
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 37, 151 1-1530 (1994) 

NODE AND ELEMENT RESEQUENCING USING THE 

GENERAL CONCEPTS AND ALGORITHM 
LAPLACIAN OF A FINITE ELEMENT GRAPH: PART I- 

GLAUCIO H. PAULINO. 

School of Civil and Environmental Engineering, Cornell University, Ithaca, N Y, 14853, U.S.A. 

IVAN F. M. MENEZES' 

Department of Civil Engineering, PUC-Rio, Rua MarquCs de Sdo Vicente, 225, 22453, Rio de Janeiro, R.J., Brazil 

MARCEL0 GATTASS' 

Department of Computer Science, PUC-Rio, Rua MarquQs de Sdo Vicente, 225, 22453, Rio de Janeiro, R.J., Brazil 

SUBRATA MUKHERJEE' 

Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, N Y, 14853. U.S.A. 

SUMMARY 

A Finite Element Graph (FEG) is defined here as a nodal graph (G), a dual graph (G*) ,  or a communication 
graph (G') associated with a generic finite element mesh. The Laplacian matrix ((L(G),L(G*) or L(G')), used 
for the study of spectral properties of an FEG, is constructed from usual vertex and edge connectivities of 
a graph. An automatic algorithm, based on spectral properties of an FEG (G, G* or G O ) ,  is proposed to 
reorder the nodes and/or elements of the associated finite element mesh. The new algorithm is called Spectral 
FEG Resequencing (SFR). This algorithm uses global information in the graph, it does not depend on 
a pseudoperipheral vertex in the resequencing process, and it does not use any kind of level structure of the 
graph. Moreover, the SFR algorithm is of special advantage in computing environments with vector and 
parallel processing capabilities. 

Nodes or elements in the mesh can be reordered depending on the use of an adequate graph representa- 
tion associated with the mesh. If G is used, then the nodes in the mesh are properly reordered for achieving 
profile and wavefront reduction of the finite element stiffness matrix. If either G* or G' is used, then the 
elements in the mesh are suitably reordered for a finite element frontal solver. A unified approach involving 
FEGs and finite element concepts is presented. Conclusions are inferred and possible extensions of this 
research are pointed out. 

In Part I1 of this work,' the computational implementation of the SFR algorithm is described and several 
numerical examples are presented. The examples emphasize important theoretical, numerical and practical 
aspects of the new resequencing method. 

1. INTRODUCTION 

Heuristic node and element resequencing techniques in the Finite Element Method (FEM) have 
been a subject of research for a long time. Recognized books on finite elements, such as Desai and 
Abel,* Irons and Ahmad3, Bathe: Hughes' and Zienkiewicz and Taylor,6 observe the import- 
ance of this subject. Duff' has surveyed sparse matrix research until 1976. Everstine' has 
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presented a review of the resequencing algorithms published until 1978. Chinn et aL9 has written 
a survey paper emphasizing the bandwidth problem for graphs and matrices, and covering the 
literature until 1981. George” has reviewed resequencing of nodes and elements in the context of 
automatic mesh generation and finite elements. 

Some recent papers have been published on resequencing techniques in the FEM. Shephard 
et af.’ have presented a node queue algorithm which directly uses the mesh data structure (finite 
quadtree and finite octree mesh generators) to reorder nodes or elements in the mesh. The 
advantage of using the mesh data structure instead of the standard connectivity tables to obtain 
adjacency information is a substantial reduction of storage requirements. Sloan” has presented 
an algorithm and a FORTRAN program for profile and wavefront reduction of sparse symmetric 
matrices. Livesley and Sabin’’ have studied numbering procedures to reduce the bandwidth of 
grids derived from 2-D and 3-D finite element meshes of rectangular form. They have reported 
that the algorithm by Gibbs et ~ 1 . ’ ~  performs badly on some of these grids, particularly the ones 
that are approximately cubic in form. They have also presented a new algorithm which generates 
near-optimal numberings for this class of grids. Kaveh’ has presented a connectivity co-ordinate 
system for node and element ordering. In Kaveh’s paper, four algorithms are presented for 
selecting a good starting node for nodal numbering of a structure. J.-C. L u o ’ ~  has presented an 
algorithm for reducing bandwidth and profile of a symmetric and sparse matrix. The idea of Luo’s 
algorithm is to decompose a graph associated with the matrix into a group of isolated sets by 
general level structures. These are used to construct a maximal-depth partitioned structure, each 
level of which has as equal width as possible. Compared to Gibbs et ~ 1 . ’ ~  algorithm, Luo’s 
algorithm is more complicated, and, in general, it produces smaller bandwidths but bigger 
profiles than the former algorithm. Koo and Lee” have developed a profile reduction algorithm 
based on the frontal ordering scheme and graph theory. They have developed a two-step 
approach where the finite elements are ordered first by the Cuthill and McKee” algorithm and 
then the nodes are reordered based on the concept of frontal ordering and the adjacency measure 
of graph theory. An earlier version of the two-step approach for finite element ordering has been 
presented by Fenves and Law.’’ Medeiros ef have just published an algorithm for profile 
and wavefront reduction which is based on some ideas of the Gibbs,” King” and Sloan” 
methods. They have shown that, in the numerical tests, their algorithm has a better performance 
than the reverse C~thill-Mckee’~ Gibb~-King’~ and Sloan’’ algorithms.* 

In general, the FEM leads to a linear system of coupled algebraic equations of the form 

AX = b (1) 

where A = [ a i j l N x N  is a known sparse symmetric positive-definite matrix of order N ,  b is 
a known N-vector and the unknown N-vector x is sought. The system of equations (1) can be 
solved by Gauss elimination (see, for example, References 3,4). To take advantage of the sparsity 
of the coefficient matrix A requires that the equations be organized in a special order, which 
depends on the solution scheme (bandwidth, profile or frontal) being utilized. The bandwidth and 
the profile methods construct the coefficient matrix explicitly, while the frontal methods alter- 
nates the assembly and elimination processes-the coefficient matrix is never assembled expli- 
citly. In terms of the FEM, efficiency of a bandwidth or profile solver depends upon the ordering of 
the nodes, while efficiency of a frontal solver depends upon the ordering of the elements 
(equations are processed by element numbering). Therefore, in this paper, bandwidth and profile 
methods are classified as node-based ones, while a frontal method is classified as an elemenr-based 
one. 

*The last three references relate to the computational implementation of the respective algorithms 
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Nodal resequencing algorithms are designed to produce a permutation matrix P = [ p i j ] N  N 

such that each row or column has only one non-null component which is equal to unity. The 
identity matrix (I) is the simplest permutation matrix. Moreover PT = P-’. The problem of 
reordering the system of linear equations (1) can be viewed as determining a permutation matrix 
that produces a convenient ordering of the system matrix A by the following transformation: 

(PAPT) (Px) = Pb (2) 

where the orthogonality of the matrix P has been utilized. Since it is impractical to verify each of 
the N !  possible sequences associated with a given system matrix A (equation (2)), fast heuristic 
nodal resequencing algorithms for reducing bandwidth, profile or wavefront have been de- 
veloped. Moreover, it has been shown that the general nature of optimal resequencing algorithms 
is NP  c ~ m p l e t e . ~ ~ - ~ ~  

There is an intrinsic correspondence between a finite element stiffness matrix and the topology 
of the mesh. These topological properties can be explored by associating graphs with meshes and 
matrices.23* 2 8 *  29 P ermutation of rows and columns in a matrix corresponds to relabelling the 
vertices of the associated graph or to resequencing the nodes of the mesh. This approach is 
suitable for studying nodal resequencing techniques. 

Association of graphs with finite elements is also useful to provide an adequate element 
ordering for a frontal solution A convenient approach consists of associating the 
elements in the original mesh to the vertices of the graph. Also, the connectivity among adjacent 
elements of the original mesh (common nodes, sides or faces among elements) is used to determine 
the edges of the graph. Relabelling the vertices of this graph is equivalent to resequencing the 
elements of the associated mesh. This approach is suitable for studying element resequencing 
techniques. In this case, the ordering of the nodal variables may be irrelevant. 

In this paper, the terms nodes and elements relate to finite element meshes, and the terms 
vertices and edges relate to graphs. This terminology has been motivated in the previous 
paragraphs and it will be used from now on. 

Consider a Finite Element Graph (FEG), i.e. a graph associated with a finite element mesh. 
A resequencing method, based on spectral properties of an FEG, is proposed here to renumber 
nodes and/or elements of a mesh. Moreover, numerical techniques for treating non-connected 
FEGs are also presented. The proposed method can handle large and generic (arbitrary) finite 
element meshes, i.e. meshes without any geometrical or topological regularity, with 1-D, 2-D 
and/or 3-D finite elements, with finite elements of various shapes or different interpolation orders. 

The remaining sections of this paper are organized as follows. First, some graph-theoretical 
background is given in order to establish the basic concepts and definitions to the proposed 
method. Second, a preliminary discussion about the proposed spectral resequencing method is 
presented. Next, a connection between FEGs and finite element methodology is presented. The 
spectral resequencing method is then described and its relevant aspects are discussed. Afterwards, 
a special version of the subspace iteration method is presented. Finally, conclusions are inferred 
and recommendations for future research are pointed out. 

2. GRAPH-THEORETICAL BACKGROUND 

The basic graph theory background to this paper can be found in the classic book by Harary3’ or 
the more recent one by Buckley and Harary.” For further details about spectral techniques 
applied to graph theory, see the book by Cvetkovii: et Only the concepts and definitions of 
prime relevance to this paper are mentioned here. 
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Let G = (V ,  E) be an unidirected graph. V = {uI,  u 2 , .  . . , u,} is a set of uertices with I VI = n, 
where I * I  denotes the cardinality of the set. E = {el, e2, . . . , em} is a set of edges with [El  = m, and 
edges are unordered pairs of distinct vertices of V. 

Given a graph G, properly labelled, there are several matrices which can be associated to G. Of 
special interest here are the adjacency (A), degree (D), vertex-edge incidence (M), and Laplacian 
(L) matrices. In particular, the spectral properties of the Laplacian matrix will be examined in 
detail. 

The adjacency matrix A(G) = [aij]lvlxlvl of a labelled graph G is defined as 

1 
0 otherwise 

if ui is adjacent to uj, i.e. {ui, u j }  E E 
aij = { 

The degree matrix D(G) = [dij]lvl  l Y l  is the diagonal matrix of vertex degrees 

{ p(ui) if i = j 
dij = 

otherwise 

(3) 

(4) 

in which deg(ui) is the number of edges incident with ui or, equivalently, 

deg(ui) = IAdj(vi)l ( 5 )  

where Adj(ui) is the set of vertices adjacent to ui. 

The Laplacian matrix L(G) = [l i j]plxlvl  is defined as 

L(G) = D(G) - A(G) (6) 
therefore, the components of L(G) are given by 

- 1 if ui is adjacent to uj, i.e. {u i ,  u j }  E E 

I i j  = deg(ui) if i = j  (7) 
0 otherwise 

[ 1 if e j  points toward ui 

i 
The uertex-edge incidence matrix M(G) = [rnij]lvlxlEl is defined as follows. First, orient the 

edges of G arbitrarily. Then 

m . . =  -1 if e j  points away from ui 

0 otherwise '* i 
Note that two distinct rows of M will have non-zero entries in the same column if and only if an 
edge joins the corresponding vertices. These entries will be 1 and - 1. It can be shown that 

L = M M ~  (9) 
Also, one can easily verify that L is independent of the orientation of the edges in M. 

The quadratic form associated with L can be obtained as 

(10) 2 X ~ L X  = xTMIWTx = ( M T ~ ) T  (M*x) = 1 (xi - x j )  

( !+:U,JEE 
b J 6 1 V I  

where xi  denotes the ith vector component. From equation (lo), it follows that L is positive 
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semi-definite. In summary, the Laplacian matrix L(G) is symmetric, singular (each of the row or 
column sums is zero), positive semi-definite, and it determines G up to isomorphism.' 

The Laplacian matrix, associated with a graph G (  V, E), has interesting properties that are 
worth mentioning (for details, see References 34-37). 

(a) If A is an eigenvalue of L(G) then 

0 < 1 < I V I  (1 1) 

(b) The multiplicity of the eigenvalue A = 0 equals the number of connected components of G. 
(c) If ,I = I VI is an eigenvalue of L(G) then G is connected. 
(d) If G is connected, then A, > 0, where A, is the second smallest eigenvalue. 
(e) A, has an upper bound given by 

(f) Let p(L(G)) denote the spectral radius of the Laplacian matrix L(G). Then 

P ( L ( G ) )  < max(deg(vi) + deg(uj)) 
i.j 

considering all pairs of vertices { u i ,  v j }  joined by an edge. 

(g) Let G be a connected graph. Then 

p(L(G)) < 2 max(deg(oi)), 1 < i < 1 VI (14) 

Consider an undirected and connected graph G. Let the eigenvalues of L(G) be ordered such 

i 

that 

O = & < A , <  . * *  <A" (1 5 )  

The smallest eigenvalue is ,Il = 0 and the associated eigenvector y1 has all its normalized 
components equal to 1. The special properties of the second smallest eigenvalue A2 and its 
corresponding eigenvector y2 have been studied by Fiedler.349 36 He designates 1, as the algebraic 
connectivity of the graph G which is related to usual vertex and edge connectivities of G. If the 
graph has a simple pattern, then there are analytical solutions for A2.34* 37 For example, A, = 1 for 
a star graph, 1, = 2 for a D-dimensional cube, and A2 = 2[1 - cos(2n/l Vl)] for a circuit graph. 

The components of y, can be assigned to the vertices of G and can be considered as weights for 
them. Fiedler36 designates this weighting process as the characteristic valuation of G. It is 
determined uniquely up to a non-zero factor if A, is a simple eigenvalue of L(G), i.e. with 
multiplicity equal to I .  

3. SPECTRAL VERSUS PREVIOUS RESEQUENCING METHODS 

In this paper, the method for resequencing nodes or elements is based on spectral properties of the 
Laplacian matrix of an appropriate FEG associated with a given finite element mesh. The name 
'Laplacian matrix' comes from a discrete analogy with the Laplacian operator in numerical 

Two graphs GI = (V1, E l )  and GZ = (V,, E2) are isomorphic if there is a one-to-one functionf: VI + V, that preserves 
adjacency. i.e.. E2 = { { j ( u i ) . J ( u j ) } l {  u i . v j } ~ E l }  
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analysis.” Consider, for example, the standard discrete five-point finite difference approximation 
for the Laplace equation on a rectangular grid subjected to Neumann boundary conditions; in 
this case the discrete Laplacian and the Laplacian matrices coincide. For further details on finite 
differences, see Forsythe and W a ~ o w , ~ ’  Section 20.7, or Lapidus and Pinder,39 Section 5.2.1 

The Spectral FEG Resequencing (SFR) method has some features that distinguish it from 
previous algorithms and are worth mentioning: (1) it uses global information in the graph; (2) it 
does not use the pseudoperipheral vertex concept; (3) it does not use any kind of level structure of 
the graph; (4) it is based on an eigenanalysis for determining the second eigenpair of the Laplacian 
matrix; and (5) its implementation is simple and based on a well-studied algebraic theory. 

Previous reordering algorithms such as CMt (Cuthill-McKee),” RCM (Reverse Cuthill- 
M~kee) ,~’  Levy,41 GPS (Gibbs-Poole-St~ckmeyer),’~ GK (Gibbs-King),”. 2 2  S n a ~ , ~ ~  Sloan 
and S10an~~ .  l 2  and Medeiros et a1.” make use of local information in the graph, 
namely information of neighbours of a vertex to compute the new ordering scheme. Conceptually, 
the SFR method differs from previous resequencing approaches in the sense that it finds a new 
ordering scheme based on global properties of the graph. Two other resequencing algorithms 
based on a global approach, but still using local information in the graph, have been proposed by 
A r m ~ t r o n g . ~ ~ .  46 He has used simulated annealing techniques to obtain the minimal or the 
near-minimal matrix bandwidth45 or matrix profile and ~ a v e f r o n t . ~ ~  

Most reordering algorithms, based on graph-theoretical methods, use a pseudo-peripheral 
vertex as an appropriate starting vertex for numbering the graph (RCM,023 GPS,I4 GK,”. 2 2  

etc.). Since the location of peripheral vertices in graphs is computationally expensive,47* 48 several 
papers have been specifically written on efficient algorithms for finding pseudo-peripheral 
vertices, e.g. George and L ~ u , ~ ~  Pachl” and Grimes et aL51 Other reordering algorithms that use 
the pseudo-peripheral vertex concept are the refined quotient tree, the one-way dissection, and 
the nested dissection in the sparse matrix package SPARSPAK.23 The SFR method does not 
need the step for finding a pseudoperipheral vertex in the graph. Moreover, although the SFR 
does not use the pseudoperipheral vertex, it naturally provides a pseudoperipheral vertex, which 
can be obtained as the vertex corresponding to the smallest (or largest) component in y2. There is 
no extra computation required to obtain this information! 

Most reordering algorithms, based on graph-theoretical methods, use the concept of a level 
structure of the graph, e.g. References 12-17, 19-23,4144 and 52 among many others. The SFR 
method does not use any kind of level structure of the graph. 

The major computational effort in the SFR method is the eigenanalysis where the second 
eigenvector (y2 )  of the Laplacian matrix has to be determined. In this paper, the eigenanalysis is 
performed by the subspace iteration method, but any equivalent algorithm can be used for this 
purpose. Therefore, most of the computation in the SFR is based upon standard matrix 
operations using floating point arithmetic. This computational aspect distinguishes the SFR from 
previous reordering algorithms based on integer arithmetic such as GPS,14 GK,2’* 2 2  S 1 0 a n ~ ~ .  l 2  

and Medeiros et aL2’ 
The computational implementation of the SFR method is very simple and it is based on 

a well-studied algebraic theory.33* 34s 37 Once a reliable eigensolver is available, the implementa- 
tion procedure is straightforward. Moreover, nowadays, a finite element software usually has an 
eigensolver available as part of the finite element library. Also, there exist software libraries such 

*The abbreviations used in this paper have been named by the authors and may differ from other references. However, we 
have tried to use standard abbreviations from the technical literature 
‘Note that this implementation of the RCM algorithm [23] differes from the one cited in the previous paragraph [40] 
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as IMSL (formerly International Mathematical and Statistical Libraries) and International 
Business Machines (IBM) Engineering and Scientific Subroutine Library (ESSL), which have 
eigensystem analysis subroutines available. Some numerical aspects and implementation issues 
related to the SFR will be discussed later in this paper. 

4. FINITE ELEMENT MESH AND FINITE ELEMENT GRAPHS 

The purpose of this section is to provide a practical and unified approach involving a finite 
element mesh, its associated graphs (FEGs), and corresponding matrices. The present approach 
has a much broader range of applications other than using it in resequencing methods, e.g. this 
approach can be advantageously used in conjunction with substructuring methods.28 Resequenc- 
ing of finite element meshes (nodes and/or elements) is one among many fields where graph theory 
has found several applications.’’. 53- 56 

As mentioned in the introduction of this paper, the terms nodes and elements relate to a finite 
element mesh, and the terms vertices and edges relate to a graph, more specifically, an FEG. 
A finite element mesh is a collection of nodes and elements where adjacent elements are connected 
by common boundaries or nodes (note that a finite element may have nodes at the corners, along 
the sides, on the faces, or within the element itself). On the other hand, an FEG is the math- 
ematical object that describes the connectivity among nodes (G) or elements (either G *  or G’) in 
a generic finite element mesh. 

Consider, for example, the finite element mesh of Figure l(a) with three-noded triangular 
elements (T3), four-noded quadrilateral elements (Q4), and no boundary conditions. The nodal 
connectivity of the mesh in Figure l(a) can be represented by the nodal graph G shown in 
Figure l(b). Consider now a labelling of the nodal graph G defined as the function$ V ( G )  --* S ,  
where S is some domain of labels. Assume that S = { 1,2, . . . , I V I }  and denote the graph labelled 
by S as G S  = ( Vs ,  E ) .  The correspondence between the nodal graph G S  and an associated matrix 
can be established by a symmetric matrix K of order I VI with non-null diagonal components 
kii (no sum). The ordered and undirected graph of K is denoted by G“ = (V”, EK). In this case 
{ {vi, u j }  E E” 0 k i j  = kj i  # 0, i # j } ,  where ui denotes the vertex of V” with label i. This simple 
discussion implies that the configuration of the matrix K is topologically similar to the configura- 
tion of the finite element stiffness matrix. Therefore, each vertex of the nodal graph in Figure l(b) 
is associated with a node in the finite element mesh of Figure l(a) and with a row, column, 
equation or unknown of the system matrix. Each edge of the graph is associated with the 
conventional finite element connectivity table and with a non-zero entry in the matrix K, 
excluding the diagonal entries kii (no sum), which are assumed to be non-zero. 

The representation of element connectivity in a finite element mesh can also be expressed in 
terms of graphs. Two additional element graphs, associated with the original finite element mesh, 
will be presented here: the dual graph G* and the communication graph G’. The dual graph 
representation of the connectivity among finite elements has been used by Bykat” and Fenves 
and Lawlg for element reordering. Both the dual and the communication graphs have been used 
by Venkatakrishnan et aL5’ in a parallel computing environment for domain decomposition of 
large 2-D meshes with triangular elements. 

The geometric aspect of the dual graph is employed here for representing thefinite element 
connecticity graph of a generic mesh. The vertices in the dual graph G *  represent finite elements in 
the original mesh. The edges in the dual graph represent adjacent finite elements that share 
a common boundary in the original mesh. In this definition, a finite element of dimension 
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(a) Finite element me& 

(T3 & Q4 elements) 

(b) NoddgraphG 

(4 W g r a p h C  (d) Communication graph G' 

Figure 1. Finite element mesh and associated FEGs 

D(D = 1,2  or 3) has boundaries of dimension (D - 1). Note that, whenever applicable, bound- 
aries of dimension less than (D - 1) are not considered. Application of the above definition to the 
finite element mesh of Figure l(a) leads to the dual graph G* of Figure l(c). Note that for the 2-D 
continuum discretized by the finite element mesh of Figure l(a), the planar elements are bounded 
and interconnected by their 1-D boundary segments. 

The main advantage of the dual graph is its considerable economy in terms of data storage 
because the number of edges in the connectivity graph is generally reduced (cf. Figures l(b) and 
l(c)). When higher-order elements are used, the number of edges in G increases combinatorially 
with the number of nodes per element, while the number of edges in G* remains unchanged for 
a given mesh discretization. For example, in Figure l(a) suppose that instead of T3 and 44, the 
elements are changed to T6 (six-noded triangular) and 48 (eight-noded quadrilateral), respect- 
ively. In this case, the number of edges in G (Figure l(b)) increases substantially, while the number 
of edges in G* (Figure l(c)) remains unchanged. A disadvantage of the dual graph approach for 
generic finite element meshes is that in some cases the connectivity of the finite elements cannot be 
completely represented. One case where this occurs is when D-dimensional finite elements are 
connected through boundaries of dimensions less than (D - 1). Another case is when adjacent 
finite elements do not have the same geometric dimensions, e.g. a mesh with plane elements 
connected by beam elements. In these cases, non-connected dual graphs may be generated and 
each connected component may be treated separately. 

Another convenient way of representing the element4ement connectivity relationship in 
a generic finite element mesh is by means of a communication graph. The geometric aspect of the 
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communication graph is also employed here as another tool to represent finite element connect- 
ivity. The vertices in the communication graph G' represent finite elements in the original mesh 
(as before, in G*). The edges in the communication graph represent adjacent finite elements that 
share a common node in the original mesh. Application of this definition to the finite element 
mesh of Figure l(a) leads to the communication graph G' of Figure l(d). Note that the 
communication graph consists of cliques corresponding to the degree of each vertex. The 
communication graph overcomes the above-mentioned problems with the dual graph. However, 
the communication graph is dense (cf. Figures l(c) and l(d)) and makes the computation more 
intensive. 

It is possible to define an element graph with intermediate requirements between G* and G'. 
However, in the authors' point of view, the FEGs G* and G' are the most natural graphs for 
describing element connectivity in a generic finite element mesh. To the best of the authors' 
knowledge, the communication graph has not been explored yet in resequencing algorithms. In 
some situations, e.g. to avoid non-connected components in the graph or to improve the results, it 
may be advantageous to use the communication graph instead of the dual graph. 

5. THE SPECTRAL FEG RESEQUENCING METHOD 

Consider a consistent finite element mesh,5g i.e. a mesh in which there is no inconsistency in the 
geometrical or topological model (e.g. repeated nodes or overlapped elements). Starting from 
a given consistent and generic finite element mesh, Figure 2 presents a diagram that summarizes 
the proposed spectral resequencing method. An important feature of this method is that ordering 
the nodal variables and ordering the finite elements can be separated into two completely 
independent tasks (Figure 2). Previous algorithms in the literature (e.g. References 17 and 19) do 
not reach this level of independence. 

The method in Figure 2 enables one to perform a one-step or a two-step resequencing process. 
For simplicity, only the one-step resequencing process is illustrated by Figure 2. For a one-step 
process, there are two choices: (1) direct node resequencing (using G); or (2) direct element 
resequencing (using G* or GO). For a two-step process, there are three choices: (1) direct node 

1 Consistent Finite Element Mesh I 

Node Reordering Element Reordering 

Irl + + 
I Laolacian Matrix L ( . ) 

I Second Eigenvalue and Eigenvector I 

1  ode or Element Permutation Veaor I 
Figure 2. The spectral FEG resequencing method 
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resequencing-direct element resequencing; (2) direct node resequencing-indirect element re- 
sequencing; and (3) direct element resequencing-indirect node resequencing. Here the direct 
resequencing schemes are performed by the proposed SFR method (see Figure 2). The direct node 
resequencing-indirect element resequencing and the direct element resequencing are popular 
schemes used in conjunction with frontal solution algorithms. Comparing these two approaches, 
Duff et have concluded that 'both approaches are practical and neither is consistently 
superior to the other'. Indirect element resequencing can be performed by numbering the 
elements in ascending order of their lowest numbered nodes.43* 44* 60 .  61 Analogously, indirect 
node resequencing can be performed by numbering the nodes in ascending order of their lowest 
n um bered elements. 

As shown in Figure 2, the resequencing method is based on spectral properties of the Laplacian 
matrix (L) of an FEG (C, G* or G') associated with a given finite element mesh. Note that the 
problem of resequencing the nodes or elements of a mesh is always converted to the problem of 
resequencing the vertices of the associated FEG. The method is based on the eigenvector of 
L corresponding to the algebraic connectivity of the graph ( A 2 ) ,  i.e. the second eigenvector (y2). 
The components of this eigenvector provide a characteristic valuation of the vertices of the finite 
element graph. Differences in the values of the components of y2 provide topological distance 
information about the vertices of the graph. Therefore, the components of y2 can be taken as 
vertex-weights which can be used to reorder the vertices of the graph. The SFR algorithm, for 
connected graphs, is given in Table I.  The case of non-connected graphs is considered in the next 
sub-section. 

In the numerical solution of an eigenproblem, the eigenvectors are determined to within an 
arbitrary scale factor. A change in the sign of this scale factor leads to a reverse vertex ordering for 
the FEG. Since the SFR algorithm is a global one, the selection of the sign of this scale factor 
should not significantly affect the results obtained (e.g. profile). Here, the sign of this scale factor is 
arbitrarily selected. 

With the rapid advance of computer technology, the generation of finite element meshes using 
interactive computer graphics is becoming a common practice.28* 29 Paulino28 has successfully 
developed a separate nodal reordering module in a preprocessor of space frames. Paulino and 
G a t t a ~ s ~ ~  have generalized this idea for generic finite element meshes. Therefore, the scheme 
proposed in Figure 2 and Table I could be advantageously implemented as a separated module in 
a finite element mesh generator or preprocessor. 

S. I .  Treatment of non-connected graphs 

Three techniques for treating non-connected graphs are presented here. The first one is 
a common technique to treat non-connected graphs in resequencing algorithms. The second one 
is implicit in the SFR method. The last one is a possible sound alternative. 

Table 1. Spectral FEG Resequencing Algorithm 
~ ~~~ 

1. Construct a finite element graph ( G ,  G* or G')  corresponding to a given finire 

2 .  Construct the respective Laplacian Matr ix  (L(G), L(G*) or L(G' )) associated 

3. Compute the second eigenvalue (L2) of L( . )  and its corresponding eigenvector 

4. Reorder the vertices in ascending order of the vector components in  y2 

element mesh 

with the selected finite element graph 

( Y 2 )  
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The first alternative to treat non-connected graphs is given in Table 11. It consists of adding an 
extra step at the end of Table I. Whenever the FEG associated to the problem is disconnected, the 
algorithm recognizes this case and repeats all the previous steps for each connected component of 
the FEG. This is a common technique to treat non-connected components in a graph. For 
instance, this strategy has been adopted by the GPSI4 and GK2’ algorithms. Other related 
algorithms that also use this strategy are the ‘General Refined Quotient Tree’ (GENRQT) and the 
‘General 1-Way Dissection’ (GENlD) in the sparse matrix package SPARSPAK [23]. 

The second alternative to treat non-connected graphs is given in Table 111. It also consists of 
adding an extra step at the end of Table I. It represents a possible numerical technique for treating 
non-connected FEGs in the resequencing process. Preliminary numerical experiments, using the 
subspace iteration method to compute the second eigenpair of the Laplacian matrix, show that in 
most cases the repeated null eigenvalues (excluding A1 = 0) lead to eigenvector approximations 
which provide a sequential numbering for each connected component in the graph. In other 
words, each component is numbered separately, there is no mixture for the numbering among 
components. However, this technique is currently empirical and essentially based on numerical 
observations. Other numerical experiments also show that, in general, the use of the eigenvector 
associated with the first non-zero eigenvalue does not give good results for profile and wavefront 
reductions, and does not separate the components. These observations may have implications 
on algorithms for domain partitioning such as the ones proposed by Pothen et ~ 1 . ~ ’  and 
Hendrickson and Leland.63 Both of these algorithms are also based on spectral graph theory. 

Finally, a third alternative to treat non-connected graphs is presented. It consists of monitoring 
connectivity a priori, as explained in Table IV. This strategy has been used by Hendrickson and 
Leland.63 However, it does not guarantee a sequential numbering of the components as is the 
case with the first technique. 

Due to its effectiveness and simplicity, the first alternative to treat non-connected graphs (Table 
11) is recommended. 

5.2. E.rample 

Next, a simple example to clearly explain the SFR algorithm (Table I) is given. Consider the 
finite element mesh of Figure 3(a) with twelve nodes, four T3 elements, four 4 4  elements, and no 
boundary conditions. Initially, the nodes and elements of the mesh in Figure 3(a) are arbitrarily 

Table 11. First alternative to treat non-connected graphs 

Steps 1 4 .  
5. 

Same as Table I. 
Repeat the algorithm for each connected component 

Table 111. Second alternative to treat non-connected graphs 

Steps 1 4 .  
5. 

Same as Table I. 
If there are two or more components in the graph, use the eigenvector 
associated with ,I2 = 0 which gives the smallest profile 

~ 

Table IV. Third alternative to treat non-connected graphs 

If there are non-connected components in the graph, add a minimum number of 
phantom edges to establish connectivity, execute Steps 1 4  (Table I), and then 
remove the phantom edges 
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numbered. The connectivity of the nodes can be topologically represented by the labelled 
nodal graph G” of Figure 3(b). Its associated Laplacian matrix L(G”) is shown in Figure 3(c), 
for which A2 = 1-1071 and yz = [ - 0-0608, - 0 2 0 2 3 , 1 W ,  - 05303,00658, - 04721, 
0.3099,0-3106, - 0.2399,0-5829, - 0.3125, - 04514IT. The connectivity of the finite elements can 
be topologically represented by the labelled dual graph G*B of Figure 3(d). In this figure, the 
dashed lines represent the original finite element mesh (Figure 3(a)). The associated Laplacin 
matrix L(C*B) is given in Figure 3(e), for which A2 = 0.5509 and y2 = [ - 0-1806,02805, 
- 06151, 1~O000, - 0*3423,0-4491, - 05491, - 0.0426IT. Another convenient way of repres- 

enting the element connectivity is by means of the labelled communication graph GeC, as 
illustrated by Figure 3(f). In this figure, the dashed lines represent the original finite element mesh 
and the heavy lines represent its dual graph. Note that the dual graph G*B is contained in the 
communication graph G O C .  The associated Laplacian matrix L(G“) is given in Figure 3(g), for which 
& = 1.8395 and y2 = [0-oooO,04807, - l*ooOo,08284, - 0.1605,04807, - 1~000,037071T. In this 
case, the second and sixth components are equal, and the third and seventh components are 
equal. To order the approximated eigenvector components, ties are naturally broken by using 
more decimal digits in the numerical solution. This is the numerical tie-breaking strategy adopted 
for the SFR algorithm. Figure 3(h) shows the node and element numbering using G and G*, 
respectively. Figure 3(i) shows the structure of the stiffness matrix assuming one degree of freedom 
per node, obtained from the relabelled nodal graph G. In Figure 3(i), the symbol ‘ x ’ denotes 
a non-null matrix component. Comparing the structure of the matrices shown in Figures 3(c) and 

7 2 6 

(4 Finite element mesh 
(arbitrary node and element numbering). 

4 0 0 0 - 1  0 0 - 1 - 1  0 - 1  0 

0 5 0 0 - 1 - 1 - 1  0 - 1  0 0 - 1  

0 0 2 0 0 0 - 1  0 0 - 1  0 0 

0 0 0 3 0 0 0 0 - 1  0 - 1 - 1  

-1 -1 0 0 7 0 -1 -1 -1 -1 -1 0 

0 - 1  0 0 0 3 0 0 - 1  0 0 - 1  

0 - 1 - 1  0 - 1  0 5 0 - 1 - 1  0 0 

-1 0 0 0 - 1  0 0 3 0 - 1  0 0 

-1 -1 0 -1 -1 -1 -1 0 8 0 -1 -1 

0 0 - 1  0 - 1  0 - 1 - 1  0 4 0 0 

-1 0 0 - 1 - 1  0 0 0 - 1  0 5 - 1  

0 - 1  0 - 1  0 - 1  0 0 - 1  0 - 1  5 

(b) Labeled FEG GA (c) WA) 
Figure 3. (a-c) 
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(h) Node and element numbering 
using G and G', respectively. 

3 0 0  

0 2 0  

0 0 2  

0 0 0  

-1 0 -1 

-1 -1 0 

-1 0 -1 

0 -1 0 

0 -1 -1 

0 0 -1 

0 -1 0 

1 0 -1 

0 3 0  

-1 0 3 

0 0 0  

0 -1 0 

L(G+B) 

-1 0 

0 -1 

-1 0 

0 0  

0 -1 

0 0  

2 0  

0 2  

7 -1 -1 -1 -1 -1 -1 -1 

-1 5 0 -1 -1 -1 0 -1 

-1 0 3 0 - 1  0 - 1  0 

- 1 - 1  0 3 0 - 1  0 0 

-1 -1 -1 0 6 -1 -1 -1 

-1 -1 0 -1 -1 5 0 -1 

-1 0 - 1  0 - 1  0 3 0 

-1 -1 0 0 -1 -1 0 4 

x x x x  
x x  x x  

x x x x x x  
x x x x  x x  
x x x x x x x x x  

x x  x x  x x  
x x  x x  x 
x x x x x x x x  

x x  x x  x x  
x x  x x  

x x x x x  
x x x  I 

(i) PAP 

12 

1 1  

10 0 7  4 1 

(j) Node and element numbering 
using G and Go, respectively. 

Figure 3. Example to illustrate the SFR algorithm 
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3(i), one can easily verify that the non-null matrix components in Figure 3(i) are more concen- 
trated around the diagonal (bandedness property of the stiffiness matrix corresponding to an 
appropriate node numbering in the mesh) than the ones in Figure 3(c). Finally, Figure 3(j) shows 
the node and element numbering using G and G', respectively. Note that the node numbering of 
Figures 3(h) and 3(j) is the same (both use G ) .  However, the element numbering of Figure 3(h) 
(using G * )  is different from the one of Figure 3(j) (using G O ) .  

6 .  NUMERICAL ASPECTS 

The goal here is to address the main aspects of a numerical solution for the computational 
implementation of the procedure shown in Figure (2 ) .  The numerical scheme should be able to 
handle large and generic (arbitrary) finite element meshes. The prime interest is the accurate 
determination of the second eigenvalue at the left end of the spectrum of the Laplacian matrix 
L and its associated eigenvector. The method adopted here for the solution of this particular 
eigenproblem is the subspace iteration a p p r o a ~ h , ~ .  which is widely used for large-scale finite 
element calculations. However, any other equivalent method can be used for this purpose. 

Issues related to the computational efficiency of the SFR algorithm are relevant to this work. 
The following strategies are suggested for improved performance: (1) adequate convergence 
criterion and parameters, (2) preconditioning by preordering, and (3) consideration of other 
eigensolvers. The use of convergence criteria and convergence parameters will be discussed in 
Section 6.1. The other two issues are discussed below. 

Numerically, the efficiency of the SFR is very sensitive to the initial ordering of the vertices in 
the graph. Preconditioning by preordering can be utilized for improving the running time of the 
original SFR algorithm. Furthermore, this technique can reduce both storage and number of 
arithmetic operations. The conventional resequencing strategy can be expressed as (see equation 
(2)) 

(11) 

A - PsFR AP&R = A (16) 

where t ,  is the Central Processing Unit (CPU) time consumed in the standard resequencing 
process, and PsFR is the SFR ordering on the system matrix. The idea here is to efficiently 
pre-order the vertices of the graph before using the SFR algorithm. Note that, in terms of profile 
and wavefront results, the pre-ordering strategy does not make sense if an algorithm more 
efficient than the SFR is used as the pre-ordering method. Moreover, the running time of an 
effective pre-ordering algorithm must not be sensitive to the initial ordering. In this work, the 
profile ordering provided by the RCM algorithmz3 is used as the pre-ordering method. The 
pre-ordering strategy can be described as 

where t z  is the CPU time for RCM algorithm, t 3  is the CPU time for the preconditioned SFR 
algorithm, and PRCM is the RCM ordering on the system matrix. It is expected that 

t ,  + t 3  + f I  (18) 

In this sense, the RCM algorithm is a good choice in equation (17) because its simple and easily 
accessed data structure makes it a very fast a l g ~ r i t h m . ~ ~ . ~ ~  The pre-ordering strategy has been 
used by other researchers45* 64* 6 5  for various purposes. 
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It is worth investigating the advantages and disadvantages of alternative eigensolvers to be 
used in conjunction with the SFR algorithm. Methods other than subspace iteration can be used 
to solve large eigenproblems. Examples are the determinant search4 and Lanczos’ method.66* ’ 
Pothen et Simon6’ and Venkatakrishnan et a/.’’ have used Lanczos’ method to compute 
the second eigenpair (,I2, yz) of the Laplacian matrix associated with large finite element meshes. 
The application of interest in these papers was domain decomposition for parallel processing. 
A comparison between Lanczos and the subspace iteration methods has been presented by 
Nour-Omid et aL6’ This is a subject for future investigation. 

Finally, it is worth mentioning that the SFR algorithm is of advantage in advanced computing 
environments with vector and parallel processing capabilities. The numerically intensive part of 
the SFR algorithm involves standard vector operations using floating point arithmetic. This is 
opposed to other resequencing algorithms which are based on integer arithmetic and the level 
structure concept. Moreover, the algebraic nature of the algorithm favours its implementation in 
a parallel computing environment. The investigation of the SFR algorithm as well as other 
numerical algorithms in advanced computing environments is also a subject for future invest- 
igation. 

6 . 1 .  A special version of the subspace iteration method 

The proposed SFR method (Figure 2 and Table I) requires only the second eigenvalue at the 
left end of the spectrum of L and its associated eigenvector. Therefore, a special version of the 
subspace iteration method is developed here and its main features are discussed below. 

Consider the standard form of the eigenproblem 

(L - AI)x = 0 (19) 
where x are basis vectors. The numerical solution of equation (19) employs the subspace iteration 
method and Q R  iterations in the reduced space.4 From practical experience, it is recommended 
that the order of the q-dimensional subspace should be calculated from4 

q = min(2p, p + 8, N )  (20) 

where p is the number of desired eigenpairs and N is the order of the original space. Here, 
N = I VI, which is, in general, much larger than q.  For a connected graph, the interest here is in the 
second eigenpair. In this case, p = 2. Therefore, from equation (20), q = 4 is the dimension that 
can be adopted for the reduced space. In general, the use of q > 4 leads to more accurate results 
but is more computationally expensive. 

For the solution of the reduced eigenproblem, various methods can be utilized. In this work, 
the Householder-QR (H-QR) has been a d ~ p t e d . ~  The householder transformations reduce 
a matrix into Hessenberg form. In the case of a symmetric matrix, this form is simplified to 
a tridiagonal one. For the Q R  method, the orthogonal matrix Q is obtained here as a product of 
Jacobi rotation matrices, and R is an upper triangular matrix. The iterations proceed until 
diagonalization of the system matrix (see Reference 4 for details of the method). Since the order 
adopted for the reduced space is in general small (see previous paragraph), the stage correspond- 
ing to the Householder transformations has been omitted in the interest of computational 
efficiency. Therefore, the reduced eigenproblem is solved by Q R  iterations applied to matrices of 
order q.  

In the present version of the subspace iteration method, the Laplacian matrix has been shifted 
according to, 

L + L + a I  (21) 
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where o! is the shifting constant. Here a = 1 has been chosen, such that all the eigenvalues (see 
equation (19)) become positive ( A j  2 1.0; 1 d j d 1 VI). This procedure does not change the 
eigenvectors of the Laplacian matrix and solves the problem of singularity in the computation of 
the eigenvector(s) corresponding to the null eigenvalue(s). 

A crucial step of an iterative solution of the eigenproblem is to estimate the accuracy of the 
results. The solution is obtained once convergence within a prescribed tolerance has been 
obtained. The convergence criterion may be defined in terms of consecutive iterations.' Bathe4 
measures convergence by the relative error between successive eigenvalue approximations: 

where the subscript denotes the jth eigenvalue, the superscripts denote the iteration numbers, and 
TOL is a specified tolerance. Equation (22) is denoted here as the eigenvalue convergence criterion. 
The convergence of the eigensolution may also be measured by the absolute difference between 
successive normalized eigenvectors: 

Jyf" - yfJ  d TOLe, 1 d j < q (23) 
where e = [ l , .  . . , 1IT is a unit vector of dimension I VI and the first q eigenvectors are 
considered. Equation (23) is denoted here as the eigenuector convergence criterion. To ensure the 
best accuracy, each eigenvector approximation is normalized with respect to the absolute value of 
its largest component. The componentwise verification in equation (23) is a more severe condition 
than the one in equation (22). Moreover, the criterion in equation (22) is computationally more 
efficient (faster) than the one in equation (23). Although both criteria (equations (22) and (23)) are 
investigated in this work, the eigenvalue convergence criterion is adopted as default because of its 
efficiency and overall effectiveness. 

The execution time and the quality of the results are affected by the value of the tolerance in 
equations (22) and (23). In the present work, TOL = has been bound to be an adequate 
estimate for practical purposes. However, in many cases, an accurate solution of the eigenprob- 
lem may not be necessary and the tolerance could be bigger than this default value. The effect of 
the prescribed tolerance and maximum number of iterations, on the overall performance of the 
present version of the subspace iteration method, will be studied in detail in Part I1 of this work.' 
In general, the SFR is sensitive to the values assigned to the tolerance and the maximum number 
of iterations, specially for large meshes. 

7. CONCLUDING REMARKS AND EXTENSIONS 

This paper has presented a noteworthy application in the sense that an algebraic quantity such as 
an eigenvector of an FEG can be successfully used to reorder nodes and/or elements in a generic 
finite element mesh. The SFR is unlike any previous resequencing method in the literature.* The 
advantages of the SFR method presented herein are: 

1. mathematical basis; 
2. complete independence between node and element resequencing; 
3. use of global information in the graph; 
4. no need of a pseudo-peripheral vertex or the endpoints of a pseudo-diameter; 
5. no need of any type of level structure of the FEG; 
6. simple implementation. 

We have just become aware, at the proof-reading stage, of similar work by Barnard et al6' Their report was completed 
in October 1993. 
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Mathematical analysis of the SFR method is based on linear algebra, in contrast with purely 
heuristic resequencing algorithms, which have less theoretical basis. Moreover, the SFR captures 
essential features of modern resequencing algorithms, for example, the SFR provides a pseudo- 
peripheral vertex as a natural outcome. 

The complete independence between numbering of nodal variables and numbering of finite 
elements in the SFR algorithm (see Figure 2) permits different resequencing algorithms to be 
suitably used for resequencing the nodal variables or the finite elements. Whether it is necessary 
to combine resequencing algorithms, or which combination of algorithms is the best for num- 
bering nodes and elements of a generic finite element mesh, are problems that are being 
considered by the authors. Moreover, the problem of which algorithm and which element graph 
(G* or G') works best for numbering the finite elements also needs further investigation.28.60 

The main disadvantage of the SFR algorithm, when compared to other algorithms in a 
sequential computing environment, is the CPU time required to solve the particular eigenprob- 
lem, i.e. to compute the second eigenpair of the Laplacian matrix. Strategies have been presented 
for improved performance: use of an adequate convergence criterion and related parameters; 
preconditioning by preordering, and change of the eigensolver. However, the numerically inten- 
sive part of the SFR algorithm involves standard vector operations using floating point arithme- 
tic. Therefore, the SFR algorithm is well-suited for computers with vector processors. Moreover, 
the algebraic nature of the algorithm favours its implementation in parallel computers. To this 
effect, at Cornell Theory Center, for example, we have available a computing environment that 
includes vector-scalar supercomputing resources, such as the IBM ES/9000-900 (with 6 vector 
units), and parallel systems, such as the IBM ES/9000-900 (with 6 CPUs), a 128-processor 
Kendall Square Research (KSR1) and a cluster of multiple workstations (IBM RS/6000) connec- 
ted via high-speed networking. 

A short-term direct extension of the present work includes vectorization of the SFR algorithm 
and evaluation of its performance using, for example, the IBM ES/9000-900 vector processing 
capabilities. On the other hand, a long-term research project involves coarse-grained paralleliz- 
ation of the SFR algorithm; at this stage, this algorithm should be coupled with linear and 
non-linear finite element 299 'O. 

The use of an FEG such as G * or G' enables the finite elements to be renumbered even in the 
early stages of the mesh discretization process, independently of the types of elements to be 
adopted. An example of a problem that can benefit from the SFR element renumbering strategy is 
the p-convergence test through a sequence of successively refined meshes.6 In this test, the number 
and disposition of finite elements remain unchanged, and the degree (p) of the highest complete 
piecewise polynomial approximation is progressively increased by adding nodes to elements until 
some desired level of accuracy is reached. If a frontal solution method is used in conjuction with 
this type of problem, the finite elements need to be renumbered only once. 

The SFR algorithm has potential advantages for applications other than in the FEM, e.g. the 
Boundary Element Method (BEM). For instance, Kane et al." have presented a solution strategy 
for large-scale multi-zone boundary element analysis. They have shown that the performance of 
the analysis is significantly affected by the zone numbering. Therefore, the SFR method could be 
of advantage to reorder nodes and elements in the mesh, and most importantly, the boundary 
element zones themselves. The representation of the zone connectivity in a boundary element 
mesh can be expressed in terms of a zone-graph." In this case, the vertices of the zone-graph 
represent zones in the original mesh. The edges in the zone-graph represent adjacent zones that 
share a common interface (node or element) in the original mesh. The zone-graph is a Boundary 
Element Graph (BEG)>-note the parallel with an FEG, defined in Section 4. The advantage of 

7This term, to the best of the authors' knowledge, is being defined in this paper for the first time 
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the SFR method becomes more apparent as the number of zones increases, i.e. for large-scale 
boundary element problems with many zones. 

Further numerical exploration of spectral properties of matrices associated with a finite 
element graph (such as L, A, or their variants) might open new avenues and ideas in sparse matrix 
technology. Moreover, as motivated by previous discussions, such a study fits naturally in the 
emerging field of vector and parallel computing for engineering applications. 
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