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SUMMARY 
Based on the concept of the Laplacian matrix of a graph, this paper presents the SGPD (spectral graph 
pseudoperipheral and pseudodiameter) algorithm for finding a pseudoperipheral vertex or the end-points 
of a pseudodiameter in a graph. This algorithm is compared with the ones by Grimes et al. (1990), George 
and Liu (1979), and Gibbs et al. (1976). Numerical results from a collection of benchmark test problems 
show the effectiveness of the proposed algorithm. Moreover, it is shown that this algorithm can be 
efficiently used in conjunction with heuristic algorithms for ordering sparse matrix equations. Such 
heuristic algorithms, of course, must be the ones which use the pseudoperipheral vertex or 
pseudodiameter concepts 

1. INTRODUCTION 

After the publication of the landmark paper by Cuthill and McKee (1969),' graph theory 
became a standard approach to  reorder sparse matrix equations for reducing bandwidth, 
profile or wavefront. However, the success of most algorithms depends upon the choice of one 
or more starting vertices$. Peripheral vertices (i.e. vertices for which the eccentricity is equal 
to the diameter of the graph) have been shownzp3 to be good starting vertices for reordering 
algorithms. Since the location of peripheral vertices in graphs is computationally expensive, 4 9 5  

most reordering algorithms use pseudoperipheral vertices (PVs) instead, i.e. vertices with the 
highest possible eccentricity. Examples of such algorithms are Reverse Cuthill-McKee 
(RCM), Gibbs-Poole-Stockmeyer (GPS), * Gibbs-King (GK), 6*7 Snay, Sloan, Medeiros 

0 Recently, Paulino et al.25.26 have proposed a new class of spectral-based reordering algorithms, which d o  not depend 
on the choice of a starting vertex. After having finished the manuscript, the authors became aware of similar 
independent work (on spectral envelope reduction) by Barnard et al.44 Their report was completed in October 1993 
while our manuscript was submitted to the Int. j .  numer. methods eng. in March 1993. 
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et al., l o  Fenves and Law, l 1  Hoit and Wilson, l 2  and Livesley and Sabin. l 3  Moreover, several 
papers have been published about algorithms for finding one or more starting vertices for 
renumbering the vertices of a graph, e.g. Cheng (1973),14 Gibbs et al. (1976),2 George and Liu 
(1979),15 Pachl (1984), l6  Smyth (1985)’ l 7  Kaveh (1990), l 8  and Grimes et al. l9  

Other reordering algorithms that use the pseudoperipheral vertex concept are the refined 
quotient tree, the one-way dissection and the nested dissection in the sparse matrix package 
SPARSPAK.3 Note, however, that the use of the pseudoperipheral vertex concept is not 
restricted to reordering sparse matrix equations. This concept has applications in various fields 
such as geography,20 and mapping of finite element graphs onto processor meshes, (see 
Reference 21, page 1417). 

This paper presents the SGPD (spectral graph pseudoperipheral and pseudodiameter) 
algorithm for finding a pseudoperipheral vertex or the end-points of a pseudodiameter in a 
graph. A pseudoperipheral vertex is an approximately peripheral vertex, i.e. an heuristic 
approximation to a peripheral vertex. Similarly, pseudodiametrical vertices are approximately 
diametrical vertices, i.e. heuristic approximations to the end-points of a diameter. Note that 
pseudodiametrical vertices are pseudoperipheral ones, but two pseudoperipheral vertices are 
not necessarily pseudodiametrical ones. This distinction is made here because some reordering 
algorithms use one pseudoperipheral vertex (e.g. RCM3), others use the end-points of a 
pseudodiameter (e.g. GPS,2 GK,6 Sloan,’ and Medeiros et al. lo), while still others use more 
than two pseudoperipheral vertices (e.g. Hoit and Wilson, l 2  and Snay8). 

The remainder of this paper is organized as follows. Section 2 provides graph theoretical 
definitions, notations and a brief discussion about spectral techniques applied to graphs. 
Section 3 presents the SGPD algorithm. Section 4 outlines the main numerical aspects for the 
implementation of this algorithm. Section 5 presents some numerical examples using 
Everstine’s 22 collection of benchmark test problems. These examples include eccentricity 
verification and use of the SGPD in conjunction with some widely used graph reordering 
algorithms. The coupling of the SGPD with existing reordering algorithms yields new versions 
of these algorithms. The results obtained show the effectiveness of the proposed SGPD 
algorithm. Section 6 presents some considerations about computational efficiency. Finally, 
Section 7 concludes this work. 

2. GRAPHS: DEFINITIONS, NOTATIONS AND SPECTRAL TECHNIQUES 

The basic graph-theoretical background to this paper can be found in the excellent books by 
Harary *, 23 and CvetkoviC et al. 24 Further details about spectral techniques applied to graphs, 
and their association with the finite element method, can be found in References 25 and 26. 

Let G = (V,E) be an undirected and connected graph. V = (u l ,  UZ, ..., v,)  is a set of vertices 
with I V I =n;  E = [el, el, ..., em) is a set of edges with I E I = rn, where 1 . 1  denotes the 
cardinality of the set. Edges are unordered pairs of distinct vertices of V. A labelling of G is 
a function f: V -+ D, where D is a collection of domain labels. Here, D = (1 ,2 ,  ..., I V I ] is 
used. The vertices may also be referred by their labels in the labelled graph. 

Two vertices Ui and ui in G are adjacent if ( U i ,  ~ j )  E E. 
If W C V, the adjacent set of W, Adj(W), is 

Adj(W) = ( U i E  (V - W) I ( U i ,  Uj} E E, u ~ E  W, i # j }  

‘The more recent book by Buckley and H a r a r ~ , ~ ’  which is based on the classic book by Harary,” is also a good 
alternative reference in the field of graph theory. 
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If W = ( u ) ,  where u is a single vertex, the adjacent set of W is denoted by Adj(u) instead of 
Adj( (4). 

A section-graph G(W, E(W)) of G(V, E) is a graph for which W C V and 

E(W) = ( (  U i ,  u j )  EE 1 ~i E W, ~j E W] 

A clique is a section graph whose vertices are pair-wise-adjacent. 
The degree of the set W is defined as deg(W) = 1 Adj(W) 1. Again, if W is a single vertex, 

the degree of W is denoted by deg(u) instead of deg((u]). 
A path in a graph is an ordered set of vertices ( ~ 1 ,  UZ, ..., uP+l )  such that Uk and u k +  1 are 

adjacent vertices for k =  1, 2, . . . , p .  This path has length p ,  and it goes from u1 to up+l,  which 
are the endpoints of the path. 

The distance d(ui, uj) between two vertices in G is the length of the shortest path between 
them, i.e. d(ui, Uj) = min I path between V i  and V j  I. 

The eccentricity e(u )  of a given vertex u in G is the largest distance between u and any other 
vertex of G ,  i.e. 

e(u) = max( d(u, Vi) 1 Oi E V) 

The diameter 6(G) is the largest eccentricity of any vertex in the graph, i.e. 

6(G) = max(e(vi) I Ui E V] 

A peripheral vertex u is the one for which its eccentricity is equal to the diameter of the 

For a given vertex r c  V, the rooted level ~ t r u c t u r e ~ ” ~ ~  (this is a crucial concept to many 
graph, i.e. e(u) = 6(G). 

reordering algorithms) is the partitioning 

L ( r )  = (Lo(r), L1(r), ..., Le(r)(r)l 

such that: 
Lo@)= ( T I  

L1 ( r )  = Adj(Lo(r)) 
Li(r)=Adj(Lj-I(r)-Li-z(r)), i = 2 ,  ..., e(r )  

Note that uR‘L)o Lk(r) = V. 
The length of L ( r )  is e(r ) ,  and the width of L ( r )  is 

W ( T )  = max ( 1 Li ( r )  1, O < i < e(r ) )  

The association of graphs with matrices is of special importance in this paper. The adjacency 

The adjacency matrix A(G) = [aij] of a labelled graph G is defined as: 
(A), degree (D) and Laplacian (L) matrices are defined next. 

1 if (ui, Uj)EE 
otherwise aij = [ 

The degree matrix D(G) = [dij] is the diagonal matrix of vertex degrees: 

dij= [ p ( u i )  if i = j  
otherwise 

The Laplacian matrix L(G) = [I,] is defined as: 

L(G) = D(G) - A(G) 
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or, in component form, L(G) is given by 

if(u;, v,) E E  
l i j =  deg(u;) if i = j  io‘ otherwise 

According to Anderson and Morley,29 the name ‘Laplacian matrix’ comes from a discrete 
analogy with the Laplacian operator in numerical analysis (for further explanation, see 
Paulino et ~ 1 . ~ ’ ) .  The Laplacian matrix is symmetric, singular (each row or column sum up 
to zero), and positive-semi-definite. 29,30 It is employed here for the study of spectral properties 
of a graph. 

Let the eigenvalues of L(G) be arranged in ascending order of their values: 

O = X 1 < X z <  - . * < A n <  IVI 

For the first eigenpair, ( X I ,  y1) = (0, l),  where 1 is a unit vector, and the eigenvector y1 has 
been normalized. The special properties of the second eigenpair ( X 2 ,  y2) of L(G) have been 
studied by Fiedler. 3 0 ~ 3 1  He designates A2 as the algebraic connectivity of the graph G, which 
is related to the usual vertex and edge connectivities of G. If the graph has a simple pattern, 
analytical solutions are available for X 2 . 2 9 3 3 0  The components of y2 can be assigned to the 
vertices of G and can be considered as weights for them. Fiedler designates this weighting 
process as the characteristic valuation of G. It is determined uniquely up to a non-zero factor 
if X2 is a simple eigenvalue of L(G) (i.e. with multiplicity = 1). 

3. THE SPECTRAL GRAPH PESUDOPERIPHERAL AND PSEUDODIAMETER 
(SGPD) ALGORITHM 

The automatic algorithm SGPD is presented in Table I. 
A similar algorithm for finding a pseudoperipheral vertex in a graph has been proposed by 

Grimes et af .  l 9  and Kaveh. l 8  However, they have used a modified adjacency matrix B instead 
of the Laplacian matrix L. The matrix B is defined as 

(2) 

where I is the identity matrix (compare equation (2) with equation (1))t. Note that the 
eigenvalues of B are the ones for A shifted by unity, and the normalized eigenvectors of A and 
B are the same. Grimes et af .  l9 and KavehI8 have used the vertex corresponding to the smallest 
component in the dominant eigenvector of B(G) as a pseudoperipheral vertex. Straffin2’ has 
used the vertex corresponding to the largest component in the dominant eigenvector of B (G) 

B(G) = I(G) + A(G) 

Table I. Spectral graph pseudoperipheral and pseudodiameter (SGPD) algorithm 

1 .  Find the eigenvector y2 of the Laplacian matrix L(G). 
2. The vertex corresponding to the smallest (or largest) component in y2 is a pseudoperipheral vertex. 

The vertices corresponding to the smallest and largest components in y2 are the endpoints of a 
pseudodiameter. 

?Booth and Lipton’ call the above matrix B the ‘augmented adjacency matrix’. In their work, they also justify the 
use of this matrix instead of the standard adjacency matrix A.  
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@- 
Figure 1 .  Grimes et a/. l9 counterexample 

to determine the most accessible vertex in a graph network for an interesting application in 
geography. Note that the concept of most accessible vertex is opposed to the concept of 
pseudoperipheral vertex. 

Figure 1 shows the counterexample presented by Grimes el al. I' Their algorithm fails for 
this problem, while the SGPD furnishes the optimal solution. The vertices in the two cliques 
at the left- (UI, u2, u3) and right- (US, US, u10)  hand sides of Figure 1 are peripheral. The 
dominant eigenvector y I v I ( 1 V I = 10) of B corresponding to the largest eigenvalue 
(Xlvl=4-1284) is 

yTVi(B) = L0.1073, 0.1073, 0.1073, 0.1211, 0.0569, 0.0569, 0.1211, 
0.1073, 0.1073, 0.1073J (3) 

The smallest components of ylvl(B) correspond to the interior vertices u5 and u6, which are 
inconsistent with the objective of the algorithm of finding peripheral or nearly peripheral 
vertices. With respect to Figure 1 and the SGPD algorithm of Table I, the eigenvector y2 of 
L corresponding to the algebraic connectivity of the graph (i.e. the second smallest eigenvalue: 
X2 = 0.1442) is 

yT(L) = Ll.OOOO, 1.0000, 1.0000, 0.8558, 0.2997, -0.2997, -0.8558, 
-I.OOO, -l .OOOO, -1.OOOOJ (4) 

The smallest components of y2(L) correspond to the clique (US, u g ,  U I O )  at the right-hand side 
of Figure 1 ,  and the largest components of y2(L) correspond to the clique (UI, UZ, u3) at the 
left-hand side of Figure 1 .  In this case, the SGPD captures the essential structure of the graph 
and provides a peripheral vertex (e.g. US), or the end-points of a diameter (e.g. US and u l ) .  

For this specific example, it is interesting to relate Figure 1 and the eigenvectors in 
expressions (3) and (4). Note that the components of y lv~(B)  (equation 3) are symmetric, 
while the components of y2(L) (equation (4)) are skewsymmetric. For the SGPD algorithm 
(Table I), this last property is essential for obtaining the endpoints of a pseudodiameter (in this 
case, the actual diameter) of the graph in Figure 1 (it is worth mentioning that this last property 
is also related to Theorem 2.1 of Reference 32, p. 432). 

3. SOME NUMERICAL ASPECTS 

The numerical procedure which implements the SGPD algorithm (see Table I) should be able 
to handle large and generic graphs. Therefore, the main task in the SGPD is the solution of 
a large eigenproblem. The goal is the determination of the second eigenpair (XZ, y2) of the 
Laplacian matrix L. Here, the eigensolution is accomplished by a special version of the 
Subspace Iteration method, as reported by Paulino et aI.26 However, any other equivalent 
method can be used for the eigensolution, e.g. the Lanczos methods. 33p34 A brief description 
of the Subspace Iteration method, as implemented in this work, is presented next. 
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Since the interest here is in the eigenvector associated to the second eigenvalue of the 
Laplacian matrix L, the dimension suggested for the reduced subspace in the case of a 
connected graph is q = 4. 26 However, if necessary, the dimension of the reduced space (q) can 
be changed. So, the reduced eigenproblem is solved by QR iterations applied to matrices of 
order q. To solve the problem of singularity in the computation of the eigenvector 
corresponding to the null eigenvalue, the Laplacian matrix has been shifted according to 

L + L + a I  

where a is a shifting constant. Here, a =  1 has been adopted, such that all the eigenvalues 
become positive ( X j  2 1 -0; 1 < j < I V I ). This procedure does not change the normalized 
eigenvectors of the Laplacian matrix. 

The convergence criterion is defined in terms of the relative error between successive 
eigenvalue approximations: 

where the subscript denotes the j th  eigenvalue, the superscripts denote the iteration numbers, 
and TOL is a specified tolerance for both the Subspace iterations and the QR iterations in the 
reduced space. 25p26 Each eigenvector approximation is normalized with respect to the absolute 
value of its largest component. Here, the number of iterations for both the Subspace and the 
QR methods are unlimited in a numerical sense, i.e. the maximum number of iterations has 
been chosen to be a very large number. 

5 .  EXAMPLES 

Two types of numerical examples are presented next. Firstly, the eccentricity of the vertices 
obtained by the SGPD algorithm (Table I) is compared with the results of other heuristic 
algorithms and the actual diameter of the graph. Secondly, the vertices obtained by the SGPD 
are used as starting vertices of some widely used algorithms for bandwidth, profile and 
wavefront reduction. For the solution of the eigenproblem in the SGPD algorithm, 
TOL = 

All the examples that follow come from the collection of benchmark test problems provided 
by Everstine.22 The matrices range in order from 59 to 2680. Larger test problems, e.g. with 
matrices of order around 40,000 and 1,000,000 entries, can be found in the Harwell-Boeing 
sparse matrix collection. 35 In fact, Everstine’s test problems are also included in this collection. 

Everstine’s 22 collection of examples contains a set of 30 diversified problems representing 
finite element meshes, which have been widely used to test reordering algorithms. 9*22,26,36 A 
description of the test problems, and plots of the corresponding meshes, can be found in 
Everstine’s paper. 22 Here, the primary concern is connected graphs. Therefore, the SGPD 
algorithm will be tested using the test problems for which the associated nodal graph G is 
connected, i.e. 24 examples of Everstine’s collection. The other six examples are associated to 
non-connected graphs (A2 = 0) and are not treated here. Techniques for treating non-connected 
graphs, in the context of spectral methods, have been presented by Paulino et 

(Equation ( 5 ) )  has been adopted. 

5. I .  Eccentricity verification 

George and Liu” (here designated G&L), Gibbs et 
Table I1 lists some initial data about Everstine’s 22 test problems and the results obtained by 

(here designated GPSD in order to 
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differentiate it from the GPS reordering algorithm), and the proposed SGPD (Table I) 
algorithm. The initial data are I V 1, I E I, algebraic connectivities (X2), and the diameters of 
the associated graphs (6(G)). The results are the pseudoperipheral vertices (PVI ) and respective 
eccentricities obtained by G&L, and the pseudodiametrical vertices (PV1 and PV2) and 
respective eccentricities obtained by GPSD and SGPD. 

From Table 11, one observes that in some cases the pseudodiametrical vertices obtained by 
the GPSD and SGPD algorithms coincide, e.g. I V I = 66, 87, 245, 361, 503 and 592. In many 
cases, there are common pseudoperipheral vertices for G&L, GPSD and/or SGPD algorithms, 
e.g. I V I = 59, 66, 72, 87, 162, 209, etc. 

Moreover, Table I1 also shows that the eccentricities obtained by the SGPD are comparable 
to those of G&L and GPSD algorithms. In most cases, the eccentricities obtained by the G&L, 
GPSD and SGPD algorithms are equal to the diameter of the graph. In 18 occasions, the 
SGPD gives e(PV1) = 6(G); for the other six occasions, e(PV1) is very close to 6(G) - the 
maximum difference between these quantities is 2. In 21 occasions, the SGPD gives 
e(PV2) = 6(G); for the other three occasions, the difference between 6(G) and e(PV2) is 1. The 
pseudodiametrical vertices of the GPSD algorithm satisfy the condition e(PV1) = e(PV2). In 
the case of the SGPD, this condition is satisfied in 20 occasions; for the other four occasions, 
the difference between e(PV2) and e(PVl) is 2 in one occasion, and 1 in the other three 
occasions. 

5.2 Application to bandwidth, projile and wavefront reduction algorithms 

The definitions used here for matrix bandwidth B, profile P and root mean square (r.m.s.) 
wavefront Ware the same as those provided by Everstine22 or Paulino et al. 26 In this section, 
the vertices obtained by the SGPD algorithm are used as trial starting vertices for the RCM 
(Table III), GPS (Table IV) and GK (Table V) algorithms. 

Table 111. Reverse Cuthill-McKee (RCM) algorithm 

1. Find a pseudoperipheral vertex. 
2. Renumber this vertex as 1. 
3. For i = 1, ..., I V I find all the unnumbered vertices in Adj(oi) and 

label them in increasing order of degree. 
4. For i = 1, ..., 1 V j revert the numbering by setting ( i )  to (n - i + 1). 

~ _ _ _ _ _ _ _ _  ~~~ 

Table IV. Gibbs-Poole-Stockmeyer (GPS) a l g ~ r i t h r n ~ ~ ~ ’  

1. Find endpoints of a pseudodiameter. 
2. Minimize level width. 
3. Number the graph in a manner similar to the RCM algorithm. 

Table V. Gibbs-King (GK) algorithm2v6 

1. Find endpoints of a pseudodiameter. 
2. Minimize level width. 
3. Number the graph level by level in a manner analogous to King’s criteria.’ 
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The original version of the RCM algorithm uses the G&L” pseudoperipheral vertex. The 
original version of the GPS and GK algorithms uses the GPSD’ pseudodiametrical vertices. 
In the examples that follow, the original version of Step 1 of the RCM, GPS and GK 
algorithms (Tables 111, IV and V, respectively) is replaced by the SGPD algorithm. Note that 
coupling of the SGPD with the RCM, GPS and GK algorithms yields new versions of these 
reordering algorithms, which are designated here as RCM(SGPD), GPS(SGPD) and 
GK(SGPD), respectively. 

Table VI lists I V 1 , the initial values of B, P and W, the results for B, P and W using the 
original RCM, and the results for B, P and Wusing the RCM with the SGPD algorithm. These 
last results are obtained as the ones which give the smallest profiles when PV1 and PV2 (see 
1 Ith and 13th columns of Table 11) are used as starting vertices. The strategy of using two trial 
starting vertices is efficient because the simple and easily accessed data structure of the RCM 
(see Table 111) makes it an extremely fast reordering algorithm. 3,19,26 For the RCM algorithm, 
Table IV shows that, on the average, the SGPD is more effective than the G&L algorithm. 

Table VII lists I V I and the normalized values of B,  P and W for the RCM, GPS and GK 
algorithms. The relative values of B, P and W are the ratio of the results obtained with the 
reordering algorithm using the SGPD starting vertices and the ones obtained with the original 
reordering algorithm. The relative values of B,  P and W for the RCM algorithm can be 

Table VI. Bandwidth, profile and wavefront reduction using the RCM and the RCM(SGPD) algorithms 

1 2 3 4 5 6 7 8 9 10 

Initial RCM RCM(SGPD) 
Problem 

I V I  B P w B P w B P w 

59 
66 
72 
87 

162 
193 
209 
22 1 
245 
307 
310 
361 
419 
503 
592 
758 
869 

26 
45 
13 
64 

157 
63 

185 
188 
116 
64 
29 
51 

357 
453 
260 
20 1 
587 

464 
640 
244 

2336 
2806 
7953 
9712 

10131 
4179 
8132 
3006 
5445 

40145 
36417 
29397 
23871 
20397 

8.219 
11.008 
3.460 

29.378 
18.955 
43-841 
50.322 
50.393 
18.481 
27 * 360 
9.852 

15.379 
107-072 
78.603 
55.179 
37.946 
25.019 

9 
4 
8 

19 
17 
50 
34 
20 
58 
45 
16 
16 
34 
60 
43 
29 
44 

315 
223 
356 
710 

1641 
5153 
3804 
2367 
5587 
865 1 
3141 
5075 
8609 
4906 
1452 
8718 
9259 

878 520 26933 31.921 47 22385 
918 840 109273 131.142 58 23096 
992 514 263298 301-994 66 38128 

1005 852 122075 137.660 105 43106 
1007 987 26793 26.925 39 24703 
1242 937 111430 105.201 93 50241 
2680 2500 590543 234.418 70 105798 

5 * 469 
3.435 
5.231 
8-669 

10.532 
28-097 
19.185 
11.349 
25-901 
29.668 
10.363 
14.277 
21 a21 1 
31.759 
20.657 
13.018 
24.169 
26.610 
26.743 
40.125 
48.902 
25.427 
42-425 
40.632 

9 
4 
9 

22 
18 
57 
34 
16 
46 
42 
15 
16 
39 
60 
43 
29 
42 
38 
62 
64 

103 
39 
93 
70 

315 
223 
382 
699 

1612 
4974 
3812 
2164 
4472 
81 15 
3035 
5075 
8474 

14906 
11452 
8581 

16949 
22007 
22984 
37288 
42398 
24703 
5024 1 

10626 1 

5.469 
3.435 
5.627 
8.561 

10.378 
26,881 
19.216 
10.198 
19-815 
27.339 
9.958 

14.277 
21 a058 
31.759 
20.657 
12.818 
21.650 
25.923 
26.998 
39.088 
47.066 
25.427 
42.425 
40.739 
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Table VII. Relative bandwidth, profile and wavefront reduction using the RCM, GPS and GK 
algorithms 

1 2 3 4 5 6 7 8 9 10 

RCM(SGPD) GPS(SGPD) GK(SGPD) 

RCM GPS GK 
Problem 

IVI  B P w B P w B P w 
59 1.000 
66 1.OOO 
72 1.125 
87 1.158 

162 1 a059 
193 1.140 
209 1.OoO 
22 1 0.800 
245 0.793 
307 0.933 
3 10 0.937 
361 1 *000 
419 1.147 
503 1.OOO 
592 l*OOO 
758 l-OOO 
869 0.954 
878 0.808 
918 1.069 
992 0.970 

1005 0-981 
1007 1.000 
1242 1.000 
2680 1.000 

1 ,OoO 
1.OoO 
1-073 
0 * 984 
0.982 
0.965 
1 a002 
0.914 
0.800 
0.938 
0.966 
1 a 0 0 0  
0.984 
1.OOO 
1.OoO 
0.984 
0.880 
0.983 
0-995 
0.978 
0-984 
1.OoO 
1.OOO 
1-004 

1.OOO 
1 a 0 0 0  
1-076 
0.987 
0.985 
0.957 
1.002 
0 899 
0.765 
0.921 
0.961 
1 *000 
0.993 
1.OOO 
1.OOO 
0.985 
0.896 
0.974 
1.009 
0.974 
0.962 
1.000 
1 a 0 0 0  
1.003 

0.889 
1.OOO 
1.286 
0.850 
1.071 
1-302 
0.767 
0.895 
1.OOO 
1.023 
0.933 
1.000 
1.206 
1 a 0 0 0  
1.000 
1.000 
1 s o 0 0  
1 *ooo 
1-180 
1.OoO 
0.963 
0.914 
0.970 
1.014 

0.909 
1-OoO 
1.127 
0.952 
0.993 
1 a023 
0.772 
0-964 
1 *om 
0.966 
0-991 
1 a 0 0 0  
0.981 
1.OOO 
0.997 
0 999 
1-OOO 
0.994 
1.027 
1-000 
1.006 
0 996 
0-963 
1.016 

0.894 
1.OoO 
1.151 
0.942 
1 a002 
1 *027 
0-752 
0.959 
1.OoO 
0 * 947 
0.990 
1 .000 
0 * 992 
1.OoO 
0.993 
0.999 
1.000 
0.994 
1.047 
1.OoO 
1 a001 
0.993 
0.961 
1.017 

0.833 
1.OOO 
1.000 
0.810 
1.OOO 
1.196 
0.939 
0.857 
1.000 
1.125 
0-727 
1.OoO 
1.143 
0.986 
1.OOO 
1 *om 
1.OOO 
1.OOO 
1 - 185 
1.OOO 
0.824 
0.800 
0.815 
0.989 

0.917 
1.OoO 
1.217 
0.829 
1.004 
1.060 
0.767 
0.943 
1*OOO 
0.946 
0.993 
1.OOO 
1.002 
0.971 
1.OOO 
1,OoO 
1.OoO 
1.OoO 
1.075 
1.OOO 
0.971 
1 *003 
0.882 
1.048 

0.901 
1.000 
1-247 
0.809 
1 *012 
1 -065 
0.757 
0.938 
1.000 
0-935 
0.993 
1.000 
1.012 
0 * 966 
1.000 
1.000 
1.000 
1-000 
1 * 106 
1.000 
0.946 
1 a002 
0.875 
1.053 

Average 0.995 0.976 0.973 1-011 0.987 0.986 0.968 0-985 0.984 
WlL  816 1413 1314 8/7 1315 1216 1014 917 917 

obtained directly from Table VI (ratios of 8th and 5th, 9th and 6th, and 10th and 7th columns, 
respectively). 

Note that, for all the columns in Table VII, the number of occasions in which the reordering 
algorithms with the SGPD are better (ratio < 1-0) for B, P and l@ reduction, is larger than 
the number of occasions in which the original reordering algorithms are better (ratio > 1.0). 
These global quantitative results are shown in the last row of Table VII, where W (wins) means 
the number of occasions that the reordering algorithm with the SGPD (Step 1 in Tables 111-V) 
wins against the original algorithms, and t (losses) means the number of occasions that the 
reordering algorithms with the SGPD loses against the original algorithms.Obviously, this 
comparison excludes ties (ratio = 1 -0). 

From Table VII, the following conclusions can be obtained in a general sense. For the RCM 
reordering, the SGPD is more effective than the G&L algorithm; for the GPS reordering, the 
SGPD is slightly better than the GPSD algorithm; for the GK reordering, the SGPD is also 
slightly better than the GPSD algorithm. 
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6 .  SGPD ALGORITHM RUNNING TIME PERFORMANCE 

The numerical procedure which implements the SGPD algorithm (see Table I) has been 
presented in Section 4 and applied to numerical examples in Section 5 .  We have observed that 
the proposed eigensolution scheme makes the SGPD algorithm very time-consuming when 
compared to G&L3*” and GPSD’ algorithms. The following three strategies may significantly 
reduce the SGPD running time: (1) tuning of convergence parameters; (2) change of the 
eigensolver; (3) vectorization/parallelization of the SGPD algorithm. 

6.1. Tuning of convergence parameters 

The goal of the SGPD algorithm (Table I) is to determine the locations of the smallest and 
largest eigenvector components in yz(L) and not their actual values. Therefore, an accurate 
numerical solution of the eigenproblem may not be necessary. In many cases, a reasonable 
approximation to yz(L) may suffice for the purposes of the SGPD algorithm. Hence, the 
convergence criterion (equation ( 5 ) )  may be relaxed in favour of computational efficiency. This 
means that, in equation (9, the tolerance can be bigger than the default value TOL = 
adopted previously. 

To make the point stated above, a typical example is presented next. Consider the problem 
with I V I = 503 in Table 11. The convergence verification for this problem is illustrated by 
Table VIII, which shows some preliminary information and the convergence results. The 
preliminary information includes 1 V 1, 1 E 1, 6(G) and the initial values for B, P and W. The 
convergence results are: the adopted tolerance (TOL); the CPU time (seconds); XZ; PVI, 
e(PVI), and the RCM results for B, P and W using PVI as the starting vertex; and similarly, 
PVZ, e(PV2), and the RCM results for B, P and @using PVZ as the starting vertex. The goal 
here is to assess the quality of the results for eccentricity and for B, P and Was the tolerance 
is increased. Note that, in this case, the pseudodiametrical vertices obtained with TOL = 

Table VIII. Computational efficiency (HP apollo 
9000-720) 

Preliminary information 

IVI 1El W) P w B 

503 2762 23 36417 78-603 453 

RCM(SGPD) 

TOL Time XZ #Iter. PVI e(PV1) B P W PV2 e(PV2) B P w 
6) 

~ ~ 

96.23 0.1001 108 393 23 67 16667 36.114 12 23 60 14906 31.759 
15.09 0.1082 16 393 23 67 16667 36-114 12 23 60 14906 31.759 

lo-’ 9 .04 0.1480 9 393 23 67 16667 36.114 12 23 60 14906 31.759 
l o - ’  5.62 0.2023 5 274 16 65 18370 37.912 81 22 68 17657 38.415 
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or TOL = 
results. Moreover, from TOL = 
order of magnitude. 

do not change. However, even if they change, they may still be acceptable 
the SGPD running time is reduced by an to TOL = 

6.2. Change of the eigensolver 

The dominant computation in the SGPD algorithm (Table I) is the determination of the 
eigenvector associated to the second eigenvalue of the Laplacian matrix. In this paper, the 
eigenproblem has been solved by the subspace iteration method as presented by Paulino 
et al. ” It is worth investigating alternative eigensolvers (together with specific characteristics 
for improved computational efficiency) to be used by the SGPD algorithm. Promising 
candidates are Lanczos-type methods. 33,34,38-43 

A comparison between Lanczos and subspace iteration methods has been presented by 
Nour-Omid et al.33 and Sehmi (Reference 34, p. 68). Simon3* and Hsieh et have used 
the Lanczos method to determine y2 (L) in recursive domain partitioning algorithms (bisection- 
type) for parallel finite element analysis. Recently, Barnard and Simon4’ have reported an 
improved multilevel implementation of this algorithm that is an order of magnitude faster than 
the one reported in Reference 38. Hendrickson and have used additional 
eigenvectors of the Laplacian matrix, besides y2(L), to obtain higher-order partitions 
(quadrisection-, octasection-type algorithms). They have also developed an efficient multilevel 
algorithm for partitioning graphs.43 However, investigation of these algorithms (Lanczos- 
type),33334*38-43 in the context of the present SGPD algorithm (see Table I), is a subject for 
future research. 

6.3. Vectorizationl parallelization 

The numerically intensive part of the SGPD algorithm (Table I) involves standard vector 
operations using floating-point arithmetic (this is in contrast to other algorithms based on the 
level structure concept and using integer arithmetic). Therefore, this algorithm is well suited 
for computers with vector processors. Moreover, the algebraic nature of the algorithm favours 
its implementation in a parallel computing environment. For example, at Cornell Theory 
Center, we have available a computing environment that includes vector-scalar super- 
computing resources and parallel systems such as the IBM ES/9000-900. The investigation of 
the SGPD as well as other numerical algorithms in advanced computing environments is also 
a subject for future research. 

7. CONCLUSIONS 

A new algorithm (SGPD) has been proposed for finding a pseudoperipheral vertex or the end- 
points of a pseudodiameter in a graph. Based on comparative studies, this algorithm is, in 
general, more effective than the ones presented by Grimes et al., l9 George and Liu (G&L), l5 
and Gibbs et al. (GPSD).’ 
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