviour constraints through the non-negativity constraints on the Lagrangian 



422 C. FLEURY A N D  V. BRAIBANT 

multipliers. They also automatically sort out the active and passive design variable groups by 
using the explicit relationships between primal and dual variables. 

It is fascinating to observe that convex linearization and dual formulation form really two 
strategies made for each other. Convex linearization yields a convex, separable subproblem, and 
dual methods need it. A dual solution scheme can only generate an exact solution to the explicit 
subproblem, and convex linearization provides a conservative approximation. 

The convex linearization method proposed in this paper further generalizes the approximation 
concepts approach to structural optimization -as well as the now obsolete optimality criteria 
techniques-while keeping all its attractive features. It should again be emphasized that the 
method benefits from a much broader generality. At each iteration the optimizer requires as 
only entries the initial values and first derivatives of the functions describing the mathematical 
programming problem to be dealt with. As a result of such a generality new potentials can now 
be envisaged. Other types of objective function than the structural weight could be considered, 
such as: minimize stress concentration; maximize fundamental natural frequency, etc. A broader 
class of constraints can be conceived: explicit constraints on the design variables such as the linear 
constraints (3); stress flow constraints, etc. Finally, new kinds of design variables can be addressed, 
such as geometrical variables to deal with shape optimal 

In the last section, examples of application to optimal sizing of real-life aerospace structures 
will be offered, which demonstrate the efficiency of the convex linearization method. To be 
convinced of its generality, Reference 9 can be consulted, where difficult shape optimization 
problems are successfully treated. 

7. NUMERICAL EXPERIMENTS 

The convex linearization method has been first experimented on some simple problems, such 
as the 2-bar and 10-bar trusses classical in the structural optimization literature, by adding linear 
inequality constraints on the bar cross-sections. The results are not reported herein, because 
they are not very significant, no comparison with other methods being available. In this paper 
three examples are offered. The first one has been elaborated on the famous 10-bar truss problem. 
The other two are concerned with real-life aerospace structures. 

10-bar truss 

The first example has been specially devised to make the classical 10-bar truss problem difficult 
to solve by conventional methods (see Figure 4). The displacements at nodes 4 and 5 are limited 

Figure 4. 10 bar-truss 
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Table I. Iteration history for 10-bar truss example 

Iteration Weight a4 u5 f 6  

0 8393 1.898 0.8372 - 40125.0 
1 7290 1.635 0.7389 - 478.0 
2 4856 1.980 0'8458 - 675.0 
3 422 1 1.968 0.972 - 23660 
4 4095 1.994 0.9987 - 2458.0 
5 4067 1.998 0.9992 - 2491.0 
6 4058 1.999 09998 - 2498.0 
7 4053 1.999 0.9999 - 2499'0 
8 4050 2.000 1 .000 - 2500.0 

to 2in. and 1 in., respectively. Instead of assigning a maximum allowable stress limit in the 
critical member 6, the stress flow (i.e. the force) in member 6 is limited to 25001b. 

Stress flow constraints are difficult to deal with. For a statically determinate truss, the bar 
forces are constant, and no change in the design can modify them. In the statically indeterminate 
case under consideration, stress flows are not affected by a scaling of the design variables, so 
that, if they were the only imposed constraints, the minimum weight design should be zero. In 
the design space, this means that a stress flow constraint is represented by a restraint surface 
that passes through the axes origin. 

The initial design (a' = 20in.' for each bar) is seriously infeasible so that the first explicit 
subproblem does not admit any solution. Therefore, the relaxation scheme discussed in Section 
5 is employed in the convex linearization method. After this first difficult iteration the optimization 
process becomes normal, each subsequent feasible subdomain being non-empty. The iteration 
history data are given in Table I. Note that except the initial design, all other designs are feasible. 

Composite plate 

The second example is especially interesting, because it is at the origin of the development of 
the convex linearization method presented in this paper. The problem consists in the weight 
minimization of the composite plate representated in Figure 5 (part of a floor for the Airbus plane). 

The tensile solicitation is applied by imposing prescribed displacements on one side of the 
plate. The other boundary conditions depicted in Figure 5 result from symmetry considerations. 
The structure is made up of 0" , + 45", - 45" and 90" high strength graphite-epoxy laminates. 

X 
1 0 

I I  
X U 1 0, 

3 
L u In 
g 

Figure 5. Composite plate 
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The laminates are represented by stacking four orthotropic membrane elements in each 
quandrangular region shown in Figure 5. The layer thicknesses in each basis direction 
( O O ,  rt 45", 90') are the design variables. The finite element model involves 4 x 288 linear 
isoparametric elements, and 946 degrees-of-freedom. After design variable linking according to 
the subdivision in regions of Figure 5, it remains 39 independent design variables. 

The behaviour constraints correspond to strength requirements based on the TSAI-AZZI 
failure criterion (with different tensile and compressive allowable stresses). This criterion is applied 
in the most critical element in each of the 39 linking regions. For fabricational reasons 27 linear 
inequality constraints are assigned to the design variables. Typical linear constraints are as 
follows (see Figure 5): 

0 < - t1 - 2tIo 4- 9t19 < 300 
o <  --t2--2t1I+9t20<300 
0 6 - t ,  - 2t12 + 9t21 < 300 

0 d t i  + 2t10 + ti9 (45) 

0 d 
- t2 - 2t11 - t2, < 0.325 

t ,  + 2t,o + t,9 
- t ,  - 2 1 2  - t21 < 0.325 

These constraints are linearly dependent and very sparse, which complicate the solution of the 
optimization problem. Finally, lower and upper bounds are assigned to the design variables. 

The problem was first treated without the linear constraints (45) by using the DUAL 2 and 
DUAL 1 optimizers, respectively, in the pure continuous and in the pure discrete cases. No 
difficulty occurred during the optimization process, that generated the optimal design in less 
than ten finite element analyses (see Reference 4). However, when the linear constraints (45) are 
introduced, it becomes impossible to solve the problem by using the specially devised dual 
algorithm mentioned in Section 1 to handle linear constraints. The essential difficulty is that, 
after the first structural analysis, the explicit subproblem (see equations 1-4) leads to first-order 
discontinuities in the dual space (non-convexity). Two alternative strategies were then imagined 
with only limited S U C C ~ S S , ~  and finally the idea of the convex linearization method arose. 

When resorting to the convex linearization method, the constraint relaxation technique 
described in Section 5 must be activated, because the first explicit subproblem is infeasible. This 
explains the increase in weight after the first iteration, as indicated in Figure 6, which plots the 
iteration history data. 

For comparison, Figure 6 also represents the results generated by the recursive linear 
programming approach, obtained by linearizing the behaviour constraints with respect to the 
direct sizing variables, and by using the Simplex algorithm. This alternative optimization strategy 
is quite successful in the present case, because the problem involves 39 design variables and, at 
the optimum, 39 constraints are active: 1 TSAI-AZZI stress constraint, 6 linear constraints, and 
32 side constraints. However, it is important to recognize that this Simplex method is not, in 
general, a valid approach, because it implies the optimum lying at a vertex of the design space. 
The final optimized design can be found in Reference 4. 

Engine mount structure 

The last example is concerned with a real-life application of optimization techniques to the 
European launcher Ariane 4. Four strap-on liquid boosters will be attached to a future version 
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4 WEIGHT 

Figure 6. Iteration history for composite plate 

of the launcher in order to double the thrust. The Belgian company Sabca is to design and build the 
three main structures of the booster: the forward skirt, the intertank skirt and the engine mount 
structure (see Figure 7). From the beginning the interest of resorting to the optimization 
capabilities of the SAMCEF finite element system was recognized at various levels of the company. 
The main reason was the fundamental importance of obtaining a light weight structure: 1 kg gained 
on the booster permits increasing the payload by 0-14 kg. It was not possible to achieve this goal by 
conventional design techniques because of unusual specifications (stiffness requirements; stress 
flow limitations). 

This application has led to many ups and downs, especially because the specifications were 
initially in conflict, so that no feasible design could be obtained. Due to the lack of space, 
attention is focused in this paper only on the engine mount structure. 

The finite element model shown in Figure 8 involves 4883 degrees-of-freedom and 1008 finite 
elements (second-degree displacement field). The objective is to minimize the structural weight 
subject to the following behaviour constraints: (a) stiffness requirements at the bold-bearing 
joint, as well as at the point where the engine load is introduced, in order to take into account 
dynamics aspects; (b) limitation of the normal stress flow in the upper ring, in order to diffuse 
the load transmitted to the upper flange joint; (c) maximum allowable Von Mises stresses under 
four loading conditions; (d) in addition, local stiffness requirements must be taken into 
consideration at various critical points (e.g. where equipments are supported). Note that all the 
stiffness constraints consist in fact in assigning upper limits to influence coefficients. 

By using a simplified finite element model (half-cylinder), the optimization program has shown 
that the normal stress flow limitation and one of the stiffness requirements were incompatible. 
After a while the responsible companies decided to reconsider these specifications and new 
stiffness constraints were imposed, which made it possible to obtain a feasible design. Several 
runs were then performed, with more and more accurate definitions of the fabricational constraints 
(design variable linking; lower and upper bounds on the thicknesses). For the last optimization 
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process, which involves 35 design variables and 20 behaviour constraints, convergence is achieved 
within 7 finite element analyses. 

Finally, it is worth mentioning that, when the fabricational process was started, it was found 
that the optimization results could not be used as such because of technological requirements 
that did not appear at first. The thickness distributions had to be modified. After analysing the 
new design, the stress flow constraints in the upper ring were seen to be seriously violated at 
the bold bearing joint level. Therefore, it was decided to perform an ultimate optimization run 
with an appropriate design variable linking. This final problem involves 62 design variables and 
7 active behaviour constraints out of 40; 6 variables reach their upper bound, and 1 its lower 
bound. 
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Figure 8. Engine mount structure (finite element model) 
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Figure 9. Stress flow transmitted to flange joint 
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As shown in Figure 9, the stress flow along the upper ring was properly cut to its limiting 
value. This additional run required 4 more structural analyses, each analysis demanding about 
1 hr CPU on a VAX 11/780 computer. The optimal design is now being built by Sabca. 
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