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Ahstract-This paper shows how interactive graphical preprocessors can treat inconsistent data to 
generate consistent finite element and structural models. Algorithms are described for checking the 
geometrical and topological consistency of three-dimensional meshes made up of one-dimensional finite 
elements. With the consistency guaranteed, the user of a graphical preprocessor can freely create the 
geometry and topology of a structure with his or her attention concentrated only on the image shown on 
the screen. Inconsistencies like repeated nodes or partially overlapped bars are left to the system to solve. 

1. INTRODUCI’ION 

A finite element model must be consistent for the computation to succeed. If there are errors in defining the 
mesh, then the computation may advance until aborting or, even worse, it may produce results which are 
wrong [l]. Graphical preprocessors have come a long way to minimize problems in the finite element data 
generation [2,3]. With the use of these systems, the process of defining data has undoubtedly become more 
creative and reliable. There are, however, a few issues which remain to be solved. One of these issues is related 
to the consistency of the geometrical/topological model generated by the preprocessor with respect to finite 
element modeling rules. 

Geometric functions of interactive graphical preprocessors, such as symmetry or copy of a plane of nodes 
and elements to a given position, may create repeated nodes or overlapped elements. These situations, that are 
sometimes hard to detect in an image of the structure, represent unacceptable errors in the finite element model. 

The existence of more than one node in the same position, for example, would bring many problems to 
the man-machine graphic conversation. The user would not know with certainty to which node he or she 
has pointed and may have a mistaken impression that there is only one node at that point. The model would 
treat each node with different degrees-of-freedom, probably yielding an incorrect solution with unwanted gaps. 

There is also the possibility of bar elements crossing at internal points. This situation does not characterize 
clearly the existence of an error. Bar crossings can be desirable in some structural types such as trusses and 
bracking bars in frames, as shown in Fig. 1. 

On the other hand, if the preprocessor can solve for bar element crossings at internal points, the creation 
of the geometry/topology of a structure can be rather simple. Consider, for example, the floor of one building 
shown in Fig. 2. If the user is requied to create a node at each bar intersection, the input data has 17 nodes 
and 25 elements as shown in Fig. 2(b). This process is much less comfortable to the user than the one shown 
in Fig. 2(a) that involves the input of only 14 nodes and nine elements if the preprocessor can create nodes 
occurring at intersections. 

The simple examples shown in Figs 1 and 2 illustrate the versatility required from a frame preprocessor. 
It must be able to cope with both cases. These types of intersections are common situations in structures such 
as roofs, floors and transmission towers. 

There are basically two approaches for the data consistency problems in finite element preprocessors. The 
solution of these problems can be made during the generation of the geometry and topology of the model, 
or in a later time after the model has been created (a posteriori approach). In the former case, consistency 
rules are imposed as the data are created, never allowing for inconsistency to occur. 

If the system restricts the actions of the user to create consistent data only, the man-machine dialogue can 
become complicated and cumbersome. On the other hand, if the preprocessor verifies the consistency of the 
data for all user’s actions, the response time of the system may compromise the effectiveness of the dialogue 
between the user and the computer. 

In the second approach mentioned above the user creates the geometry and topology of the structure 
without worrying about the consistency of the model. Inconsistencies arising at this stage are kept in the data 
base until the user explicitly asks for a check of the consistency problem or until data is to be transported 
to the analysis program. The ambiguous situations, such as bar crossings at internal points, are solved by 
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Fig. 1. Element crossings at internal points. 

the user at this time. He or she may ask the system to treat only obvious inconsistencies or to decompose 
bars that cross. 

The latter approach can also benefit many existing preprocessors that do not treat the consistency problem. 
A program with the algorithms for this case can be used as a filter to remove inconsistencies of data previously 
created. This program must be capable of transforming any wire-frame representation (inconsistent) in a 
consistent finite element model of frames. 

This paper presents the algorithms for the a posteriori approach. The algorithms proposed can be part of 
an independent program or a specific module for a generic preprocessor. The algorithms are presented 
following a step-wise refinement technique using pseudo-code. 

2. THE CONSISTENCY PROBLEM 

There are basically two algorithms to solve the consistency problem. The first one only treats inconsistencies 
that are unambiguous: repeated and isolated nodes, repeated and partially overlapped bars, and nodes within 
bars. The second algorithm also treats the case of bars that cross at internal points. 

a) 14 Nodes b) 17 Nodes 

9 Bars 25 Bars 

Fig. 2. Input data for beams in a building floor. 
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To eliminate unambiguous inconsistencies the algorithm must first eliminate repeated nodes and bars of 
null size. This step reduces the size of the data structure without changing the basic geometrical definition 
of each bar. At this stage it is also beneficial to eliminate nodes that do not belong to any bar. 

Nodes that do not belong to any bar can either be an error or they can be used to define the orientation 
of the bars. Even if these nodes are used as reference to define the direction of the minor axis of bars, they 
should be removed from the list of active geometric nodes. They can be stored as special nodes to which no 
degree-of-freedom is attached. 

With the number of nodes reduced to its minimum, the next step in the elimination of unambiguous 
inconsistencies is the division of bars to eliminate internal nodes. This division eliminates the problem of 
partial overlapping among bars. After this step two bars can either overlap completely or they do not overlap 
at all. Partial overlapping cannot occur since there are no internal nodes. 

The tinal step in this process is the elimination of repeated bars. Here, once again, the elimination of 
repeated nodes plays an important role. Overlapping bars can be identified easily only by their topology (nodal 
incidence) without any inquiry about their geometry (end coordinates). Hence, the first algorithm can be 
decomposed as a sequence of four steps [2]: 

Algorithm 1. Elimination of basic inconsistencies 
Step 1: Elimination of repeated nodes and bars of null size. 
Step 2: Elimination of nodes without incidence. 
Step 3: Division of bars to avoid internal nodes. 
Step 4: Elimination of repeated bars. 

In the above algorithm, steps 2 and 3 can be interchanged yielding a different but consistent 
mesh. Nevertheless, if the isolated nodes are eliminated before the division of bars to avoid internal nodes, 
as shown, the user cannot use a CreateNode function to divide bars. Instead the preprocessor must provide 
a specific DivideBar function to perform this task. If the steps are interchanged the bar is divided and the 
isolated nodes become end nodes of the newly created bars. The proposed order, however, is preferred by 
the authors. 

To treat the problems of bars that cross at internal points, another algorithm implemented as a sequence 
of seven steps is proposed here. The first four steps are the same as the first algorithm. To divide the bars 
that cross, three more steps are needed. The first additional step creates a node at each intersection of the 
bars without dividing them. If more than two bars cross at the same point this step can create repeated nodes. 
Thus the next step is the elimination of such nodes. The last step divides the bars to avoid internal nodes. 
Steps 6 and 7 need only be executed when a bar crossing is detected in step 5. Note that the elimination of 
repeated bars, bars of null size and isolated nodes are not necessary since they cannot occur at this stage. 
Hence, the proposed sequence decomposition for this algorithm is [2]: 

Algorithm 2. Elimination of bar crossings 
Step 1: Elimination of repeated nodes and bars of null size. 
Step 2: Elimination of nodes without incidence. 
Step 3: Division of bars to avoid internal nodes. 
Step 4: Elimination of repeated bars. 
Step 5: Creation of nodes at bars crossings. 
Step 6: Elimination of repeated nodes. 
Step 7: Division of bars to avoid internal nodes. 

For both algorithms there are only five independent steps: the four presented in the first algorithm and the 
step that creates nodes at bar intersections. With the exception of the elimination of nodes without incidence 
(that was already commented on) all steps must be kept in the order shown above to avoid unwanted results. 

3. METHODG OF SOLUTION 

In Sec. 2, two algorithms using five independent steps were presented to solve the consistency problem. 
Each of these steps will be implemented using three different methods of solution. All the methods lead to 
a consistent finite element representation of the data structure, but differ in computational efficiency. 

In the first method of solution (simple), a given object (node or bar) may be tested against all others. 
This is a typical situation where the algorithms have, roughly speaking, a complexity of n2 (n being the number 
of nodes or bars). 

To increase efficiency of the algorithms, this paper presents two alternative methods: the use of filters (filter) 
and the use of sorted data (order). The former method uses simple tests to avoid more expensive ones. 
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Table 1. Methods of solution 

Implementation Method 

First Simple 
Second Filter 
Third Order 

A typical example of this strategy is the use of bounding boxes; that is, a box that contains a bar as the main 
diagonal. Two bars cannot intersect if their bounding boxes are disjoint. 

The latter method seeks to sort the data to reduce the amount of objects (nodes or bars) that a 
given object must be tested against. A bar, for example, can only intersect nodes that have y 
coordinates greater than the bar’s minimum y and smaller than its maximum y. Thus, if the nodes 
are sorted by their y coordinates, the test to detect if a node is internal to a given bar is restricted to 
a certain portion of the nodal array (or list). This strategy can also make use of filters in the reduced 
set of objects. 

Each method of solution will be associated with a distinct computational implementation, and will be 
referred to according to Table 1. 

4. NOTATION AND BASIC DATA STRUCTURE 

This paper is intended primarily for programmers of modem computer languages such as C or Pascal, but 
recognizes the importance of existing FORTRAN codes. For this reason, the ideas are presented in the form 
of pseudo codes that are language independent. 

In search for notation, the authors found that while the most common algorithmic language, pidgin algol[4], 
is directly useful for Pascal and C programs, the binding between this language and FORTRAN codes is 
not direct. For this reason, an adaptation of this algorithmic language was adopted here. 

With modem languages like C and Pascal, there are a variety of ways to store nodal coordinates and element 
incidence. However, in order to keep compatibility with existing FORTRAN finite element codes, the 
algorithms presented use the conventional vector arrays. Therefore, the following variables are considered 
global for all the algorithms shown in this paper 

oar 
rmodesnbars :int; {number of nodes and number of bars} 
NodeI,NodeJ :array [1 . . .MAXBARS] of int; {bar incidence} 

x, Y, z :array[l . . .MAX-NODES] of real; {nodal coordinates} 

In the above declarations, MAX-BARS and MAX-NODES are global integer parameters to denote an 
upper bound for the number of nodes and bars, respectively. The other parameter also presented in the code 
is TOL, to denote tolerance. The value of this tolerance depends on the structural dimensions and it may be 
computed by the program according to the maximum and minimum coordinates or defined interactively by 
the user. For the algorithms presented herein, it was considered appropriate to use TOL = 10m4. 

In most tinite element codes, node and bar attributes, such as boundary conditions and materials, 
are also stored in arrays indexed by the node/bar number. To solve geometrical and topological 
inconsistencies, the algorithms presented here delete, create and redefine nodes and bars. This procedure 
obviously changes the node and bar numbers thus requiring a correction to be made in the attribute 
arrays. However, this correction is not always simple. For instance, consider two partially overlapped bars 
of different materials. To solve the inconsistency problem these two bars must be transformed into three 
non-overlapped bars, with the overlapped region being one of them. Which material should be assigned to 
this new bar is not clear. Any one of the materials of the present bars is equally valid and a user action is 
required. 

Since the a posteriori approach is used, and to avoid attribute conflicts and to simplify the algorithms 
presented, this paper assumes that the geometrical and topological inconsistencies are solved prior to the 
attribute setting stage. That is, in the preprocessor developed in the present work, the user can create 
the geometrical and topological model, enforce consistency and, only then, define the attributes and 
loads. 

Therefore, the solution proposed for the consistency analysis algorithms is based on a temporary 
dissociation of the data structure used to represent simultaneously geometry/topology and the finite element 
model. This free dissociation is crucial to guarantee efficiency and creativity of the user when editing the 
structure. If the algorithms presented are used in a program that filters inconsistencies from a complete finite 
element model, more code should be added to handle the attribute arrays. 
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5. THE ALGOIUTHMS 

For each one of the five independent steps discussed in Sec. 2, three possible implementations are proposed. 
The first implementation maintains the order of nodes and the bars orientation. To improve efficiency, the 
next implementation uses the filter strategy discussed above. The last implementation seeks to improve the 
performance of the algo~~s by also sorting the data. The nodes are sorted according to their geometry 
(coordinates) and the bars according to their topology (incidences). 

The step for the elimination of bar crossings represents the most complex one in the consistency analysis, 
and for this reason it is presented first. The discussion of these algorithms allows a full perspective of the 
geometrical and topological consistency problem. Steps 3, 1, 2 and 4 follow in this order. 

Bars can cross in three diRerent kinds of patterns as illustrated by Fig. 3. Figure 3(a) shows the simplest 
case where only two bars cross at a point. Figure 3(b) shows the case where several bars cross at the same point. 
Figure 3(c) illustrates a complex crossing case where several bars cross at many different points. The last case 
is the general case and must be treated by a good frame preprocessor. 

Angel1 and Griffith present a simplified algorithm to determine line segment intersections [5]. Preparata and 
Shamos present a very elaborate study about geometric intersection problems in a general sense (hidden-line 
and ~dden-surfa~ problems, intersections of polygons and line segments, etc.) [4]. 

The simplest algorithm to solve the complex crossing problem would test each bar (called here the reference 
bar) against all the others for intersections. If an intersection point is found, the algorithm should divide both 
the bars. A tolerance should be established to avoid the division of a bar too close to its end nodes. 

The simple algorithm referred above has a basic problem: if a reference bar is divided after a certain number 
of tests, the newly created bars should not be submitted to these tests again. The natural way to program 
this solution is to use recursive procedures and data structures that are more flexible than the array list 
presented in Sec. 3. 

To solve the intersection problem with the static data structure an adaptation must be performed. Instead 
of dividing the bars as intersections are detected, the proposed algorithm creates a node at each intersection 
and, in a latter stage, eliminates repeated nodes and divides the bars to avoid internal nodes. Pseudo code 
1 shows a possible implementation of this algorithm. The logical function LineSegX returns true if the two 
testing bars intersect, and the intersection point is given by the parameter t. Appendix A presents both the 
method used to solve the intersection of line segments and the Pseudo code Al for the function LineSegX. 
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Fig. 3. Types of bar crossings. 
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proc CreateNodeAtBarX; { first implementation--simple > 
{ detect bar intersection and create nodes at this position } 
var 

barWar : int; 
t : real; 

begin 
for bar1 from 1 incr 1 to nbars - 1 do begin 

for bar2 from bar1 + 1 incr 1 to nbars do 
if LineSegX(barl,bar2,t) execute AddInternalNode(barl,t); 

end for; 
end for; 

end.{ CreateNodeAtBarX > 
Pseudo code 1: Bar crossings (simple). 

The procedure AddInternalNode simply adds a node in the node array in the parametric position t of the 
reference bar as illustrated by Pseudo code 2. 

proc AddIn~~alNode ( bar: int; t: real ) ; 
( create an internal node to the bar at parametric coordinate I > 
begin 

nnodes t nnodes + 1; 
x[nnodes] c x[NodeI[bar]] + ( x[NodeJ[bar]] - x[NodeI[barn )*t; 
y[nnodes] c y[NodeI[bar]] + ( ymodeJ&ar]J - y[NodeI[bar]] )*t; 
z[nnodes] c z ~~eI~arJ] + ( ~od~[~r]] - z~~eI~arl] )*t; 

err&. ( AddIntemalNode ) 
Pseudo code 2: Add a node in a bar parametric position. 

The importance of developing efficient algorithms for detecting intersection is apparent as the size of 
structures being analyzed grows increasingly more ambitious. A typical structure may contain hundreds 
or thousands of bars that must be processed as quickly as possible in order to provide an answer to the user 
within a time that does not impair the interactive dialogue. Hence, the nearly quadratic time algorithm 
presented in Pseudo code 1 yields unacceptable response time. 

The first idea to optimize this algorithm is to introduce a test to avoid the costly computation of line 
intersections. For each bar, taken as the reference, the algorithm computes a bounding box that contains this 
bar as the main diagonal as shown in Fig. 4. This bounding box is called here the ‘bar box’. To test if other 
bars intersect the reference bar, the algorithm first checks to see if the bar to be tested intersects the bar box. 
The Pseudo code 3 shows the algorithm to compute this box. The tolerance is added here to treat the case 
of bars that are parallel to the Cartesian axes (x, y or z). For these cases the bar box would degenerate and 
floating point approximations could yield incorrect results. 

proc ComputeBarBox ( bar:int; box: array [I . .6] of real ) 
{ computes a box with the bar as main diagonal f 

Y 

/J-- X 

2 

Fig. 4. Definition of a reference region (after Paulino [21). 
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begin 
box[l] c min (x(NodeI[bar]),x(NodeJ[bar])) - TOL; 
box[2] + rrrux (x(NodeI[bar]),x(NodeJ[bar])) + TOL; 
box[3] t min (y(NodeI[bar]),y(NodeJ[bar])) - TOL; 
box[4] + max (y(NodeI[bar]),y(NodeJ[bar])) + TOL; 
box[S] + min (z(NodeI[bar]),z(NodeJ[bar])) - TOL; 
box[6] t mux (z(NodeI[bar]),z(NodeJ[bar])) + TOL; 
end. { ComputeBarBox } 

Pseudo code 3: Bounding box for bar elements. 

The selection of bars that intersect a given bar box is similar to the clipping technique used in computer 
graphics practice. There, clipping algorithms are referred to as procedures for eliminating all parts of a defined 
picture outside of specified boundaries [6]. Here, the interest is to identify which bars intercept a specified 
region. 

The methodology presented below is based on the line-clipping algorithm proposed by Cohen and 
Sutherland. This algorithm can be found in many references about Computer Graphics, for example [A. In 
this algorithm many bars that lie outside the reference region are easily identified by the position of their end 
nodes. Floating point operations are required only for the remaining bars. This algorithm is especially efficient 
in the case of framed structures where the reference region is relatively small and most bars lie left, right, below, 
above, back or front of the reference region. 

To detect which bars lie outside the reference region, the algorithm starts by assigning to each end point 
of the bar being tested a six-digit binary code, called the ‘region code’. Each bit in the region code is set to 
I (TRUE) if a given relation between the end point and the reference region is true, otherwise the bit is 0 
(FALSE). Pseudo code 4 illustrates this procedure. 

procOutCode ( x, y, z: real; box : array [I . .6] of real; 
uur outcode : array [l . .6] of logical ); 

{ define the position of a point (x, y, z) with respect to a box } 
begin 

outcode[ 1] + x < box[ 11; {left} 
outcode[2] + x > box[2]; {right) 
outcode[3] t y < box[3]; {below} 
outcode[4] t y > box[4]; {above} 
outcode[5] t z < box[S]; {back} 
outcode[6] + z > box[6]; (front} 

end. { OutCode } 
Pseudo code 4: Region code definition. 

Fig. 5. Binary region codes for bar end points (after Paulino [2]). 
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A value of 1 in any bit position indicates that the point is in that relative position; otherwise, the bit is 
set to 0. For example, a point that is to the right and below the region of reference has a region code of 
‘011000’. If a point is within the region of reference, the region code is ‘000000’. Figure 5 illustrates the twenty 
seven possibilities for the region code. The procedure IsNoMn, shown in Pseudo code 5, returns TRUE if 
the node is inside the bounding box. 

function IsNodeIn ( outcode: array [l . .6] of logicul ) :logicuI; 
begin 

EsNodeIn + not outcode[l] and not outcode[2] and 
not outcode[3] and not outc.ode[4] and 
not outcode[S] and not outcode[6]; 

end. { IsNodeIn } 
Psuedo code 5: Test if a node is inside a box. 

Bars that are completely contained within the boundaries of the region of reference have a region code of 
‘~~~ for both end nodes. For these bars the line intersection test is unavoidable. On the other hand, bars 
that have a 1 in the same bit position in the region codes for each end point are completely outside the reference 
region. A 1 in the first position of both nodes means that the bar is left of the reference region, a 1 in the 
fourth position means above, and so on. These bars can be trivially discarded from the algorithm as they 
cannot intersect the bar that lies within the reference region. The algorithm, for example, discards bars that 
have a region code of ‘010101’ for one end node and a code of ‘011000 for the other end node. Both end 
nodes of this line are right of the region of reference, as indicated by the I in the second bit position of each 
region code. 

These tests can be efficiently implemented with the and bitwise operation for both end node region codes 
as illustrated in the Pseudo code 6. If the result is not null, the bar is completely outside the reference region. 
If the result is ‘~~, the test is not conclusive. The bar may or may not be outside the box. Figure 6 
illustrates this situation. 

function IsLineOut ( outcodel, outcode2: array [l . .6] of logical ) :logicul; 
{ find if a line is left, right, below, above, back or front of a box } 
begin 

IsLineOut c ( outcodel[ l] and outcode2[1] ) or 
( outcodel[2] and outcode2[2] ) or 
( outcodel[3] and outcode2[3] ) or 
( outcodel[rl] and outcode2[4] ) or 
( outcodel[S] and outcode2[5] ) or 
( outcodel[6] and outcode2[6] ); 

end. { IsLineOut } 
Pseudo code 6: Elementary test to detect lines outside a box. 

Fig. 6. Non-trivial situation for the region code analysis. 
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In Fig. 6, both lines A and B have the same region code, but A is outside the reference box and B is not. 
This is a typical situation where the region code analysis fails. To solve this problem, the algorithm recursively 
clips the line against a clipping plane (shown dashed in the figure) and performs the test with the clipped line. 
Thus if the test in the line ij is not conclusive, the algorithm reduces the line to l., and tests again. If the test 
is still non-conclusive the line is reduced to 2j and tested again. This process only stops when a line is either 
classified as trivially out (left, right, below, above, back or front) or an end node has region code ‘000000 
(inside). In the former case the line crossing does not occur, and in the latter LineSegX function of Appendix A 
must be executed. The Psuedo code 7 illustrates this algorithm, The name PickLine was chosen because this 
algo~t~ can also be used to determine if a bar crosses a cursor box that the user has located on the viewing 
surface. 

fwtction PickLine ( bar :int; box : array [1 . .6] of real ) dogical; 
( verify if a bar intercepts a box > 
var 

xl,yl,z l,x2,y2,22 : real; 
outcodel,outcode2 : array [1 . .6] of logical; 
done : logical; 

begin 
x2 t xmodeJ[bar]]; 

~2 + yfN~eJP.4; 
22 c- ~od~~~]]; 
execute OutCode( x2, y2,z2, box, outcode2); 
if IsNodeIn( outcode ) then 

PickLine + TRUE; 
else begin 

xl c x~~eI[b~]]; 
Y I + ylN=WWk 
zl t z[NodeI[barn; 
done t FALSE; 

execute OutCode( xl, yl, zl, box, outcodel); 
if IsLineOut( outcodel , outcode2) then begin 

Pickline t FALSE; 
done +-TRUE; 

else 
if outcodel[ I] then 

execute ClipLineAtPlane(xl,yl,zl,x2,y2,z2,box[l]); 
else if outcodel[2] &en 

execute ClipL~eA~l~e(xl,yl,zl,x2,y2,~,box[2]); 
else if outcodel[3] rhen 

execute ClipLineAtPlane(y l,zl ,x1 ,y2&,x2,box[3]); 
else if outcode 1[4] then 

execute ClipLineAtPlane(yl,zl,xl,y2,z2,x2,box[4]~; 
else if outcodel[5] then 

execute ClipLineAtPlane(zl,x 1 ,y 1 ,z2$2,y2,box[5]); 
else if outcode 1161 then 

execute ClipL~eAtPlane(zl,xl,yl,~,x2,y2,box[q~; 
else 

PickLine + TRUE; 
done + TRUE; 

end if; 
end ry, 

until done; 
end if; 

end. ( PickLine f 
Pseudo code 7: Pick line algorithm. 

The procedure ClipLineAtPhne clips the line going from point 1 to point 2 at a limit given in the 
last parameter. Note that this limit is always related to the first coordinate. Thus, to clip against 
constant y and z planes, a cyclic permutation must be performed in the nodal coordinates as shown in the 
Pseudo code 7. 
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proc ClipLineAtPlane ( var ul,vl,wl zeal; u2,v2,w2,lim :real); 
( clips the line going from point 1 to point 2 at u = lim 1 
uar 

t : real; 
begin 

t c (lim-ul)/(u2 - ul); 
ul t lim; 
vl +- vl + t*(v2-v1); 
wl cwl + t*(w2-w1); 

end. ( ClipLineAtPlane > 
Pseudo code 8: Clipping against a constant plane in the first coordinate. 

The optimized version of the simple method to add nodes at bar crossings is then given by the Pseudo code 
9. Note that in the inner loop the compiler should only test for line crossing if the functions Pi&Line and 
UnCoincNode return TRUE. The latter seeks to avoid computing intersections between two bars that cross 
at their end nodes. 

proc CreateNodeAtBarX; (second implementation-uses filter } 
{ detect bar intersections and create nodes at this position 3 
uar 

bOX : array [l . .61 of real; 
barl, bar2 : int; 

begin 
for bar1 from 1 incr 1 to nbars - 1 do begin 

execute ComputerBarBox(barl,box); 
for bar2 from bar1 + 1 incr 1 to nbars do 

if Pi~~Lin~~r2,box) then 
if UnCoincNode ( bar 1 ,bad) then 

if LineSegX( barLbar2,t) execute AddInternalNode(barl,t); 
end if; 

end if; end for; 
end for; 

end. ( CreateNodeAtBarX } 

proc UncoincNode ( bar 1, bar2 : int ); 
{ detect if the incidence of bar1 and bar2 are not the same 3 
begin 

UncoincNode +- NodeI[barl] # NodeI[bar2] and 
NodeI[barl] # NodeJ[barZ] and 
NodeJ[barl] # NodeI[baR] and 
NodeJ[barl] # NodeJ[bar2]; 

end. { UncoincNode } 
Pseudo code 9: Add node at bar crossings using filters. 

The third implementa~on of this procedure sorts the nodes and bars, changing the node numbers and the 
bar incidences. The nodes are sorted in y, x and z directions. That is, first the nodes are ordered according 
to their y coordinate (usually vertical). Nodes with the same y are then sorted according to their x coordinate. 
Finally, those with the same x and y are sorted in z. Appendix B shows an efficient implementation of the 
quick sort algorithm to do this task. 

The bars are sorted by their end nodes. The bar incidences are first adjusted so that node i is always less 
than node j and bars with smaller node i will precede those with larger node i. If two bars have the same 
node i the one that has a smaller node j will precede the other. 

With that kind of sorting, a given bar can only intersect a reference bar if node i of this bar is less than 
or equal to node j of the reference bar. Otherwise, the bar is ‘above’ of the reference bar. The ‘ ’ are put 
here to remind that ‘above’ has a broader sense once the nodes are ordered also in x and z directions. 
Similarly, these two bars can only intersect if the node j of the given bar is greater than or equal to node 
i of the reference bar. That is, the given bar is not ‘below’ the reference bar. Note, however, that when two 
bars have a common end node (the equality condition) they need not be tested for intersection at an internal 
node. Furthermore, the UnCoincNode test can be reduced to the tests shown in the inner loop of the Pseudo 
code 10. 
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proc CreateNodeAtBarX; f third implemen~tio~uses order and filter ) 
{ detect bar intersections and create nodes at this position } 
var 

box : array [l . .6] of real; 
bar 1 ,bar2 : int; 
t : real; 

begin 
for bar1 from 1 kr 1 to nbars-1 do begin 

execute ComputeBarBox ( bar 1, box ); 
for bar2 from bar1 + 1 imr 1 to nbars do 

if (NodeI[bar2] < NodeJ[bar 11) rhen 
if (NodeJ[bar2] > NodeI[barl]) ) then 

if PickLine(bar2,box) then 
if (NodeI[barl] # NodeI[bar2] and 

NodeJ[bar 11 # NodeJ[bar2] and 
LineSegX(bar1 ,bar2,t) ) then 
execute AddIntemalN~e(bar 1 ,t); 

end if; 
end if; 

end if; 
end is; 

end for; 
end for ; 

end. ( CreateNodeAtBarX 1 
Pseudo code 10: Add node at bar crossings using sorting and filters. 
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5.2. Division of bars to avoid internal nodes 

Free use of geometrical functions in a preprocessor can create nodes internal to bars. If the frame model 
incorporates these nodes, that point in space will have two sets of displacements, one from the node with its 
primary degrees-of-freedom and one from the bar internal displacements. Figure 7 illustrates basic 
inconsistencies arising from nodes in the middle of bars. The algorithms presented here aims to correct any 
combinations of these occurrences. 

The presence of a node internal to a bar can be detected by several geometric algo~t~s. Probably, the 
simplest algorithm uses Schwa&s inequality and states that a node P is internal to a bar b,bj if and only if 

lIzi II + llpbj II = llb,bi II (1) 
as shown in Fig. 8. 

The approach based on eqn (1) requires the computation of three vector norms and is too expensive. 
The procedure PickLine, in Pseudo code 7, presents a less expensive test to verify if a node is internal to a 
bar. Furthermore, the PickLine algorithm has imbedded in it a simpler geometric inte~~tation for the floating 
point tolerance. It is half of the size of the edges of a cube that has the node in the center. A tolerance in 
eqn (1) would be associated with an ellipsoid with foci at the end nodes. 

With a geometric test defined, the algorithm to divide bars to avoid internal nodes selects each bar as a 
reference bar and tests if this bar has internal nodes. This can be done by testing all nodes against the reference 
bar one at each time. If an internal node is found, the bar must then be divided in two: one going from node 

step3 

0 0 
0 0 --e=a--J 

step 3 

0 

0 

- 0 0 --- 

step 3 

cl 
0 0 -- 

Fig. 7. Basic types of inconsistencies with nodes in the middle of the bars. 
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hi hi 
Fig. 8. Verification of internal node to the bar 

i of the reference bar to the internal node and another going from the internal node to the node j of the 
reference bar. 

In the procedure just described the size of the bar array (list) is variable and can change in every step of 
the algorithm. If a recursive procedure could be established, the algorithm would test the newly created bars 
only with the remainder of the nodal list. 

To avoid the use of recursive procedures (not available in FORTRAN) the procedure shown in the Pseudo 
code 11 keeps the first newly created bar as the current reference bar and puts the second one at the end of 
the bar list. After each change, the bar incidence array is thus updated. The process is repeated until all bars 
in the model are examined, including the new bars created. The numbers in brackets at the right of the Pseudo 
code 11 are line numbers put here for reference. 

proc DivideBarToEliminateIntemalNodes; { first implementation } [L 0] 
( verify if a bar has an internal node; if so, divide the bar } 
var 

bar,node : int; 
NodeBox : array [l . . 61 of real; 

begin 
bar t 0; 
repeat begin 

bar+bar+ 1; 
for node from 1 incr 1 to nnodes do 

if NodeI[bar] # node and NodeJ[bar] # node then begin 
execute ComputeNodeBox (x[node],y[node],z[node], NodeBox) 
if PickLine (bar, NodeBox) then begin 

nbars + nbars + 1; 
NodeI[nbars] t node; 
NodeJ[nbars] c NodeJ[bar]; 
NodeJ[bar] c node; 

end if; 
end if; 

end for; 
until bar > = nbars; 

end. { DivideBarToEliminateIntemalNodes } 
Pseudo code 11: Elimination of bar internal nodes (simple). 

IL 11 
[L 21 
[L 31 
[L 41 
[L 51 
[L 61 
IL 71 
[L 81 
P- 91 

[L 101 
P- 111 
IL 121 
IL 131 
[L 141 
IL 151 
L 161 
IL 171 
IL 181 
IL 191 
IL 201 

Note that line L9 of this algorithm excludes incident nodes of the reference bar from any further test. The 
procedure ComputeNodeBox is given in the Pseudo code 12. 

proc ComputeNodeBox ( x_ref,y_ref,zref:real; vur box:array [l . .6]:of real ); 
{ compute a box around a node with a given tolerance } 
begin 

box[ 1] c x_ref - TOL; 
box[2] 6 x_ref + TOL; 
box[3] e y-ref - TOL; 
box[4] c y-ref + TOL; 
box[5] + uef - TOL; 
box[6] c z._ref + TOL; 

end. { NodeBox } 
Pseudo code 12: Compute a node box. 



To improve efficiency, the second implementation uses the filter method. Instead of testing the reference 
bar against all node boxes, the algorithm can include a cheaper pre-test that cheeks if the node lies inside 
a bar box. The Pick~~e test is performed only for nodes meeting this condition. The new Pseudo code would 
then have the following lines included: 

BarBox : army [1 . .6] of real; [L 24 
execute ComputeBarBox( bar, BarBox ); P 74 

execute ComputeBarBox( bar,BarBox ); { update BarBox 1 [L lSa] 

and the line L9 replaced by 

if NodeI[bar] # node and NodeJ[bar] # node and [L 91 
PickNode ( x[node],y[node],z[node], BarBox ) then begin [L 9al 

The function PickNode is shown in Pseudo code 13. The name was chosen because this is the same function 
used in interactive graphical programs to select a node that lies in a given position on the viewing surface. 
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fiction PickNode(px,py,pz:real; box array [ 1 . ‘61 :reul):iogicul; 
begin 

PickNode c (px > box[ I]) and (px < box[2]) and 
(py > box[3]) and (py < box[4]) and 
(pz > box[5]) and (pz < box[6]); 

end. {PickNodef 
Pseudo code 13: Test if a node is within a box. 

The third implementation assumes that the nodes and the bars are ordered in the same manner as shown 
in Pseudo code 11. As a consequence of this ordering, a reference bar always has the node i smaller than node 
j, and nodes with a smaller number have a smaller y, x or z coordinate. That is, if two nodes have number 
u and b (a c 6) then y coordinate of a is less than or equal to they coordinate of b. In case they coordinates 
are equaf the x coordinate of node u must be less than or equal to the x coordinate of node b. Finally, in 
case the x coordinates are also equal, the z coordinate of node a must be smaller. This order guarantees that 
only nodes between node i and node j of a reference bar can be internal to that bar. Psuedo code 14 shows 
the final algorithm after changes to consider ordered nodes. 

proc DivideBarToEliminateIntemalNodes; ( third implementation-uses order and filters } 
{ verify if a bar has an internal node; if so, divide the bar. > 
ttpt 

bar,node : int; 
nb,noi,noj : irtt; 
NodeBox,BarBox : array [I . .6] of real; 

begin 
nb c nbars; 
for bar from 1 incr 1 to nb do 

execute ComputeBarBox( bar, BarBox ); 
noi + Node@ar] + 1; 
nof c NodeJ&tr] - 1; 
for node from noi incr 1 to nof do 

if PickNode (x[node],y[node],z[node],BarBox) then begin 
execute ComputeNodeBox (x[node],y[node],z[node], NodeBox) 
if PickLine (bar, NodeBox ) then begin 

nbars c nbars + 1; 
NodeI[nbars] t NodeI[bar]; 
NodeJfnbars] c- node; 
NodeI[bar] +- node; 
execute ComputeBarBox( bar, BarBox ); 

end if; 
end if; 

end for; 
end for; 

end. { DivideBarToEliminateIntemalNodes ) 
Pseudo code 14: Elimination of bar internal nodes using sorting and filters. 

CM 46/t--H 
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Note that, due to the order, the newly created bars do not need to be tested against any node. All nodes 
between node i and node j have already been tested when the bar is created. 

5.3. Elimination of repeated nodes (and bars with null size) 

The elimination of repeated nodes aims to eliminate any node that, within a certain tolerance, has the same 
coordinates as a previous one. Bars of null size with equal or different incident nodes can also be eliminated 
from the model. If the incident nodes in one bar of null size are different, this step will transform the bar 
definition to the case where the incident nodes are equal. Its elimination is then just a topological 
(non-geometrical) problem. 

To implement this routine, the nodes with repeated coordinates are detected first. Afterwards, the 
element incidence list and the nodal coordinate list are updated. Pseudo code 15 shows three procedures, one 
for each one of those conditions. The procedure NewNodeNumber must be executed before the procedures 
UpdateBarIncidence and UpdateNodalCoordinates. The procedure Zero assigns zero for all elements of an 
integer vector array. 

proc NewNodeNumber ( var NewNumber : array [l . . MAX-NODES] of int ); 
{ first and second implementation } 

{ compute the new number of an existing node if repeated coordinates 
are eliminated from the coordinate arrays ( x, y, z ) 
(the new number of current node i is NewNumber[i]) > 

var 
node : int; { Counter for the new list } 
box[6] : real; { Tolerance box around a node } 

i, j : int; 

begin 
node + 0; 
execute Zero( MAX-NODES, NewNumber ); 
for i from 1 incr 1 to nnodes do begin 

if NewNumber[i] = 0 then begin 
node + node + 1; 
NewNumber[i] + node; 
execute ComputeNodeBox(x[i],y[i],z[i],box); 
for j from i + 1 incr 1 to nnodes do 

zf PickNode(x[i],y[i],zb],box) then do NewNumber[i] + node; 
end for ; 

end if; 
end for; 

end. { NewNodeNumber } 

proc UpdateBarIncidence (NewNumber : array [l . . MAXNODES] of int ); 
{ update bars incidence according to the vector NewNumber } 
var 

i : int; 
begin 

for i from 1 incr 1 to nbars do begin 
NodeI[i] + NewNumber[NodeI[i]]; 
NodeJ[i] c NewNumberlNodeJ[i]]; 

end for ; 
end. { UpdateBarIncidence } 

proc UpdateNodalCoordinates ( NewNumber : array[l . . MAX-NODES] of int ); 
{ update nodal coordinates according to the vector NewNumber } 
oar 

i,node : int; 
begin 

node+ 1; 
for i from 1 incr 1 to nnodes do 

if NewNumber[i] = node then begin 
x[node] c x[i]; 
ybodel + ybl; 
z[node] + z[i]; 
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node c node + 1; 
end if; 

end for; 
nnodes + node - 1; 

end. { UpdateNodalCoordinates } 
Pseudo code 15: Elimination of repeated nodes (simple and filter). 

With the repeated nodes removed, the bars with null size can also be eliminated from the bar list. This 
elimination needs to be done only the first time that this step is executed (step 1) in both algorithms in Sec. 
2. The bars with null size do not need to be checked in step 7 of the algorithm that treats bars that cross 
at internal points because that situation does not occur at this stage. Pseudo code 16 shows how this 
elimination can be performed. 

proc EliminateBarNullSize; {first and second implementation} 
var { eliminate bars of null size } 

bar : int; { counter for the new bar list } 
i : hat; { counter for the old bar list } 

begin 
bar + 0; 
for i from 1 incr 1 to nbars do 

if NodeI[i] # NodeJ[i] then begin 
barcbar+ 1; 
NodeI[bar] + NodeI[i]; 
NodeJ[bar] + NodeJ[i]; 

end if; 
end for ; 
nbars t bar; 

end. { EliminateBarNullSize } 
Pseudo Code 16: Elimination of bar with null size (simple and filter). 

The geometric test to detect if two nodes are coincident is the PickNode test presented above. This test is 
so simple that no filter strategy needs to be done. Therefore, this step needs only two distinct methods: one 
without (1st and 2nd implementation), and one with (3rd implementation) sorting of nodes and bars. 

With the nodes sorted (see Appendix B), coincident nodes occupy consecutive positions in the node list. 
Therefore, it is sufficient to test each node only with the previous node of the list. Repeated nodes have a 
predecessor in the same position. The algorithm to remove these nodes is shown in the Pseudo code 17. Note 
that this algorithm uses an integer nodal label computed at the SortNodes procedure that uniquely defines 
a (x,y,z) position. That is, two nodes occupy the same position if and only if their labels are equals. Moreover, 
if the label of a node is greater than the label of another, the first node comes after the second in the sorted 
list. 

proc NewNodeNumber ( LabelList : array [l . . MAX-NODES] of in?; 
vur NewNumber : array [l . . MAX-NODES] of int ); 

{ third implementation-uses order } 
{compute the new number of an existing node if the repeated coordinates are eliminated from the 

coordinate arrays ( x, y, z ) 
(the new number of current node i is NewNumber[i]) } 

var 
node: int; 
i : int; 

begin 
node c 1; 
NewNumber [l] c 1; 
for i from 2 i&r 1 to rmodes do 

if LabelList[i] = LabelList[i - l] then 
NewNumber[i] + NewNumbetfi - 11; 

else begin 
node + node + 1; 
NewNumber[i] c node; 

end if; 
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end for ; 
end. { NewNodeNumber } 

Pseudo Code 17: Elimination of repeated nodes (order). 

Note also that this algorithm has one loop less than that the one shown in Pseudo code 15. The precedures 
UpdateBarIncidence and UpdateNodalCoordinates for this implementation are similar to the ones presented 
in Pseudo code 15. 

5.4. Elimination of isolated nodes 

Another step that may be required for consistent data is the elimination of nodes without incidence (isolated 
nodes). This step may not be performed if the analysis program does require such nodes. An example of the 
use of isolated nodes in the analysis is the node K used in the SAP program. In this situation the existence 
of an error may not be so clear. The degrees of freedom of the isolated nodes should be checked to avoid 
singular stiffness matrices. 

If, however, the analysis program does not require isolated nodes, a proper action would be to delete them 
from the node list. Their existence increases unnecessarily the graphical data structure and the application 
data structure. 

An algorithm to eliminate isolated nodes can be developed in three steps: 

1. on the basis of the bar incidence, mark all nodes that are not isolated; 
2. compute a new number for these nodes (omitting the isolated ones); 
3. update the node list and the bar list. 

The Pseudo code 18 illustrates this algorithm. Note that this algorithm only uses topological tests that are 
too simple to use filters. The sorting of nodes and bars also does not improve this algorithm; thus, only one 
implementation is presented for this step. 

proc DeleteIsolatedNodes; {first, second, and third implementation} 
{ eliminate nodes without incidence (isolated) } 

NewNumber : array [l . . Mawa] of int; { New mode number } 
node,i, j : tit; 
updateflag : logical; 

begin 
{ mark nodes without incidence with NewNumber equal to 0, the others will have in NewNumber their new 
number in the list that excludes the isolated nodes } 

( step 1: mark connected nodes } 
execute ZERO ( MAX-NODES, NewNumber ); 
for j from 1 incr 1 to nbars do begin 

NewNumber[NodeI[i]] c - 1; 
NewNumber[NodeJ[j]] + - 1; 

end for; 
{ step 2: mark isolated nodes and set update flag } 
node t 0; 
updateflag + FALSE; 
for i from 1 incr 1 to nnodes do 

if NewNumber[i] = - 1 then begin 
node c node + 1; 

NewNumber[i] c node; 
else 

updateflag c TRUE; 
end if; 

end for ; 
{ step 3: Update Data Structure (if necessary) } 
if updateflag then begin 

execute UpdateBarIncidence(NewNumber); 
execute UpdateNodalCoordinatesQVewNumber); 

end is; 
end. { DeleteIsolatedNodes } 

Pseudo code 18: Elimination of nodes without incidence. 
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5.5. Elimination of repeated bars 
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A procedure to eliminate repeated bars of a model that do not have repeated nodes can rely only on the 
topology of the model. The geometric questions have already been solved by the elimination of repeated nodes. 

The algorithm proposed here first computes for each bar an integer code (Lube/List) that is a function of 
its incidences (nodes i andj). This label must be the same in the case of bars with equal or inverse incidence. 
The Pseudo code 19 illustrates this computation. 

proc ComputeBarLabel ( uar LabelList : array [1 . . MAX-BARS] of int ); 
{ compute a label for each bar } 
var 

i : int; 
begin 

for i from 1 incr 1 to nbars do 
if NodeI[i] < NodeJ[i] then 

LabelList[i] e ISHFL(NodeI[i],lS) + NodeJ[i]; 
else 

LabelList[i] + ISHFL(NodeJ[i], 15) + NodeI[i]; 
end if; 

end for ; 
end. { ComputeBarLabel } 

Pseudo code 19: Compute bar label (without change of incidence). 

The function ZSHFL, shown in the code, shifts the binary representation of a number fifteen positions to 
the left. This function is available in both C or FORTRAN and is equivalent to a multiplication to 2” (32768). 
The obvious restriction of this approach is that node the number must be less than this value. This restriction 
can be waived if a longer integer representation is used. Unsigned integer in the C language, for example, 
would allow numbers up to 2i6 (65536). 

With the labels computed, each bar is then tested with the following bars of the list. When two codes are 
coincident, the repeated bar is eliminated. Here again the use of filters is not applicable. Topological tests are 
too simple to be replaced. Pseudo code 20 presents this algorithm. 

proc EliminateRepeatedBars ( oar LabelList : array [l . . MAX-BARS] of int ); 
{ first and second implementation } 

{ eliminate bars with same incidence or reverse incidence } 
var 

label : int; 
bar : int; 

4 j : int; 
begin 

bar + 1; 
for i from 2 incr 1 to nbars do begin 

j4-0; 
repeat begin 

j+j+l; 
until j > bar or LabelList[j] = LabelList[i] 
if j > bar then begin 

bar +-bar+ 1; 
NodeI[bar] + NodeI[i]; 
NodeJ[bar] c NodeJ[i]; 
LabelList[bar] + LabelList[i]; 

end if; 
end for; 
nbars + bar; 

end. { EliminateRepeatedBars } 
Pseudo code 20: Elimination of repeated bars (simple and filter). 

The third implementation uses the bar data observed as illustrated by the Pseudo code 21. After sorting, 
node i is always less than nodei and the bars are ordered with respect to node i. Bars with the same node 
i are ordered with respect to node j. 
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proc SortBars ( uur LabelList : array [l . . MAX-BARS] of int ); 
{ sort the bars according to their incidence } 

var 
i,temp : int; 

begin 
{ step 1: label all bars uniquely according to their node numbers } 
for i from 1 incr 1 to nbars do 

if NodeI[i] > NodeJ[i] then begin 
temp + NodeI[i]; 
NodeI[i] + NodeJ[i]; 
NodeJ[i] + temp; 

end if; 
LabelList [i] + ISHFL(Node1 [i], 15) + Node J [i]; 

end for; 
{ step 2: sort the list of bars with respect to array LabelList } 

execute QSortB(LabelList,NodeI,NodeJ, 1 ,nbars); 
end. { SortBars } 

Psuedo code 21: Sort bars according to their incidence. 

The procedure QSortB(E,F,G,n l,n2) is given in Appendix B. This procedure sorts the integer vector arrays 
E, F and G as a function of the elements of E, between the lower and upper position limits, n 1 and n2. The 
sorting routine used here is an adaptation of the quick sort algorithm presented by Houlsby and Sloan [8] 
and Sedgewick [9]. 

With the bar labels sorted, repeated bars occupy consecutive positions in the bar label list. This fact is used 
to develop Pseudo code 22 that is an improved version of Pseudo code 20. 
proc EliminateRepeatedBars ( uar LabelList : array [l . . maxa] of int ); 

{ third implementation-uses order } 
{ eliminate bars with same incidence or reverse incidence } 
var 

label : int; 
bar : int; 

4 j,t : int; 
begin 

bar + 1; 
for i from 2 incr 1 to nbars do begin 

if LabelList[i] # LabelList[i - 1] then begin 
bar *bar+ 1; 
NodeI[bar] + NodeI[i]; 
NodeJ[bar] c NodeJ[i]; 
LabelList[bar] + LabelList[i]; 

end if; 
end for; 
nbars + bar; 

end. { EliminateRepeatedBars } 
Pseudo code 22: Elimination of repeated bars (order). 

6. EXAMPLES 

To numerically evaluate the algorithms proposed in this paper, three implementations were produced 
using the following methods: simple, filter, and order (sorting or filters plus sorting), as described in Sec. 3. 
The general outline of the implementation using filters plus sorting is given by: 

Step A: Label and sort nodes; 
Step B: Elimination of repeated nodes; 
Step C: Elimination of bars of null size; 
Step D: Elimination of nodes without incidence; 
Step E: Change bar orientation; 
Step F: Division of bars to avoid internal nodes; 
Step G: Label and sort bars; 
Step H: Elimination of repeated bars; 
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Fig. 9. Example 1: orthogonal grid. 

Table 2. Results of the consistency analysis for the four meshes of example 1 

Example 1 
Mesh 

Initial numbers 
Nodes Bars 

Final numbers 
Nodes Bars 

EC/AT time (see) 
Simple Filter Order 

SUN time (see) 
Simple Filter Order 

4x4 19 10 25 40 1.8 0.67 0.28 0.09 0.01 0.00 
8x8 35 18 81 144 16 4.0 1.1 0.63 0.17 0.06 

16 x 16 61 34 289 544 185 38 4.7 7.1 1.6 0.28 
32 x 32 131 66 1089 2112 2566 453 23 99 20 1.2 

Step I: Creation of nodes at bars crossings; 
Step J: Label and sort nodes; 
Step K: Elimination of repeated nodes; 
Step L: Division of bars to avoid internal nodes. 

To improve efficiency, steps J, K and L are only executed if step I does create nodes at bar intersections, that is, 
if the problem does have bars intersecting at internal nodes. 

The simple algorithm and the algorithm with filters can be derived from the outline just presented by 
eliminating steps A, E and J and by replacing the remaining steps by their proper version. In those versions, 
step G only computes bar labels. 

The language chosen for the numerical implementation was FORTRAN 77. The programs were 
implemented on a micro-computer PC/AT 286 running MS-DOS 4.0 at 12 MHz and also in a SUN 4/370. 

Four examples were chosen to evaluate these implementations: two in plane and two in three-dimensional 
space. All the examples were created using a frame preprocessor. The first example is an orthogonal floor 
gridwork created in the manner illustrated by Fig. 9. In this figure, the girders were created with lines defined 
by the end points shown as + (plus character). To create the initial mesh, the user defined first the top and 
left lines as illustrated in Fig. 9. These lines were then copied in the vertical and horizontal directions, 
respectively. 

Table 2 presents the total number of nodes and bars before (initial) and after (final) the consistency was 
imposed for the four meshes of the type shown in Fig. 9. That table also shows the time obtained for the 
three methods: (simple), using filters (filter), and using sorting plus filters (order) on both the PC/AT and the 
SUN workstation. Obviously all three implementations produced the same results. However, the names 

Table 3. Detailed results of the consistency analysis of the 32 x 32 mesh of example I 

Example l-32 x 32 mesh Initial numbers Final numbers 
Step Nodes Bars Nodes Bars 

“/AT;;;: (se-c) 
Simple Order 

Label and sort nodes (1) 131 66 131 66 0.17 
Elim. repeated nodes 131 66 128 66 0.98 0.99 0.00 
Elim. bars null size 128 66 128 66 0.00 0.00 0.06 
Elim. nodes without incidence 128 

zz 
128 66 0.00 0.00 0.00 

Change bar orientation (1) 128 128 66 0.00 
Div. bars to avoid internal nodes 128 66 128 190 26.04 6.31 0.99 
Label and sort bars (2) 128 190 128 190 0.08 0.00 0.11 
Elim. of repeated bars 128 190 128 190 0.17 0.22 0.00 
Create nodes at bar crossings 128 190 1089 190 25.21 16.43 7.15 

Label and sort nodes (1) 1089 190 1089 190 3.02 
Elim. repeated nodes 1089 190 1089 57.62 57.72 0.00 
Div. bars to avoid internal nodes 1089 190 1089 2:z 2455.66 371.79 11.53 

Total 2565.69 453.46 23.03 

Notes: (1) Only for the implementation with sort. (2) For simple and filter implementations no sorting is performed. 
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Fig. 10. Example 2: non-orthogonal grid. 

(numbers) of the nodes and bars are different in the last method (order). Table 3 shows the results after each 
step of the algorithms for the 32 x 32 mesh of the orthogonal grid. The times presented in this table refer 
to the PC/AT implementation. 

The second example deals with non-orthogonal grids of bars of the type illustrated by Fig. 10. The process 
of creation of the initial mesh starts with the definition of the external bars at left, top, right and bottom. 
These bars are then divided into 4, 8, 16 or 32 parts depending on the mesh. Bars are then placed joining 
these nodes as illustrated in Fig. 10 for a 4 x 4 mesh. Note that in this figure the boundary nodes are also 
marked with a + (plus) character. 

Table 4 shows the total number of nodes and bars and the time for the consistency analysis for the four 
meshes of the second example. Table 5 details these numbers for each step of the analysis for the 32 x 32 mesh. 
Table 4 presents both PC/AT and SUN times and Table 5 only the former. 

The third example is obtained by duplicating the bar cube shown in Fig. 11 in the x and z directions. 
Four meshes are analyzed: 2 x 2, 4 x 4, 6 x 6 and 8 x 8. Figure 11 also illustrates the 4 x 4 mesh of this 
example. Note that diagonal bars are placed on the cube faces to produce bar crossings. 

Table 6 shows the total number of nodes and bars and the time for the consistency analysis for the four 
meshes of the third example. Table 7 details these numbers for each step of the analysis for the 8 x 8 mesh. 
Table 6 presents both PC/AT and SUN times and Table 7 only the former. For this particular example, 
Fig. 12 shows a qualitative comparison among the three methods used in this paper. 

The last example is a roof generated by duplicating the pyramid bar shown in the upper left comer of 
Fig. 13 in the x and z directions. After the duplication, the outstanding top bars are trimmed to produce the 
roof also shown in Fig. 13. Four meshes are analyzed in this example: 2 x 2, 4 x 4, 6 x 6 and 8 x 8. Note 
that in this example both algorithms presented in Sec. 2 are equivalent because there are no bar crossings. 

Example 2 
Mesh 

Table 4. Results of the consistency analysis for the four meshes of example 2 

Initial numbers Final numbers PC/AT time (set) SUN time (SIX) 
Nodes Bars Nodes Bars Simple Filter Order Simple Filter Order 

4x4 16 30 41 80 4.8 2.0 0.8 0.18 0.08 0.05 
8x8 32 62 145 288 53 17 4.4 2.0 0.67 0.16 

16 x 16 64 126 545 1088 697 202 25 27 7.4 1.12 
32 x 32 128 254 2113 4224 10252 2809 159 395 103 7.1 

Table 5. Detailed results of the consistency analysis of the 32 x 32 mesh of example 2 

Example 2-32 x 32 mesh Initial numbers Final numbers PC/AT time (set) 
Step Nodes Bars Nodes Bars Simple Filter Order 

Label and sort nodes (1) 128 254 128 254 0.44 
Elim. repeated nodes 128 254 128 254 0.99 0.94 0.00 
Elim. bars null size 128 254 128 254 0.00 0.05 0.00 
Elim. nodes without incidence 128 254 128 254 0.05 0.00 0.00 
Change bar orientation (1) 128 254 128 254 0.00 
Div. bars to avoid internal nodes 128 254 128 254 37.63 12.58 7.09 
Label and sort bars (2) 128 254 128 254 0.00 0.05 0.06 
Elim. of repeated bars 128 254 128 254 0.33 0.33 0.00 
Create nodes at bar crossings 128 254 2113 254 46.74 35.32 21.97 

Label and sort nodes (1) 2113 254 2113 254 7.14 
Elim. repeated nodes 2113 254 2113 254 225.47 225.69 0.05 
Div. bars to avoid internal nodes 2113 254 2113 4224 9941.57 2533.88 122.10 

Total 10252.7 2808.84 158.86 

Notes: (1) Only for the implementation with sort. (2) For simple and filter implementations no sorting is performed. 
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Fig. 11. Example 3: spatial structure with intersections. 

Table 6. Results of the consistency analysis for the four meshes of example 3 

Example 3 Initial numbers 
Mesh Nodes Bars 

2x2 32 64 
4x4 128 256 
6x6 288 576 
8x8 512 1024 

Final numbers 
Nodes Bars 

22 51 
74 217 

158 481 
214 849 

EC/AT time (set) 
Simple Filter Order 

4.2 1.6 0.9 
51 17 10 

234 15 41 
705 220 118 

SUN time (set) 
Simple Filter Order 

0.13 0.07 0.03 
1.9 0.19 0.53 
8.6 3.4 2.26 

26 10 6.6 

Table 7. Detailed results of the consistency analysis of the 8 x 8 mesh of example 3 

Example 3-8 x 8 mesh Initial numbers Final numbers EC/AT time (set) 
Step Nodes Bars Nodes Bars Simple Filter Order 

Label and sort nodes (1) 512 1024 512 1024 5.27 
Elim. repeated nodes 512 1024 162 1024 4.84 4.83 0.06 
Elim. bars null size 162 1024 162 1024 0.00 0.00 0.00 
Elim. nodes without incidence 162 1024 162 1024 0.00 0.00 0.00 
Change bar orientation (1) 162 1024 162 1024 0.05 
Div. bars to avoid internal nodes 162 1024 162 1024 175.21 23.61 5.99 
Label and sort bars (2) 162 1024 162 1024 0.11 0.05 0.49 
Elim. of repeated bars 162 1024 162 625 3.08 3.08 0.06 
Create nodes at bar crossings 162 625 274 625 271.55 151.70 96.34 

Label and sort nodes (1) 274 625 274 625 1.81 
Elim. repeated nodes 214 625 274 625 3.85 3.79 0.00 
Div. bars to avoid internal nodes 274 625 274 849 246.01 32.47 8.18 

Total 704.65 219.53 118.31 

Notes: (1) Only for the implementation with sort. (2) For simple and filter implementations no sorting is performed. 

D 0 400 800 1200 1 

#Nodes + #Bars (Iniiial meshes) 

Fig. 12. Comparison of the methods for consistency (example 3). 
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Fig. 13. Example $: spat&I roof. 

Table 8. Results of the consistency analysis for the four meshes of example 4 

Example 4 Initial numbers 
Mesh Nodes Bars 

2X2 36 
4x4 

1; 
152 

6x6 240 348 
8x8 432 624 

Final numbers 
Nodes Bars 

13 32 
41 128 
85 288 

145 512 

WA;;:; (=G 
Simple Order 

0.6 0.3 A.2 
7.6 4.6 

89 38 21 
279 118 67 

SUN time (see) 
Simple Filter order 

0.04 0.04 0.80 
0.67 0.35 0.24 

1.7 1.16 Ii2 
5.2 3.6 

Table 9, Detaited results oftbe consistencv am&&s of the 32 x 32 me& ofexnmde 4 

Example 4-8 x 8 mesh 
Step 

_ _ 
fnitiaf numbers Final numbers 

Nodes Bars Nodes Bars 

A 

PC/AT time (see) 
Simple Filter Order 

Label and sort nodes (1) 432 624 432 624 2.81 
Elim. repeated nodes 432 624 145 624 3.68 3.68 0.05 
Him. bars null size 145 624 I45 624 0.00 O.QO 0.00 
EIirn. nodes without incidence 145 624 145 624 0.80 o,oo 0.00 
change bar orientation (I) I45 624 I45 624 0.00 
Div. bars to avoid internal nodes iris 624 145 624 95.29 12.24 2.63 
Label and sort bars (2) 145 624 145 624 0.06 0.06 0.27 
Elim. of repeated bars 145 624 145 512 1.54 1.59 0.06 
Create nodes at bar crossings 145 512 145 512 178.34 100.46 59.86 

Total 278.91 118.03 65.68 

Nores: (I) Only for the ~pi~entation with sort. (2) For simple and fiber impIementations no sorting is performed. 

Table 8 shows the total number of nodes and bars and the time for the consistency analysis for the four 
meshes of the last example. Table 9 details these numbers for each step of the analysis for the 8 x 8 mesh. 
Table 8 presents both PC/AT and SUN times and Table 9 only the former. 

Several techniques have been proposed to treat the geometric and topological inconsistencies of three 
dimensional frame models. These techniques are based on a simple data structure which is familiar to finite 
element programmers. 

The results, for the examples presented here, have shown that a simple and naive approach to the problem 
(first ~mp~emen~tion~ can severely compromise the effectiveness of the per-computer dialog in interactive 
systems. Based on the examples presented, this con&tsion is more strongly noticed in the following steps listed 
by order of importance: ‘Division of bars to avoid internal nodes’, ‘Creation of nodes at bar crossings’, and 
‘Elimination of repeated nodes’. Therefore, the search for efficient algorithms to produce a consistent finite 
element data structure is very important. 

Although effective solutions were proposed for the step of ‘Division of bars to avoid internal nodes’, 
the authors feel that there is still room for improvement in order to reduce the response time of this step, 

The use of ‘filters’ is eSr&ive, but the use of ‘order’ is much better. The time taken to sort the data is not 
relevant if compared with the savings obtained in any of the steps. 

The authors envisage that the techniques presented here can be also useful in engineering education. If these 
algorithms are implemented as a separate module of an interactive graphical frame preprocessor, they can 
be used to verify if the new students have input the data for analysis properly. 



Consistency in interactive graphical preprocessors of framed structures 121 

Acknowledgements-The work presented in this paper is part of the research carried out by the last two authors in partial 
fulfillment of the requirements for M.Sc. degrees in Civil Engineering at the Pontiticia Universidade Catblica do Rio de 
Janeiro. The authors wish to acknowledge CNPq, CAPES and STC (Brazilian Science and Technology Agencies) for funds 
to support this research. They wish also to acknowledge the collaboration of Miguel Jose Reis Lopes, Waldemar Celes Filho 
and Mark L. Valenzuela. 

REFERENCES 

1. K. Preiss, Checking the topological consistency of a finite element mesh. Int. J. Numer. Meth. Engng 14, 180551812 
(1979). 

2. G. H. Paulino, Preprocessing of three-dimensional framed structures, with nodal reordering, using interactive computer 
graphics (in Portuguese). M.Sc. dissertation, Civil Engineering Department, PUC-Rio (1988). 

3. C. I. Pesquera, W. McGuire and J. F. Abel, Interactive graphical preprocessing of three-dimensional framed structures. 
Cornput. Struct. 17, l-12 (1983). 

4. F. P. Preparata and M. I. Shamos, Computational Geometry. Springer, New York (1985). 
5. I. 0. Angel1 and G. Griffith, High-resolution Computer Graphics using FORTRAN 7% Macmillan, London (1987). 
6. D. Heam and M. P. Baker Computer Graphics. Prentice-Hall, Englewood Cliffs, NJ (1986). 
7. J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles and Practice, 2nd Edn. 

Addison-Wesley, Reading, MA (1990). 
8. G. T. Houlsby and W. Sloan, Technical note: efficient sorting routines in FORTRAN 77. Adu. Engng Sofrwure 6, 198 

(1984). 
9. R. Sedgewick, Implementing quick sort programs. Commun. ACM 21, No. 10 (1978). 

APPENDIX A: INTERSECTION OF LINE SEGMENTS 

The intersection tests are based on the parametric equations of the line segments. Figure Al illustrates the proposed 
process: the reference bar is named bar, and the testing bar is named bar,. The parametric equations of the two line segments 
of bar, and bar, are: 

x = xi, + (xj, - xi,)*t x = xi2 + (xjZ - x&)*u 

y = yi, + (yj, - yi,)*t and y = yi2 + (_v& - yj2)*u 

.z = zi, + (zj, - zi,)*t z = zi2 + (zj* - Ziz)*U. 

The intersection point, whether existent, can be obtained making equal x, y and z in the two sets of equations above 

(xj, - xi,)*t - (xjZ - x&)*u = xi2 - xi, 

(yj, - yi,)*t - (yjZ - y&)*u = yi2 - yi, 

(zj, - zi,)*t - (zj, - z&)*u = zi2 - zi, 

Fig. Al. Bar crossings (after Paulino [2]). 

(Al) 
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which specifies a system with three equations and two unknowns 

or 

where 

(4 

dxs=xjz--xi,, dy,=yj=-yi,, dz,=zj=-zi,, fora=1,2 

and 

dxi=xi,-xi,, dyi=yiZ-yi,, dz,=ri,-zi,. 

To solve the above system of equations one can solve three systems of two equations and two unknowns. Using Cramer’s 
rule is necessary to compute three determinants from matrices of order 2 x 2. 

The existence of intersections between bars may be examined through three possibihties of occurrence of one system of 
two equations linearly independent. Each system represents equations in one of the planes xy, x.z or yz. The existence of 
intersection in the plane does not guarantee the existence of intersection in space. For this reason the solution needs to 
be checked in the third remaining equation. 

For instance, suppose that the two first equations in (Al) are linearly independents. If dek,, det, and det, are the 
determinants given by: 

then 

det, = ~~~~: ~] 

det, det, 
t== and u=-. 

0 det, 

For internal points to the line segment defined by bar, and bar, the following condition must be true 

u, I E (0,l). (A31 

If the condition (A3) is obeyed, the values of u and 1 must still be checked in the third equation. If u and I satisfy the three 
equations in (Al), then the coordinates of the intersection point between the bars am calculated and one additional node 
is created. If the first two equations in (Al) are linearly dependent, the algorithm must test the two remaining systems of 
two equations each. 

The Pseudo code Al was prepared according to the concepts above. The logical function Line5’egX returns TRUE if 
the two testing bars intersect, and the intersection point is given by the parameter t. 

function LineSegX (barl, bar2 : int; oar t : real ) : logical; 
{ verify and treat line intersections} 
var 

dxl,dyl,dzl : real; 
dx2,dy2&2 : real; 
dxi,dyi,dzi : real; 
u : real; 
error : real; 
solution,intemal : logical; 

begin 
execute Vector(NodeI~arl],Nodej[barl],dxl,dyl,dzl); 
execure VectorRlodeIibar21,NodeJibar2l,dx2,dy2&!~; 
execute V~tor~odeI~arIi~N~eI~~2i,d~,d~i,d~);- 
{ solve in xy > 
execute Soh( dxl, -dxt,dyl, -dy2,~i,dyi,t,u,solution,intemal); 
if solution i&n 

if internal then begin 
error + dzl *t - dzu2*u - dzi; 
LineSegX + ABS (error) < TOL; 
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else begin {solve in xz } 
execute Solve( dxl, 4x2&1, -dz2,dxi,dzi,t,u,solution,intemal); 

if solution then 
if internal then begin 

error + dyl*t - dy2*u - dyi; 
LineSegX c ABS (error) < TOL; 

end if; 
else begin { solve in yz } 

execute Solve( dyl, -dy2,dzl, -dz2,dyi,dzi,t,u,solution,intemal); 
if solution then 

if internal then begin 
error + dxl *t - dx2*u - dxi; 
LineSegX + ABS (error) < TOL; 

end if; 
end if; 

end if; 
end if; 

end. { LineSegX } 
proc Vector ( node1 , node2 : tit ; var dx, dy, dz : real ); 
begin 

dx + x[node2] - x[nodel]; 
dy + y[node2] - y[nodel]; 
dz c @node21 - z[nodel]; 

end. { Vector } 
proc Solve (all, al2, a21, a22, bl, b2 : real; var t, u : real; oar solution, internal : logical ); 
{ solve an equation system of two equations and two unknowns: t,u } 
var 

detO,dett,detu :real 
begin 

detO+all*a22-a21*a12; 
solution + ABS (det0) > TOL, 
if solution rhen begin 

dett + bl*a22 - b2*a12; 
detu c all*b2-a21*bl; 
t c dett / det0, 
U c detu / de@ 
intemal+(t>Oandt<l)and(u>Oanducl); 

else 
internal + FALSE; 

end if; 
end. { Solve } 

Pseudo code Al: Determination of bar crossings. 
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APPENDIX B: NODAL SORTING 

In the second implementation of all steps presented in this paper the list of nodes is sorted according to their y, x, and 
z coordinates, respectively (JJ is assumed to be the vertical direction in buildings). That is, first the nodes are ordered 
according to their y coordinates. Nodes with the same y are then sorted according to their x coordinates. Finally, those 
with the same x and y are sorted in z. 

This type of sorting of nodes can be accomplished by replacing the comparison statement of a conventional sorting routine 
by a function that does the comparisons. Another interesting approach assigns a unique integer label for every node in 
such a way that the order of the labels is the same as the nodes. Psuedo code BI illustrates a procedure to compute this 
integer label. 

proc SortNodes ( var LabelList : array [l . . MAX-NODES] of int ); 
{ computes a code for each node and sort the nodes } 
var 

max,min : real; 
ix,iy,iz : int; 
factorx,factory,factorz : real; 
NewNumber : array [l . . MAX-NODES] of int; 
i, j,n,b : i?u; 

begin 
{ step 0 : Put in the NewNumber vector of the original position of the nodes } 

for i from 1 incr 1 to nnodes do 
NewNumbedi] + i; 

end for; 
{ step 1: compute maximum and minimum coordinates } 
xmin,xmax + x[l]; 
ymin,ymax + Y[ll; 
zmin,zmax + z[ 11; 
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for i from 2 incr I to nnodes do begin 
if xmin < x[i] then xmin + x[i]; 
if xmax > x[i] then xmax + x[i]; 
if ymin < y[i] then ymin + y[i]; 
if ymax > y[i] then ymax + y[i]; 
if xmin < Q] then xrnin + x[i]; 
if zrnax > z[i) then zmax + di]; 

end for; 
{ step 2 : compute factors that will reduce data to the range [0,1024] 1 
if ( xmax - xmin ) > TOL then 

factorx + 1024 / ( xmax - xmin ); 
else 

factorx +- 1024; 
end if; 
z~(~~-~n)>TOL &en 

factory + 1024 / ( ymax - ymin ); 
else 

factory + 1024, 
end if; 
$(xmax-zmin)>TOL then 

facton + 1024 / ( xmax - zmin ); 
else 

factor2 c 1024; 
end & 
{ step 3 : transform data to 10 bit integers and compute the labels ) 
for i from incr 1 to nnodes do begin 

ix + x[i] * factorx; 
iy + y[i] * factory; 
ix + x@] * factorz; 
LabelList[i] + ISHFL(iy,ZO) + ISHFL(ix,lO~ f iz; 

end for; 
{ step 4 : sort according to the labels 1 
execute QSortN( LabelList,NewNumber,x,y,z, 1,nnodes ); 
{ step 5 : update the bar incidence according to NewNumber } 
for b from 1 incr 1 to nbars do begin 

n-O; 
repeat 

ncn+ I; 
until ( NodeI&] = NewNumber[b] ); 
NodeI[b] + n; 

n+O; 
repeat 

n+-n+l; 
until ( NodeJ[b] = NewNumber@] ); 
NodeJfb] c n; 

end for; 
end. ( SortBars 1 

Pseudo code Bl: Nodal Sorting. 

The procedure QSortN(A,B,C,D,E,n l,n2) sorts the integer vector arrays (A and B) and the real vector arrays (C, D and E) 
as a function of the elements of A, between the lower and upper position limits, n 1 and n2. The sorting routine used here 
is an adaptation of the quick sort algorithm presented by Ho&by and Sloan [8] and Sedgewick [9]. 

Note that the integer coordinates (ix,iy,iz) computed for each node have a geometric interpretation. They represent a 
snap of al1 nodes in a grid that divides the bounding box of the structure into 1024 x 1024 x 1024 cells. The label list 
computed here is also useful to identify repeated nodes, as discussed in Sec. 4.5 of this paper. 


