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SUMMARY 

In Part I of this work, Paulino et a/.' have presented an algorithm for profile and wavefront reduction of 
large sparse matrices of symmetric configuration. This algorithm is based on spectral properties of a Finite 
Element Graph (FEG). An FEG has been defined as a nodal graph G, a dual graph G* or a communication 
graph C' associated with a generic finite element mesh. The novel algorithm has been called Spectral FEG 
Resequencing (SFR). This algorithm has specific features that distinguish it from previous algorithms. These 
features include (1) use of global information in the graph, (2) no need of a pseudoperipheral vertex or the 
endpoints of a pseudodiameter, and (3) no need of any type of level structure of the FEG. To validate this 
algorithm in a numerical sense, extensive computational testing on a variety of problems is presented here. 
This includes algorithmic performance evaluation using a library of benchmark test problems which 
contains both connected and non-connected graphs, study of the algebraic connectivity ( I , )  of an FEG, 
eigensolver convergence verification, running time performance evaluation and assessment of the algorithm 
on a set of practical finite element examples. It is shown that the SFR algorithm is effective in reordering 
nodes and/or elements of generic finite element meshes. Moreover, it computes orderings which compare 
favourably with the ones obtained by some previous algorithms that have been published in the technical 
literature. 

1. INTRODUCTION 

This is the second of two papers concerning node and element resequencing using the Laplacian 
matrix of graphs associated with finite element meshes. The main purpose of this paper is to 
validate, through numerical experiments, a novel algorithm for reducing matrix profile and 
wavefront, which has been presented in the first paper on this work.' This algorithm is based on 
spectral properties of a Finite Element Graph (FEG). An FEG has been defined' as a nodal graph 
(G), a dual graph (G*) or a communication graph ( G O )  associated with a consistent' and generic 
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finite element mesh. This novel algorithm has been named SFR, which stands for Spectral FEG 
Resequencing. Nodes or elements in the mesh can be reordered depending on the use of an 
appropriate graph representation associated with the mesh. If G is used, then the nodes in the 
mesh are reordered for achieving profile and wavefront reduction of the system matrix. If either 
G* or G' is used, then the elements in the mesh are properly reordered for a finite element frontal 
solver. All the conceptual aspects related to this algorithm have been discussed in detail in 
Reference 1. 

In this paper, the terms nodes and elements relate to finite element meshes, and the terms 
vertices and edges relate to graphs, more specifically, FEGs. This terminology has been motivated 
in Part 1 of this work' and is adopted here. 

Owing to the lack of sound theoretical methods for evaluating resequencing algorithms, 
empirical tests on a computer are generally Here, besides evaluating the SFR algorithm 
on a set of benchmark test  problem^,^ other specific numerical experiments are presented for 
a thorough evaluation of the SFR algorithm. 

The remaining sections of this paper are organized as follows. First, some numerical aspects 
about the computational implementation of the SFR algorithm are presented. Second, the sparse 
matrix terminology is defined. Next, the numerical examples are presented and discussed. These 
examples include algorithmic performance evaluation using a library of benchmark problems 
with both connected and non-connected graphs, study of the algebraic connectivity ( A 2 )  of an 
FEG, convergence verification of the eigensolver used (a special version of the subspace iteration 
method), running time performance evaluation and assessment of the SFR algorithm on a set of 
five practical finite element meshes (lattice dome, L-shaped building, space station, cracked 
fuselage panel and gas turbine blade). The last section presents some conclusions. 

2. COMPUTATIONAL IMPLEMENTATION 

An efficient and robust computer program, using C language, has been developed. The program 
reads the conventional finite element input data, namely nodal co-ordinates and element connect- 
ivity. Based on the chosen FEG representation ( G ,  G* or G O ) ,  the Laplacian matrix L is 
assembled. Next, the first q (subspace order) eigenpairs of L are computed using the subspace 
iteration method. The vertices are then resequenced in increasing order of the components of the 
second eigenvector y2.  Finally, the ordering for the vertices of the graph is associated with the 
nodes or elements of the corresponding finite element mesh.' 

In general, the program uses dynamic allocation of memory, except for the reduced eigen- 
problem of dimension q, where static allocation has been used. The dynamic allocation of 
memory uses standard functions available in the C language. 

Due to sparsity of the Laplacian matrix L, the implementation provides the option of storing it 
in a skyline format. As a result, mathematical operations such as solution of a linear system of 
equations and standard matrix-vector products take storage in a vector form into account. For 
medium to large size meshes, the skyline format promotes excellent savings in both storage and 
execution time of the SFR algorithm. If the original mesh is extremely disordered, the savings 
obtained are not clear. However, for meshes generated by usual Finite Element Method (FEM) 
preprocessors (which give node and element numbering that are not completely arbitrary), 
savings in the Central Processing Unit (CPU) time of the order of 50 per cent have been noticed 
by using a skyline storage format when compared to a full storage format. 

The linear system of equations in the subspace iteration algorithm is solved by a modified 
version of the Crout method, as reported in Reference 8. The ordering of the eigenvalues and the y2 
eigenvector components is performed using the quicksort algorithm.' 
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~~~ ~ ~ 

Default Parameters 

< 1 > 
< 2 > Input data format ....................................... : FEM 

Input file name ...(. drt] ................................ : ezample 

< 3 > Eigenproblem matrix ................................... : Laplacian 
Program SFR - S 

Hardware 

Operating System 

Computer language 

Compiler 

# routines 

# active lines of code 

Source code size 

Object code size 

Executable code size 

vtral FEG Resequencing 

HP apollo 9000 - Model 720 

HP-UX Release 8.07 

cc for HP- UX Release 8.07 

33 

9 74 

56241 Byfes 

37332 Bytes 

61640 Bytes  

< 4 >  

< 5 >  

4 6 >  

< 7 >  

< 8 >  

< 9 >  

4 10 > 
< 11 > 
< 12 > 

Type of convergence ................................... : 

Subspace order.. ........................... 
Maximum # Iterations for Subspace ........... : 
Maximum # Iterations for QR .................... : 

Tolerance for Subspace ............................... : 

Tolerance for Q R  ........................................ : 

Shifting constant ........................... 

Number of Endpoints (NE) to be printed .... : 

Number of eigenpairs to be computed ......... : 

Eigenpair(s): 2 

Eigenvalue 

4 

125 

125 

10-8 

10-0 

1 .o 
1 

1 

(a) General description of the SFR prograni. (b) Options available. 

Figure 1. The SFR program 

An overview of the SFR program is presented in Figure 1. A general description of the 
computational aspects of the SFR algorithm is given in Figure l(a). In order to give a more 
objective idea about the implementation, the quantitative results reported in Figure 1 (a) already 
assume the existence of an FEG (G, G* or G')  together with its data structure representation. If 
the graph is non-connected, it can be identified a priori by the program. 

The screen layout of the SFR program is given in Figure l(b), which shows the options 
available and corresponding default parameters. The terminology used is in agreement with 
Part I of this work.' The resequencing method reported in Figure 1 can be readily implemented 
as a separated module in a finite element mesh generator or 

Next, a few practical comments about some of the options in Figure l(b) are presented. The 
third option assumes the Laplacian matrix as a default. However, in terms of the eigensolution, 
the program is fairly general, and can handle matrices other than the Laplacian, e.g. the adjacency 
matrix.' The fourth option assumes the eigenoalue conoergence crirerion' as a default. However. 
the eigenuector conoergence criterion' is also available. The fifth option assumes q = 4 as a default 
for the dimension of the reduced space, which is a reasonable estimate for most connected graphs. 
The sixth and seventh options allow one to specify the maximum number of iterations for the 
subspace and Q R  methods, respectively. For efficiency purposes, the default value for both these 
options has been set as 125. For accuracy purposes, these values can be replaced by a larger 
number. The eighth and ninth options allow one to specify the tolerance for both the subspace 
and Q R  methods. The default value for both these options is However, in many cases, an 
approximate solution of the eigenproblem is acceptable and the tolerance could be larger than 
this default value. The tenth option has been thoroughly discussed in Part I of this work.' The 
eleventh option allows one to choose the Number of Endpoints (NE) to be printed. These 
endpoints correspond to the first and last NE resequenced vertices. This option is specially useful 
to confirm the fact that the smallest (or largest) component in y2 corresponds to a 
pseudoperipheral vertex in the graph. Note that there is no extra computation required to obtain 
this information! The twelfth option allows one to print the first eigenpairs of the system matrix. 
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In the case of the Laplacian matrix, the output starts from the second eigenpair because, as 
mentioned previously,' the first eigenpair is (0, e). Here, e = [l ,  . . . , 13' is a unit vector of 
dimension I VI, where 1 .  I denotes the cardinality of the set and V is the set of vertics of the 
associated graph. 

Unless otherwise stated, the default parameters of Figure l(b) are used for the examples in this 
paper. 

3. SPARSE MATRIX TERMINOLOGY 

The basic sparse matrix terminology is being defined at this stage of the work because the SFR 
algorithm does not depend on the quantities defined next. These quantities are used for the 
evaluation of resequencing algorithms and also for comparison among algorithms. 

Given a sparse matrix A of order N ,  the matrix bandwidth ( B )  is defined as 

B=maxb i ,  is N (1) 

where b i  is the 'ith row bandwidth', i.e. the number of columns from the first non-zero component 
in the row to the diagonal, inclusive.* 

The matrix projiile ( P )  is defined as 
N 

P =  1 bi (2) 
i =  I 

The matrix wavefront ( W )  or maximum wavefront is defined as 

W =  maxci, i <  N (3) 

where ci is the'ith row wavefront', i.e. the number of active columns for row i. A column j is active 
in row i i f j  2 i and there is a non-zero component in column j with a row index k satisfying k < i. 

Following E~ers t ine ,~  the matrix auerage wauefront (w) is defined as 

From the symmetric structure of A, it follows that 
~i # bi. 

c i  = xi= N b i ,  although, in general, 

The matrix root-rnean-square (r.m.s.) wauefront ( *) is defined as 

From the above definitions, it follows that 

The matrix density ( 9 )  is given as 

where E is the set of edges in the graph. 

Note that this definition of bandwidth includes the diagonal components 
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To illustrate the above definitions, Figure 2(a) shows a gable frame with five nodes, four beam 
elements (I-D) and no boundary conditions. In this example, where only 1-D finite elements have 
been used in Figure 2(a), the topology of the finite element model and its nodal graph representa- 
tion coincide. Another possible isomorphic nodal graph representation CK( VK, EK) for the model 
given in Figure 2(a) is shown in Figure 2(b), where V K  = { 1,. . . , 5 >  and EK = { { 1,4}, (4, 3}, 
(3 ,  S), {5,2}}. For the sake of simplicity, assume one degree of freedom (d.0.f.) per node in 
Figure 2(a). The stiffness matrix representation associated with this mesh is given in Figure 2(c) 
by the symmetric matrix K (of order 5 )  with components k ,  and density g = 52 per cent. In the 
matrix of Figure 2(c), the boxes denote active columns. Finally, using equations (1)-(5), one 
verifies that B = 4, P = 1 1 ,  W = 3, W =  2.2000 and W =  f i  x 2.3238, which agree with the 
inequalities in equation (6). 

4. EXAMPLES AND DISCUSSIONS 

To assess the effectiveness of the SFR algorithm, several important examples are presented and 
their results are discussed. These examples include algorithm performance evaluation using 
a library of benchmark test problems, study of the algebraic connectivity (,I2) of an FEG, 
convergence verification, running time performance evaluation and assessment of the algorithm 
on a set of practical finite element test problems. Whenever feasible, the results obtained by the 
SFR algorithm are compared with other algorithms. 

In most examples that follow, the proposed SFR algorithm is compared with the GPS" and 
GK l 2 - l 3  algorithms. These algorithms have been selected for comparison because they are widely 
used and are well established in the technical literature. For example, the GPS algorithm has been 
used by Everstine3 and Araujo Filho;I4 the GK algorithm has been used by S l ~ a n ' ~ ~ ' ~  and 
Medeiros et al.;7 and both the GPS and GK algorithms have been used by Armstrong," 
Paulino' and Koo and Lee.' * 

4.1. Benchmark test problems 

Everstinej has presented a collection of 30 finite element meshes for testing nodal resequencing 
algorithms. The meshes range in size from 59 to 2680 nodes. A complete description of the test 
problems, together with plots of the corresponding meshes, can be found in Everstine's3 paper. 
Another library of general test problems has been presented by Duff et al.19 

3 P 

Gable frame Graph GK 
5 nodes ; 4 elements 1V1 = 5 ;  1El = 4 

(a) (b) 

Figure 2. Example to illustrate sparse matrix terminology 
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Everstine’s3 test problems use the graph adjacency data structure as input data. In the present 
study, the number of iterations for both the subspace and QR methods is unlimited in a numerical 
sense, i.e. the maximum number of iterations has been chosen to be a very large number (here, 
12 500 has been used). 

For the numerical examples, Everstine’s3 test problems are separated into two groups. First, 
the SFR is tested using the meshes for which the associated nodal graph G is connected (A, # O.O), 
i.e. 24 examples. Next, the other six examples, associated with non-connected graphs (A, = 0-0), 
are considered. This sequence of presentation is consistent with Part I of this work.’ 

4.1.1. Connected graphs. Connected graphs represent an important class of graphs because, 
for many practical cases in finite element analysis, the stiffness matrix is associated with 
a connected mesh (or graph). Table I lists some initial data and the results obtained from the SFR 
algorithm on Everstine’s3 benchmark test problems for which the associated graphs are con- 
nected. The eigenvalue convergence criterion is used for all these cases. The initial data are the 
number of nodes (#Nodes), I El,  and matrix densities g (per cent). The SFR results are the profiles 
( P ) ,  average (w), r.m.s. (m), maximum wavefronts ( W ) ,  bandwidths ( B ) ,  algebraic connectivities 
(A,) of the associated graph G,  and number of iterations (#ITER) in the subspace iteration 
met hod. 

In Table I, if the eigenvector convergence criterion is used, results similar to P, W, I@, W, B and 
A 2  are obtained. However, the # ITER is always larger than the ones listed in Table I. For the 
example with #Nodes = 162, a problem in the numerical solution has been noticed in the sense 

Table I. Results produced by the SFR algorithm 

Problem 
#Nodes = I VI / E l  

Profile 
P 

59 
66 
72 
87 

162 
193 
209 
22 1 
245 
307 
310 
36 1 
419 
503 
592 
758 
869 
878 
918 
992 

1005 
1007 
1242 
2680 

104 
127 
75 

227 
510 

1650 
767 
704 
608 

1108 
1069 
1296 
1572 
2762 
2256 
2618 
3208 
3285 
3233 
7876 
3808 
3784 
4592 

11 173 

7.67 
7.35 
4.28 
7.15 
4.50 
9.38 
3.99 
3.34 
2.43 
2.68 
2.55 
2.27 
2.03 
2.38 
1.46 
1.04 
0.96 
0.97 
088 
1.70 
085 
085 
0.68 
035 

290 
194 
255 
604 

1564 
5149 
3320 
2028 
2957 
7742 
3100 
5339 
8908 

14672 
10 379 

7573 
15 750 
20 529 
18 246 
35716 
34 784 
21 450 
43 025 
92 498 

4.9 I 
2.94 
354 
6.94 
9.65 

26.68 
15.88 
9.18 

12.07 
25.22 
10~00 
14.79 
2 1.26 
29.1 7 
17.53 
9.99 

18.12 
23.38 
19.88 
36.00 
34.6 1 
2 1.30 
34.64 
34.5 1 

Wavefront 
~ 

~ 

w w  
5.06 7 
2.95 3 
3.68 6 
7.3 1 11 

10.07 16 
27.62 39 
16.59 27 
9.53 14 

13.10 23 
25.9 1 32 
10.14 13 
15.02 17 
22.83 40 
30.98 46 
18.69 36 
10.77 22 
20.03 39 
23.87 32 
20.53 33 
36.33 42 
35.93 54 
21.67 29 
35.94 59 
35.20 51 

Bandwidth 
B 

11 
4 

13 
20 
30 
46 
53 
24 
94 
65 
19 
25 
66 
92 

131 
41 

135 
95 
81 
62 

152 
73 

139 
161 

1 2  
~~ -~ 

0.0666 
00115 
00215 
00969 
00577 
08147 
01211 
00256 
00354 
01605 
00164 
00358 
00362 
01001 
00201 
00025 
00078 
00147 
00085 
00590 
00304 
00104 
00159 
00046 

# ITER 

264 
75 

737 
68 
43 
72 

127 
57 

171 
47 
40 

109 
119 
108 
I24 
253 
3 17 
3 70 
209 
137 
210 
294 
160 
204 
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that the prescribed maximum number of iterations is reached even if it is a very large number 
(here, 12 500 has been used). If the eigenvalue convergence criterion is used, this problem does not 
happen, as can be verified in Table 1. 

Table11 lists the profiles (P) produced by the SFR algorithm, together with the profiles 
produced by Lewis'4 implementation of the GPS" and GK12*13 algorithms, and the Simulated 
Annealing-profile and wavefront (SApw)' algorithm. 

The algorithm SApwI7 uses simulated annealing techniques for reducing the matrix profile and 
wavefront. According to Armstrong," his algorithm leads to minimal or near-minimal matrix 
profile and wavefront, but is too slow for general use. There is empirical evidence that the SApw 
always leads to profiles that are less than or equal to other heuristic algorithms, such as RCM,*' 
GPS," GK,4.'2-'3 and those by Levy2' and Sloan.16 Therefore, the SApw algorithm is useful for 
evaluating and comparing the performance of faster but more approximate resequencing algo- 
rithms. 

From Table 11, it is clear that the GPS algorithm gives poorer results for profile than the SFR 
and GK algorithms. This is expected because the GPS algorithm was designed primarily to 
reduce bandwidth. On average, the SFR, GPS and GK algorithms give profiles which are 14, 27 
and 24 per cent, respectively, in excess of the SApw profile. The worst case profiles for the SFR, 
GPS and GK algorithms are 37,94 and 78 per cent, respectively, in excess of the SApw profile. 

Table 11. Profiles of SFR, SApw. GPS and GK algorithms 

Problem 
# Nodes 
~~ 

59 
66 
72 
87 

162 
193 
209 
22 1 
245 
307 
3 10 
36 1 
419 
503 
592 
758 
869 
878 
918 
992 

1005 
1007 
1242 
2680 

Actual P Normalized P (or w )  
~ 

Initial 

464 
640 
244 

2336 
2806 
7953 
9712 

10 131 
4179 
8132 
3006 
5445 

40 145 
36417 
29 397 
23 87 1 
20 397 
26 933 

109 273 
263 298 
122 075 
26 793 

111430 
590 543 

SFR 

290 
194 
255* 
604 

1564 
5149 
3320 
2028 
2957 
7742 
3100* 
5339 
8908 

14 672 
10 379 

7573 
15750 
20 529 
18 246 
35 716 
34 784 
21 450 
43 025 
92 498 

~ ~- 
SApw 

273 
193 
219 
515 

1272 
4409 
2693 
1848 
2161 
6535 
2940 
4992 
6512 

11 958 
9417 
7123 

13 207 
17 835 
15 949 
32 528 
32 513 
19913 
33 098 
84 900 

~~ 

GPS GK 
- ~ ~~~ 

342 314 
193 193 
339* 327* 
729 789 

1662 1579 
5013 4609 
4749 4434 
2266 2223 
4191 3813 
8541* 8221* 
3036* 3007* 
5060 5060 
8960 8073 

15049 15042 
11317 10925 

8223 8175 
16370 15728 
19955 19696 
21287 20498 
34068 34068 
43142 40141 
22708 22429 
55738 58864 

104131 99426 

SFR 
SApw 

GPS 
SApw 
__ 

1.062 
1.005 
1.164 
1.173 
1.230 
1.168 
1.233 
I 097 
1.368 
1.185 
1.054 
1 4x9 
1.368 
1.227 
1.102 
1,063 
1.192 
1.151 
1.144 
1.098 
1.070 
1.077 
1.300 
1.089 

1.253 
1 ~OOO 
1.548 
1.416 
1.307 
1.137 
1.763 
1.226 
1.939 
1.307 
1.033 
1.014 
1.376 
1.258 
1.202 
1.154 
1.239 
1.1 19 
1.335 
1047 
1.327 
1.140 
1.684 
1.227 

GK 
SApw 

1.150 
1 ~ooo 
1.493 
1.532 
1.241 
1.045 
1.646 
1.203 
1.764 
1.258 
1.023 
1.014 
1.240 
1.258 
1.160 
1.148 
1.191 
1.104 
1.285 
1.047 
1.235 
1,126 
1.778 
1.171 

~ 

~ 

'No improvement on original ordering 
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Aside from the results by the SApw (which always gives the best profiles), the SFR algorithm gives 
the lowest profiles on 16 occasions while the GK algorithm gives the lowest profiles on eight 
occasions. Note that when there are no improvements from the SFR algorithm (#Nodes = 72 
and 310), there are also no improvements from either the GPS or GK algorithms. Overall, for 
simple regular grids, e.g. #Nodes = 66 and 992, the profiles produced by the GPS and GK 
algorithms are lower than those produced by the SFR algorithm. In contrast, for complicated 3-D 
meshes, e.g. # Nodes = 209,245 and 1242, the profiles produced by the SFR algorithm are much 
lower than those produced by the GPS and GK algorithms. 

Since the average wavefront is proportional to the profile (see equation (4)), the relative profiles 
in the last four columns of Table I1 are the same as for normalized average wavefronts. For 
instance, 

Table 111 lists the r.m.s. wavefronts (I@) produced by the SFR, SApw,” GPS4 and GK4 
algorithms. One can verify that the r.m.s. wavefront reductions follow similar trends as the profile 
results shown in Table 11. On average, the SFR, GPS and GK algorithms give r.m.s. wavefronts 
which are 18, 31 and 27 per cent, respectively, in excess of the SApw r.m.s. wavefront. The worst 
case r.m.s. wavefronts for the SFR,GPS and GK algorithms are 44,99 and 90 per cent, 
respectively, in excess of the SApw r.m.s. wavefront. Aside from the results by the SApw (which 

Table 111. R.m.s. wavefronts of SFR, SApw. GPS and GK 
algorithms 

Problem 
#Nodes Initial SFR SApw GPS GK 

59 
66 
72 
87 

162 
193 
209 
22 i 
245 
307 
310 
36 1 
419 
503 
592 
758 
869 
878 
918 
992 

1005 
1007 
1242 
2680 

8.22 
11.01 
3.46 

29.38 
18.96 
43.84 
50.32 
50.39 
18.48 
27.36 
9.85 

15.38 
107.07 
78.60 
55.18 
37.95 
25.02 
3 1.92 

131.14 
301.99 
137.66 
26.93 

105.20 
234.42 

5.06 4.74 6.03 5.53 
2.95 2.94 2.94 2.94 
3.68* 3.12 4.89* 4.71* 
7.31 6.16 8.95 9.79 

10.07 7.97 10.63 10.09 
27.62 23.70 27.06 24.86 
16.59 13.33 24.49 22.63 
9.53 8.64 10.78 10.53 

13:lO 9.23 18.38 16.64 
25.91 22.33 29.37* 28.03* 
10.14* 9.62 9.96* 9.85* 
15.02 14.08 14.23 14.23 
22.83 15.96 22.19 19.96 
30.98 24.93 32.13 32.22 
18.69 16.65 2052 19.70 
10.77 10.05 12.07 12.01 
20.03 15.63 20.69 19.87 
23.87 20.98 22.90 22.60 
2053 18.02 24.31 23.39 
36.33 33.51 34.66 34.66 
35.93 33.79 49.34 44.80 
21.67 20.26 22.90 22.60 
35.94 27.30 48.62 51.78 
35.20 32.27 39.91 38.03 

*No improvement on original ordering 
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always gives the best r.m.s. wavefronts), the SFR algorithm gives the lowest W on 15 occasions 
while the GK algorithm gives the lowest Won nine occasions. Similar to the results for profile, for 
the cases where #Nodes = 72 and 310, there are no improvements in the r.m.s. wavefront by any 
of the algorithms (SFR, GPS or GK). 

For completeness, Table IV lists the maximum wavefronts ( W )  produced by the SFR, SApw,” 
GPS4 and GK4 algorithms for Everstine’s3 benchmark problems. On average, the SFR, GPS and 
GK algorithms give maximum wavefronts which are 26,41 and 38 per cent, respectively, in excess 
of the SApw maximum wavefront. The worst case maximum wavefronts for the SFR, GPS and 
GK algorithms are 90, 111 and 123 per cent, respectively, in excess of the SApw maximum 
wavefront. Note that the results by the SApw are not always the lowest ones in Table IV, e.g. 
#Nodes = 307,361,878 and 992. Comparing the SFR and GK algorithms, one verifies that the 
SFR algorithm gives the lowest Won 14 occasions, the GK algorithm gives the lowest Won eight 
occasions, and the SFR and GK algorithms tie on two occasions. 

Finally, Table V lists the bandwidths produced from the SFR algorithm, together with the 
bandwidths produced by the GPS? GK4 and the Simulated Annealing-bandwidth (SAb).” The 
algorithm SAbZZ uses a simulated annealing technique for reducing matrix bandwidth. The 
results reported in Table V use the Node-Shuffling Algorithm Long (NSAL) strategy for produ- 
cing minimal or near-minimal bandwidths. 

On most occasions, the SFR algorithm gives better results for profile, r.m.s. wavefront and 
maximum wavefront than those obtained by the GPS and GK algorithms (see Tables 11-IV). 

Table IV. Maximum wavefronts of SFR. SApw, GPS and GK 
algorithms 

Problem 
#Nodes Initial SFR SApw GPS GK 

59 
66 
12 
81 

162 
193 
209 
22 1 
245 
301 
310 
36 1 
419 
503 
592 
158 
869 
818 
918 
992 

I005 
1007 
1242 
2680 

11 
21 
4 

43 
33 
62 
71 
71 
30 
35 
16 
25 

172 
126 
88 
61 
41 
-40 
194 
514 
228 
32 

193 
362 

1 6 8 8 
3 3 3 3 
6* 4 7* 7* 

11 9 13 17 
16 11 14 13 
39 31 38 36 
21 20 40 35 
14 12 17 17 
23 13 29 21 
32 33 43* 31* 
13 12 14 13 
11 18 15 15 
40 21 33 30 
46 31 50 50 
36 28 34 33 
22 21 25 25 
39 21 38 31 
32 30 26 25 
33 29 40 39 
42 46 36 36 
54 46 97 89 
29 28 33* 33* 
59 43 85 97 
51 44 61 60 

*No improvement on original ordering 
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Table V. Bandwidths of SFR. SAb, GPS and GK algorithms 

Problem 
#Nodes Initial SFR SAb GPS G K  

59 26 
66 45 
72 13 
87 64 

162 157 
193 63 
209 I85 
22 1 188 
245 116 
307 64 
310 29 
361 51 
419 357 
503 453 
592 260 
758 20 1 
869 587 
878 520 
918 840 
992 514 

1005 852 
1007 987 
1242 937 
2680 2500 

11 
4 

13 
20 
30 
46 
53 
24 
94 
65* 
19 
25 
66 
92 

131 
41 

135 
95 
81 
62 

152 
73 

139 
161 

7 
4 
7 

12 
14 
36 
24 
14 
23 
37 
13 
15 
28 
49 
33 
21 
38 
26 
36 
36 
72 
30 
61 
58 

9 
4 
7 

20 
14 
43 
43 
19 
40 
44 
15 
15 
34 
57 
37 
26 
39 
28 
50 
36 

107 
35 

100 
69 

12 
4 
9 

21 
18 
46 
49 
21 
49 
64 * 
22 
15 
42 
70 
48 
26 
63 
41 
65 
36 

136 
55 

130 
90 

*No improvement on original ordering 

This situation is the opposite in the case of bandwidth reduction. This is expected because, in 
general, a numbering scheme which is efficient for reducing the profile is not efficient for reducing 
the bandwidth.’918-23 Table V shows that the GPS algorithm gives the closest results to the SAb 
algorithm. Clearly, neither the SFR nor the GK algorithm are as effective as the GPS algorithm 
for bandwidth reduction. However, from Table V, one can observe that for all the cases but one 
(#Nodes = 307), the SFR algorithm reduces the initial bandwidth of the test problems. There- 
fore, the results obtained by the SFR algorithm may be acceptable if a bandwidth reduction 
algorithm is not available. 

4.1.2. Non-connected graphs. Everstine’s3 test problems, associated with non-connected 
graphs ( A 2  = O.O), are considered here. Two of the three alternatives presented by Paulino et d.,’ 
for treating non-connected graphs, are investigated. They are denoted by SFR(1) and SFR(2), and 
refer to Tables I1 and 111, respectively, in Reference 1. Non-connected graphs are important, for 
example, in applications such as substructuring’ or domain partitioning for parallel finite element 
analysis.24- 26 

Table VI lists some initial data and the results obtained with the SFR algorithm on Everstine’s3 
benchmark test problems for which the associated graph is non-connected. The initial data are 
the #Nodes, I E 1, matrix densities g (per cent), and the number of connected components ( # CC). 
The results are the profiles (P) produced by the SFR, SApw,” GPS4, and GK4 algorithms. With 
respect to the SFR algorithm and the second alternative for treating non-connected graphs 
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Table VI. Profiles of SFR, SApw, GPS and GK algorithms for the meshes associated with non-connected graphs 
in Everstine's3 test problems 

Actual P Normalized P (or w )  
SFR(i)* _ _ _ _ _ _ _ ~  GPS GK Problem Density 

#Nodes IEl d%.) #CC Initial SFR(i)* SApw GPS GK SApw SApw SApw 

198 597 3.55 6 5817 1438 1287 1336 1313 1.117 1.038 1.020 
1454 

234 300 152  7 1999 1462 
1487 

346 1440 2.69 4 9054 7722 
10 873 

492 1332 1.30 2 34282 3973 
3984 

512 1495 1.34 32 6530 4936 

1.130 

1.464 

1.772 

1.206 

1016 1509 1349 1.439 1.485 

6136 7996 8442 1.258 1.303 

3304 5714 5513 1.202 1,729 

4384 5181 4821 1.126 1.182 

,328 

,376 

,669 

,100 
5139 1.172 

15 600 1.194 
607 2262 1.39 4 30615 15088 13065 15704 14760 1.155 1.202 1,130 

* i  = I , ? ;  !he first result ( i  = 1 )  refers to Table I 1  in Part 1 of this work.' The second result ( I  = 2) refers to Table I l l  in Par! I of 
this work.' 

(SFR(2)'). the orders adopted for the reduced space (4) in the examples of TableVI are 
15, 17, 1 1, 7,42 and 1 1, respectively. 

On average, the SFR(l), SFR(2), GPS and GK algorithms give profiles which are 21,32, 32 
and 27 per cent, respectively, in excess of the SApw profile. The worst case profiles for the 
SFR(1). SFR(Z), GPS and GK algorithms are 44, 7 7 , 7 3  and 67 per cent in excess of the SApw 
profile. Note, however, that Table VI is a very limited set of data and the above results are 
preliminary ones. 

A few comments about the SFR(2) algorithm are in order. For the case where #Nodes = 492, 
there are two connected components in the graph. All the negative numbers in yz are associated 
with one component (249 vertices), and the positive numbers in y2 are associated with the other 
component (243 vertices). For all the examples in Table VI. except for the case with 
#Nodes = 198, the components in the graph have been numbered sequentially. For the example 
with #Nodes = 198, there is a little mixture in the numbering between the two components with 
the smallest number of vertices (six vertices in each). However, if the eigenvector convergence 
criterion is used, then the components are separated. Moreover, to solve this type of problem, 
perhaps the two alternatives (SFR(1) and SFR(2)) can be efficiently combined. Note that these 
observations are essentially based on numerical calculations. 

4.3. Algebraic connectivitv of an FEG 

A set of 2-D and 3-D meshes of regular patterns is used here to qualitatively assess the 
asymptotic behaviour of the algebraic connectivity ( A 2 )  of the associated FEGs. The objective is 
to evaluate as the mesh size and the connectivity in the FEG change. In this study, the number 
of iterations for both the subspace and QR methods is unlimited in a numerical sense, i.e. the 
maximum number of iterations has been chosen to be a very large number (here, as in Everstine's3 
test problems, 12 500 has been used). 
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Six families of meshes are considered for the present study, as illustrated by Figures 3-8. Each 
family is associated with FEGs of similar structures but of different sizes. Figure 3 shows 
cylindrical grids with beam type (1-D) elements. The discretizations adopted ((a) 5 x 5; (b) 10 x 10; 
(c) 15 x 15) relate to the angular (0) and vertical (z) number of divisions with respect to cylindrical 
co-ordinates (r,  0, z). The discretizations adopted for the grids of Figures 4-6 relate to 2-D 
Cartesian co-ordinates, and those for the grids of Figures 7 and 8 relate to 3-D Cartesian 
co-ordinates. Figures 4-6 show square grids with beam (1-D), Q4 and Q8 elements, respectively. 
Figures 7 and 8 show cubic grids with 1-D and BRICK-8 elements, respectively. 

Table VII lists the example classes, the finite element types for each family of meshes, the grid 
discretizations, #Nodes, #Elements, I VI, I El ,  the actual ,I2, and the upper bound for ,I2 obtained 
from 

(a) 5 x 5 ( b )  10 x 10 (c) 15 x 15 

Figure 3. Cylindrical grids with beam (1-D) elements 

Figure 4. Square grid with beam (I-D) elements 
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Figure 5. Square grid with 44 elements Figure 6. Square grid with Q8 elements 

4 
Figure 7. Cubic grid with beam (1-D) elements 

as reported in Part I of this work (see equation ( 

Figure 8. Cubic grid with BRICK-8 elements 

2) of Section 2'). For each example and eac h 
element type (family of meshes), as the grid discretization increases, ,I2 decreases because the 
diameter' of the FEG increases. Comparing families of square (or cubic) grids, one can verify that 
as the order of the finite element increases ( e g  from linear to quadratic), A 2  increases. This 
happens because JEl increases. From Table VII, it is interesting to observe that the cylindrical 
grids and the square grids with the same discretization (in different co-ordinate systems) have 
equal ,I2. Comparing the last two columns of Table VII, one verifies that, in general, the upper 
bound for ,I2 obtained from equation (9) is always much larger than the actual ,I2. 

Another parameter that can be used as a measure of connectivity of graphs is the isoperimetric 
number. For explanations about this parameter, see, for example, Reference 27. 

'For definition of diameter of a graph, see, for example, the book by George and L i d o  
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Table VII. Study of the algebraic connectivity of an FEG ( G )  

#Nodes 1 2  (max) 
Example Element type Grid = JVI #Elements J E J  I ,  (equation(9)) 

Cylinder Beam (I-D) 
(Figure 3) 

Beam ( 1-D) 
(Figure 4) 

Square Q4 
(Figure 5) 

Q8 
(Figure 6)  

Beam (1-D) 
(Figure 7) 

Cube 
BRICK-8  
(Figure 8) 

5 x 5  
l o x  10 
1 5 x  15 

5 x 5  
10 x 10 
20 x 20 

5 x 5  
l o x  10 
20 x 20 

5 x 5  
l o x  10 
20 x 20 

3 X 3 X 3  
6 x 6 ~ 6  
9 X 9 X 9  

3 X 3 X 3  
6 x 6 ~ 6  
9 X 9 X 9  

30 
110 
240 

36 
121 
44 I 

36 
121 
44 1 

96 
34 1 

1281 

64 
343 

lo00 

64 
343 

loo0 

55 55 
210 210 
465 465 

60 60 
220 2 20 
840 840 

25 110 
100 420 
400 1640 

25 5 80 
100 2260 
400 8920 

144 144 
882 882 

2700 2700 

27 468 
216 3258 
729 10476 

0.2679 3.1034 
0.0810 3.0275 
0.0384 3.0125 

0.2679 2.0571 
0.0810 2.0167 
0.0223 2.0045 

0.7078 3.0857 
0.2276 3.0250 
0.0648 3.0068 

0.9432 7.0736 
0.2857 7.0206 
0.0786 7-0055 

0.5858 3.0476 
0.1981 3.0088 
0,0979 3.0030 

3.5 153 7.1 1 1  1 
1.4385 7.0205 
0.7620 7.0071 

4.3.  Conuergence stirdy 

The convergence of the special version of the subspace iteration method is investigated here. 
Also, the default values adopted for the tolerance (TOL) and the maximum number of iterations 
(see Figure l (b))  are, to some extent, justified. To solve the eigenproblem, the eigenvalue (see 
equation (22) in Part I of this work') or the eigenvector (see equation (23) in Part I of this work') 
convergence criterion may be used. Here. the eigenvalue convergence criterion is considered 
because it has been explicitly used for the examples reported in this paper. 

For the present study, the cylindrical grid shown in Figure 3(c) is considered as a representative 
example. As in the previous examples, the number of iterations for both the subspace and Q R  
methods is unlimited in a numerical sense, i.e. the maximum number of iterations has been chosen 
to be a very large number (here. 12500 has been used). Moreover, the tolerances for both the 
subspace and QR methods are equally prescribed as listed in the first column of Table VIII. In 
addition to some preliminary information about the cylindrical grid (Figure 3(c)) example, 
Table VIII lists the tolerances (TOL), the required number of iterations per subspace ( #  ITER). 
the CPU time in seconds (Time), the approximate values obtained for the algebraic connectivity 
(A,) of the FEG G, profile ( P  ), r.m.s. wavefront ( W ) ,  and bandwidth ( B ) .  

leads to the lowest values for both P and W. For several 
examples, it is sufficient to use a tolerance around lo-' to obtain good values for P ,  W, W, and W. 
However, for most of the examples tested considering the eigenvalue convergence criterion, 
TOL = gives, on the average, the best results. Furthermore, in Table VIII, the results for 
jL2, P ,  Wand B converge for TOL = 

For accuracy purposes, setting the maximum number of iterations to a very large number is 
adequate. However, for practical purposes, the default value for this number has been set as 125 

Table VIII shows that TOL = 
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Table VIII. Convergence results 

Time 
TOL #ITER (s) 2 2  P w B 

10-1 
10-2 
lo-’  

10-5 
10-6 
lo-’  
10-8 

5 1.98 
12 3.93 
29 8.72 
64 18.69 
92 27.92 

122 37.84 
195 59.87 
226 73.52 

0.160162 
0.132499 
00420 19 
0.038922 
0.038429 
0.038429 
0.038429 
0.038429 

4423 
525 1 
3404 
3569 
3642 
3642 
3642 
3642 

1959 18 
23.2557 
14.5662 
15.1486 
15.4 102 
15.4102 
15.4102 
15.4102 

44 
68 
26 
24 
17 
16 
16 
16 

Preliminary information: cylindrical grid (see Figure 3(c)); #Nodes = 1 V J  = 249  
IEl = 465; convergence criterion: eigenvalue; initial values: P = 16258; W 
= 76.8730; B = 239 

for both the subspace and Q R  methods. In Table VIII, the results for ,I2, P ,  Wand B converge 
with 122 iterations. 

4.4. S F R  algorithm running time perJormance 

The cracked fuselage panel of an aeroplane” is considered here for studying the SFR algorithm 
running time performance. Figure 9(a) shows the physical model, Figure 9(b) shows the dis- 
cretized finite element model and Figure 9(c) shows the corresponding dual graph G*.  Graphical 

Figure 9a 
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(b) FEM discretization 

(1262 nodes; 2018 elements: 1526 T3s & 492 Q4s) 

(c) Dual graph (G') 

1v1 = 2018 ; (El = 3266 

Figure 9. Cracked fuselage panel 
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representations for the FEGs G and G' are not shown in Figure 9 because they are too dense 
(4264 and 12 594 edges, respectively), but they are considered in the present analysis. 

Table IX shows the computer running time per task (assembling of L, solution of the eigen- 
problem and renumbering of the FEG), the total time to produce node (using G)  and element 
(using G *  or G') orderings, and the speed-up (S) rates. 

According to Part I of this work,' the speed-up (S) is defined as the ratio between the CPU time 
to run the standard SFR and the preconditioned SFR: 

(10) 
tl s=- 

1 2  + f 3  
where t l  is the CPU time for the standard SFR algorithm, t z  is the CPU time to preorder the 
vertices of the FEG by the RCM algorithm and t is the CPU time for the SFR after preordering. 
The CPU time for the RCM algorithm is negligible compared to the CPU time for the SFR 
algorithm (nevertheless, the RCM has been considered to compute S). Clearly, the speed-up 
column in Table IX shows that the preordering strategy provides improved computational 
efficiency, specially for the dense graphs G and G'. 

In Table IX, the FEG G* is the most efficient in terms of CPU time. Comparing the results for 
G* and G', one verifies that they have the same number of vertices but the number of edges in G' 
is much larger than in G*. Therefore, in this case, G' demands more CPU time.' It should be 
noted that the efficiency (in terms of CPU time) of G is due to the effective speed-up. 

Table IX shows that, for each FEG (G, G* or G O ) ,  almost all the CPU time is spent on the 
solution of the eigenproblem to compute the second eigenpair ( A z ,  y z )  of L. Therefore, the 
efficiency of the SFR algorithm depends on the efficiency of the algorithm used for the eigensolu- 
tion. Perhaps the present special version of the subspace iteration method may be further 
improved in the future. Moreover, another algorithm for solving eigenproblems, such as that of 
L a n c z o ~ , ~ ~ ~ ~ ~  could improve the efficiency of the SFR algorithm. 

4.5 .  Practical finite element examples 

In this section, the performance of the SFR algorithm is evaluated by means of representative 
FEM application problems. We have tried a selection of five meaningful and practical problems 
which have the essential features to test effectiveness of the resequencing techniques discussed in 
this paper. The finite element meshes are illustrated in Figures 9-13. The initial node and element 
ordering is arbitrary. 

The following variables are studied in this section. The speed-up (S) achieved with precon- 
ditioning by preordering is evaluated (see equation (10)). Also, the computational efficiency 
between the eigenvalue and eigenvector convergence criteria' is compared by means of the factor 

Table IX. Timing statistics for the cracked fuselage panel (HP apollo -Model 720) 

Assemble L Eigenproblem Renumbering TOTAL* Speed-up 
( S )  

G 1262 4264 0.03 46945 0.02 46950 3.07 
G* 2018 3266 0.02 1037.38 OQ2 103742 1.38 
G' 2018 12594 0.07 1211.27 0.02 121 1.36 1.81 

~ 

FEG IV I  IEI (s) (s) (s) (4 

*After preordering by RCM 
Cracked fuselage panel" (see Figure 9); #Nodes = 1262; #Elements = 2018 (1526 T3s and 492 Q4s) 
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J which is defined with respect to the SFR algorithm as 

CPU time considering the eigenvector convergence criterion 
(1  1) = CPU time considering the eigenvalue convergence criterion 

where, in this case, the original mesh (and FEG) configurations are assumed (i.e. no precondition- 
ing by preordering). All the CPU time statistics have been obtained on an H P  apollo 
9000-Model 720 (see Figure l(a)). The profiles ( P ) ,  maximum wavefronts ( W ) ,  r.m.s. wavefronts 
(I@), and bandwidths (B) obtained by the SFR algorithm are compared with those obtained by 
the GPS and GK  algorithm^.^ The algebraic connectivities of the associated FEGs are also 
evaluated. 

In the first part of this work,’ we claim that a pseudoperipheral vertex, i.e. a vertex with high 
eccentricityf (e), is obtained as a natural outcome of the SFR algorithm. Moreover, this 
eccentricity must be as close as possible to the diameter’ (6) of the graph. In order to support the 
above claim, the pseudoperipheral vertices obtained by the SFR (the vertex corresponding to the 
smallest component in y2) are directly compared with the ones obtained by George and L ~ U ’ S ~ O * ~ ’  
algorithm. In each of the Figures 9-13, straight and curved arrows indicate the pseudoperipheral 
nodes obtained by the standard and preconditioned SFR algorithms, respectively, and a bullet 
indicates the pseudoperipheral node obtained by George and Liu’sZo* 

Since the SFR algorithm is based on global properties of the graph, the vertex corresponding to 
either the smallest or the largest component in y2 can be used as a starting vertex for resequencing 
algorithms based on the pseudoperipheral vertex concept. The next example that follows 
illustrates this point. 

algorithm. 

4.5.1. Lattice dome. Figure 10 shows a lattice dome. This and other types of framed dome 
systems have been studied by Paulino5 and Haber et al.32 In Figure 10, note that the SFR 
pseudoperipheral node is in a location topologically analogous to George and Liu’s3’ 
pseudoperipheral node. The eccentricity (e )  of these nodes is equal to the diameter (6) of the nodal 
graph, e = 6 = 10. 

For meshes made up of 1-D finite elements (two noded elements), the isometric projection of 
the structure is also one possible isomorphic representation of the associated FEG G-see the 
main view in Figure 10. Moreover, the plane uiew xz in Figure 10 is another isomorphic repres- 
entation of the FEG G. 

Table X shows that the SFR algorithm gives the best results for P and W, while the GK4 gives 
the best result for W. The last two columns of Table X show an application of the Interactive 
Modified Reverse Cuthill Mckee (IMRCM) algorithm presented by Pauline.' Basically, this 
algorithm allows the user to select a set of nodes which define the first level of the level structure 
associated with the graph corresponding to the topology of the finite element mesh. In the first 
and second columns under IMRCM (Table X), the vertices corresponding to the smallest 
(mini ( Y ~ ) ~ ,  i = 1,. . . , I VI)  and largest (maxi ( Y ~ ) ~ ,  i = 1,. . . , I V l )  components in y2,  respect- 
ively, are used as pseudoperipheral vertices for the IMRCM algorithm. Comparing these two 
columns, one can verify that all the results obtained are very close or equal, as expected. Note that 
the SFR algorithm (third column in Table X) and the IMRCM algorithm using mini as 
a pseudoperipheral vertex (sixth column in Table X) have the same starting vertex for the 
renumbering process. Moreover, this example shows how the rooted level structure reverse 
numbering (last two columns in Table X) compares to the SFR numbering (third column in 
Table X), which is based on the y 2  components. 

* For definitions of eccentricity (e) of a vertex and diameter of a graph ( 6 ) .  see, for example, the book by George and L i d o  
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x. 

PLONE V I E W  XZ 

7 

PLA& V I E W  X I  

PLANE V I E W  Y Z  

Figure 10. Lattice dome' 

Table X. Results for the lattice dome (see Figure 10) 

IMRCM 

Parameter Initial SFR GPS GK mini ( ~ 1 ~ ) ~  maxi ( J J I ) ~  
~~ ~ 

P 3539 1207 1306 1226 1324 1303 
W 63 19 19 18 21 21 
w 38.84 12.49 13.57 12.70 13.86 13.60 
B 100 26 19 25 23 23 

~~ 

#Nodes = J C'J = 101; J E J  = 280 #Elements = 280 (beams); FEG: G; i 2  = 02554: 
S = 1.76; f = 1.66 

4.5.2. L-shaped building. Figure 11 shows a lateral load-resistant L-shaped building. In this - 
example, the SFR and George and Liu's3 pseudoperipheral nodes coincide. The eccentricity ( e )  
of these nodes is equal to the diameter (S) of the nodal graph, e = 6 = 11. 

Table XI shows that the SFR algorithm gives the best results for P and W, while the GK4 gives 
the best result for W. 

4.5.3. Space station. Figure 12 shows a space station. This structural system has been studied 
by A ~ b e r t . ~ ~  It is interesting to observe that, again, the SFR and George and Liu's3' 
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PLWE VIEW xz 

PLnNE V I E W  

PLANE V I E W  Y Z  

Figure 11. L-shaped building 

Table XI. Results for the L-shaped building (see 
Figure 1 1 )  

Parameter Initial SFR GPS GK 

P 14956 4109 4681 4345 
W 125 32 34 29 
w 79.41 20.71 23.33 21.56 
B 212 66 43 51 

#Nodes = 1 VI = 213; IEl = 792; #Elements = 730 (678 
beams and 52 Q4s); FEG: G; I,=O.2162; S=O.97; 
f = 2.45 

pseudoperipheral vertex coincide. The eccentricity (e)  of these nodes is equal to the diameter ( 6 )  of 
the graph, e = 6 = 25. 

Table XI1 shows that the GK algorithm gives the best results for P ,  Wand W. However, the 
results of the SFR algorithm are very close to the ones from the GK4 algorithm. 

4.5.4. Cracked fuselage panel. Figure 9(b) shows the finite element model for the cracked 
fuselage panel of an aeroplane. For the associated nodal graph ( G ) ,  the SFR pseudoperipheral 
vertex has eccentricity e = 23. George and Liu’s3’ pseudoperipheral vertex has eccentricity 
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Table XII. Results for the space station (see 
Figure 12) 

Parameter Initial SFR GPS GK 

P 28816 5405 5815 5390 
W 184 34 35 31 
w 108.97 19.73 21.01 19.34 
B 303 95 39 53 

#Nodes = I VI = 304; 1El = 1428; #Elements = 1428 
(beams); FEG: G; i, = 0.0546; S = 3.34; f = 1.73 

PLWE VIEW XZ 

PLANE VIEW X I  

Figure 12. Space station33 

e = 24, which is equal to the diameter (6) of the nodal graph. Therefore, George and Liu's31 
algorithm gives a slightly better solution than the SFR. 

Figure 9(c) shows the dual graph ( G * )  representation for the mesh of Figure 9(b). In this 
example, the eccentricity for the SFR pseudoperipheral vertex is e = 53. and the one for George 
and Liu's31 algorithm is e = 52. The diameter of the dual graph is 6 = 55. Therefore, in this case, 
the SFR gives a slightly better solution than George and L i t "  algorithm. 

Consider now the communication graph (G' is not shown in this paper) associated with the 
mesh of Figure 9(b). The eccentricity for the SFR pseudoperipheral vertex is e = 24, which is 
equal to the diameter ( 6 )  of the associated communication graph. The eccentricity for George and 
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Liu's3' algorithm is e = 23. Again, the SFR gives a slightly better solution than George and 
Liu's3' algorithm. 

For illustration purposes, Table XI11 lists the results for P ,  W, Wand B using the FEGs G, G* 
and G' associated with the mesh of Figure9(b). Note that if G is used, then the nodes are 
reordered; if either G *  or G' is used, then the finite elements are reordered.' Therefore, the results 
for G cannot be directly compared with the ones for G* and G'. The results for G *  and G' can be 
compared because both graphs represent connectivity among finite elements and these graphs 
relate to matrices of the same order (but with different number of components). For all the FEGs 
(G,  G* and G*), the SFR algorithm gives better results for P ,  Wand W than those from the GPS 
and GK4 algorithms. 

For each of the graphs G,  G* and Go,  the values obtained for speed-up (S) are 3.07, 1.38 and 
1.81, respectively. Also, the factors J obtained using these graphs, are very close to 1, i.e. the 
efficiencies of the eigenvector and eigenvalue convergence criteria are similar. 

4.5.5. Gas turbine blade. Figure 13 shows a gas turbine blade. This type of structure has been 
studied by W a w r ~ y n e k ~ ~  for the simulation of fatigue crack growth. In this example, the 
eccentricities of both the SFR and George and Liu's3' pseudoperipheral nodes coincide with the 
diameter of the nodal graph, e = 6 = 28. 

Table XIV shows that the SFR algorithm gives the best results for P ,  Wand W. 

4.5.6. Discussion about the practical finire element examples. On most occasions, the SFR 
algorithm gives the best results for profile, maximum wavefront and r.m.s. wavefront. It is 
observed that the GPS algorithm gives the smallest bandwidth for all the five examples tested. 
This issue has been discussed in the last paragraph of Section 4.1.1. 

The eigenvalue convergence criterion is, on the average, faster than the eigenvector conver- 
gence criterion by a factor of 1-59. Also, with the eigenvalue convergence criterion, the precon- 
ditioned SFR is, on the average, faster than the standard SFR algorithm by a factor of 2.61. 

Numerically, the qualitative behaviour of the preconditioned SFR is similar to that of the 
standard SFR. For instance, for the practical finite element examples in Figures 9-13, a curved 

Table XIII. Results for the cracked fuselage panel (see Figure 9) 

FEG Parameter Initial SFR GPS GK 

G P 504 649 47 321 72017 69 686 
1, = 0-0175 W 682 65 84 89 

I E I = 4264 B 1259 168 99 139 

- ~~ ~ 

1 VI = 1262 LP 447.6 1 38.87 58.93 57.34 

G* 

I VI = 2018 
IEl = 3266 

G' 
i,, = 0-0243 
I VI = 2018 
[E l  = 12594 

2 ,  = 00042 
P 

w 
B 

w 

P 
W 

B 
w 

273 788 
204 

143.58 
1516 

581 012 
552 

318.12 
1985 

61 558 
59 

32.69 
429 

126 765 
101 

64.91 
292 

87 787 
61 

44.17 
67 

189 240 
128 

96.38 
159 

84 343 
60 

43.05 
117 

183 643 
147 

93.74 
199 

#Nodes = 1262; # Elements = 201 8 ( 1 S26 T3s and 492 Q4s) 
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Figure 13. Gas turbine blade34 

Table XIV. Results for the gas turbine blade (see Figure 13) 

Parameter Initial SFR GPS GK 

P 1313225 127133 137261 129869 
W 1305 103 1 24 120 

B 1819 145 127 148 

#Nodes = I YJ = 1820; IEl = 15833; #Elements = 944 (BRICKS-8); 

_ _ _ _ _ _ _ _ _ _ ~  ~ ~ _ _ _ _ _ _  ~ ~__________ ~~~ 

w 8 17.29 72.36 78.86 7453 

FEG G; 1 2  = 0.0843; S = 3-90; f = 1 . 1 1  

arrow indicates the preconditioned SFR pseudoperipheral vertex. As expected, these vertices are 
in topologically comparable locations (in terms of eccentricity) to the ones provided by the 
standard SFR algorithm. 

5. CONCLUSIONS 

The SFR algorithm has been shown to be effective for profile and wavefront reduction of large 
sparse matrices with symmetric configuration. Moreover, the algorithm is effective for reordering 
nodes and/or elements of generic finite element meshes. 

A general implementation of the SFR algorithm has been presented and evaluated. The main 
computation in this algorithm is the eigensolution, which has been accomplished by a robust 
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implementation of the subspace iteration method. This implementation has delivered satisfactory 
results for all the examples tested. The use of the eigenvalue convergence criterion and precon- 
ditioning by preordering have been shown to provide improved computational efficiency. 
Furthermore, consideration of alternative eigensolvers, such as that of L a n c z o ~ , ~ ~ * ~ ~  could 
improve the computational efficiency of the resequencing algorithm. 
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