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Abstract 

Recently, several domain partitioning algorithms have been proposed to effect load-balancing among processors in parallel 
finite element analysis. The recursive spectral bisection (RSB) algorithm [l] has been shown to be effective. However, the 
bisection nature of the RSB results in partitions of an integer power of two, which is too restrictive for computing environments 
consisting of an arbitrary number of processors. This paper presents two recursive spectral partitioning algorithms, both of which 
generalize the RSB algorithm for an arbitrary number of partitions. These algorithms are based on a graph partitioning approach 
which includes spectral techniques and graph representation of finite element meshes. The ‘algebraic connectivity vector’ is 
introduced as a parameter to assess the quality of the partitioning results. Both node-based and element-based partitioning 
strategies are discussed. The spectral algorithms are also evaluated and compared for coarse-grained partitioning using different 
types of structures modelled by l-D, 2-D and 3-D finite elements. 

1. Introduction 

To take advantage of distributed-memory parallel-processing in finite element analysis, the domain is 
usually partitioned (or decomposed) into a number of subdomains which are distributed among the 
processors. The computation for each subdomain is carried out by a separate processor. The key 
problems of this approach are how to partition the domain to achieve well-balanced workload 
distribution among processors and how to minimize the amount of interprocess communication so that 
significant speed-up can be obtained in the parallel analysis. 

The problem of domain partitioning of finite element meshes is equivalent to the problem of 
partitioning the graph associated with the mesh. Graph partitioning is an important NP-complete 
problem [2] and so is the general nature of mesh partitioning. Therefore, obtaining optimal solutions is 
practically intractable, but is also unnecessary because satisfactory near-optimal solutions can always be 
sought at a relatively low cost by the use of fast and efficient heuristic algorithms. 

Since the finite element meshes considered may be large and generic (irregular shapes, including 
multiply connected and/or branched domains), manual partitioning may be difficult even with the help 
of interactive computer graphics. Simon [l] has shown that visual perception alone may be inadequate 
for the task of partitioning large three-dimensional structures. Therefore, automatic algorithms are 
generally required. 
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Several automatic partitioning algorithms have been proposed. For example, Flower et al. [3] 
presented a simulated annealing method for mapping irregular finite element domains to parallel 
processors. Although these types of methods can give almost optimal results, they are usually expensive 
and time-consuming, especially for problems of large size. Malone [4] proposed an automated mesh 
decomposition method for transient dynamic analysis on hypercube multiprocessor computers using an 
explicit time integrator. The method is called reduced bandwidth decomposition (RBD) and is based on 
a scheme which reduces the bandwidth of the matrix representation of the nodal connectivities in the 
mesh. Farhat [5] also proposed an automatic finite element domain decomposer which is based on a 
greedy algorithm and seeks to decompose a finite element mesh into a set of balanced domains sharing 
a minimum number of common nodal points. In an attempt to avoid domain splitting problems, 
Al-Nasra and Nguyen [6] incorporated geometrical information of the finite element meshes into an 
automatic decomposition algorithm similar to the one proposed by Farhat [5]. Padovan and Kwang [7] 
developed a direct element connect filling (DECF) scheme which employs multiple starting nodes and 
proceeds with an algorithm similar to the one by Farhat [5], simultaneously for each starting node, to 
avoid possible domain splitting. The symmetry of the finite element domain is considered in the 
selection of starting nodes and during the partitioning process. Recently, Miler et al. [S] developed a 
partitioning method which makes use of the geometric structure of a given finite element or finite 
difference mesh to find the desired partitions. 

Simon [l] proposed the recursive spectral bisection (RSB) algorithm for hypercube architectures, 
which consist of 2d processors (d is the dimension of the hypercube). Simon [l] also compared the RSB 
algorithm with two other algorithms: the recursive coordinate bisection (RCB) and the recursive graph 
bisection (RGB) algorithms, and showed the superiority of the RSB algorithm over both the RCB and 
the RGB algorithms. Recently, Hendrickson and Leland 19, lo] extended the spectral bisection through 
the use of multiple eigenvectors to allow for partitioning of a domain into 4 or 8 subdomains at each 
stage of a recursive decomposition. They proposed the recursive spectral quadrisection (RSQ) 
algorithm for 4k partitions and the recursive spectral octasection (RSO) for 8k partitions; in each, k is a 
positive integer number. They have also concluded that the RSQ and RSO algorithms are less 
expensive than multiple levels of the RSB algorithm. However, all these algorithms (RSB, RSQ and 
RSO) have been specifically developed for hypercube or mesh machine architectures. 

Williams [ll] evaluated the performance of three partitioning algorithms for dynamic load-balancing 
using a 16-processor NCUBE machine. He compared the simulated annealing, the orthogonal recursive 
bisection and the eigenvector recursive bisection (analogous to the RSB) methods. He concluded that 
the eigenvector recursive bisection seems to be a good compromise between the other two methods. 

In numerical comparative studies using structures of different types, Hsieh [12] has demonstrated that 
the RSB algorithm is more effective than the algorithms proposed by Al-Nasra and Nguyen [6], Farhat 
[5] and Malone [4] for coarse-grained partitioning. A main reason the spectral algorithms are SO 
effective is that they use global properties of the graph associated with the mesh to perform the 
partitioning, i.e. a spectral analysis is conducted to compute separators based on eigenvector 
components of the graph. The algorithms by Al-Nasra and Nguyen [6], Farhat [5] and Malone [4] 
mainly use local information in the graph, such as the neighboring information of a vertex. 

The bisection nature of the RSB algorithm is suitable for hypercube computers, but it is too 
restrictive for applications on coarse-grained parallel computing environments consisting of an arbitrary 
number of processors. To generalize the RSB algorithm for an arbitrary number of partitions, two new 
recursive spectral algorithms called the recursive spectral sequential-cut (RSS) algorithm and the 
recursive spectral two-way (RST) algorithm, respectively, are investigated in this paper. 

Different solution methods used in the analysis may require different strategies for domain 
partitioning. Two types of partitioning strategies may be classified: element-based partitioning and 
node-based partitioning. The element-based partitioning focuses on partitioning elements in finite 
element meshes, while the node-based partitioning focuses on partitioning nodes. For parallel solutions 
of structural dynamics, implicit solution methods often require element-based partitioning (see, e.g., 
[13]), while explicit methods may require either type depending on the parallel implementation (see, 
e.g. [4, 141). Both types of partitioning are considered in this paper. 

The partitioning algorithms addressed in this paper are not specific to a single hardware configura- 
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tion, but instead are suitable for a variety of machine environments which share a few common 
features. The parallel computing environment used in this work consists of up to six DECsystem 5000s. 
These UNIX workstations are connected by Ethernet and communicate via the TCP/IP (Transmission 
Control Protocol / Internet Protocol). The interprocess communication and synchronization are 
achieved in a message-passing environment provided by ISIS [15]. This is a coarse-grained, distributed- 
memory environment where the number of processors used is small and no global memory is shared 
among processors. 

The remainder of this paper is organized as follows. Section 2 presents relevant concepts of graph 
theory. This includes a discussion about spectral techniques applied to graphs and various graph 
representations of finite element meshes. Moreover, element-based and node-based partitioning 
strategies for implicit and explicit solution methods, respectively, in dynamic analysis are discussed. In 
Section 3, the spectral algorithms RSB, RSS and RST are presented. These algorithms are evaluated 
and compared in Section 4 using practical finite element examples such as a space station, an L-shaped 
building, a 12-bladed turbine disk, and a turbine blade. Finally, in Section 5, conclusions are drawn and 
directions for future work are discussed. 

2. Preliminaries 

For the purpose of discussion of domain partitioning algorithms, it is necessary to introduce some 
essential concepts and definitions of graph theory and to establish their relationship to matrix analysis 
and finite element analysis. These concepts and definitions are presented in this section. Next, various 
graph representations of finite element meshes and different partitioning strategies for implicit versus 
explicit dynamic analysis are also discussed. 

2.1. Applied graph theory 

This section presents some basic concepts and definitions of graph theory which are central to this 
paper. For further details the reader is referred to the books by Harary [16] and Deo [17]. 

A graph G = (V, E) consists of a non-null finite set of vertices V= {u, , u2, . . . , un} together with a set 
of edges E = {e,, e2,. . . , e,} which are unordered pairs of distinct values form V; E = {(ui, u,) 1 ui E V, 
uj E V, i #j}. Edges are elements of the set E and IEl = m is the cardinality of the set E. Vertices are 
elements of the set V and /VI = n is the cardinality of the set V. A graph obeying the above definition is 
an undirected graph because the set E is comprised of unordered pairs of vertices. 

The correspondence between a graph and a matrix can be established by considering a symmetric 
matrix K of order N with non-null diagonal components kii. The ordered and undirected graph of K is 
denoted by G K = (V”, EK). This graph has N vertices numbered from 1 to N, and {u;, vi} E EK if and 
only if k,, = kji # 0, i Zj, where ui denotes the vertex of EK with label i. 

The vertices u and u in G are adjacent vertices if {u, u} E E. Two graphs G and H are said to be 
isomorphic (G E H) if there exists a one-to-one correspondence between their vertices which preserves 
adjacency, i.e. the graphs have the same topology. 

The adjacent set of the subset W of the vertices of G, Adj(W), is defined as 

Adj(W)={uE(V-W))(u,u)EE,uEW,WCV} 

If W = {u}, Adj(W) = Adj(u). The degree of the set W is defined as 

Deg(W) = ]Adj(W)] 

Similarly, the degree of a vertex u is defined as 

Des(u) = ]Adj(u)] 

A path in a connected graph G = (V, E) is an ordered set of vertices (ul, u2, . . . , u,,+*) such that uk 

and ‘k+l are adjacent for k = 1, . . . , n. This path has length n and it may also be interpreted as an 
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ordered set of IZ edges (e,, e2, . . . , e,). The distance d(u, u) between two vertices u and u of G is the 
length of the shortest path joining these vertices. The eccentricity of a vertex u is defined as 

e(u) = max{d(u, u) 1 u E V} 

The diameter of G is given by 

S(G) = max{e(u) ) u E V} = max{d(u, u) 1 u, u E V} 

Consider, for example, the finite element mesh of Fig. l(a) with nine nodes, four T3 elements, two 
Q4 elements, and no boundary conditions. For the sake of simplicity, assume one degree of freedom 
(dof) per node. The stiffness matrix representation associated with this mesh is given in Fig. l(b) by the 
symmetric matrix K (of order nine) with non-null elements k, represented by x’s. With respect to the 
corresponding (node) graph in Fig. l(c), VK = (1, . . . ,9} and EK = { {1,2}, {1,4}, {1,5}, . . . , {8,9}}, 
where each pair {i, i} contains two adjacent vertices. If W= { 1,2,3}, then Adj(W) = {4,5,6} and 
Deg(W) = 3. For the sixth vertex, Adj(6) = {2,3,5,8,9} and Deg(6) = 5. By inspection, one can easily 
verify that for this graph S(G) = 3. 

Suppose that the vertex No. 5 in the graph GK of Fig. l(c) is relocated between the vertices No. 7 
and No. 8, as shown in Fig. l(d) by the graph HL. The graphs G K and HL are isomorphic under the 
correspondence it, i - 10 (i = 1, . . . ,9) for the vertex labels. 

Next, consider the finite element mesh of Fig. 2(a) with fifteen nodes, eight T3 elements, four Q4 
elements, and no boundary conditions. The connectivity of the nodes can be represented topologically 
by the node graph (NG) of Fig. 2(b). To establish the connectivity of the finite elements in a topological 
sense, a dual graph (DG) representation is used as illustrated by Fig. 2(c). 

The geometric aspect of the dual graph is used here for the purpose of representing the connectivity 
of the finite elements in a generic mesh. The vertices in the dual graph represent finite elements in the 
original mesh. The edges in the dual graph represent adjacent finite elements that share a common 
boundary in the original mesh. According to this definition, a finite element of dimension n (n = 1,2,3) 
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Fig. 1. Correspondence among mesh, matrix and graph 
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Finite Element Mesh (arbitrary nodal and element numbering) 

(b) Node graph NG* 

Cd) L(NG* ) 

Cc) Dual graph DG* 
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WJ Fiedler vector for L(NG* ) 
( h = 0.639 ) 

(g) Fiedler vector for L(DG* 1 
( h = 0.264 ) 

Fig. 2. Spectral analysis. 

has boundaries of dimension (n - 1). As an example, by applying this definition to the finite element 
mesh of Fig. 2(a), the dual graph of Fig. 2(c) is obtained. 

Spectral techniques for graph partitioning 
A spectral method, based on algebraic properties of the graph associated with the finite element 

mesh, can be used to solve the partitioning problem [Ml. The spectral method associates an adequate 
graph representation (G) to the finite element mesh and forms the Laplacian matrix L(G). Here, G is 
assumed to be a connected graph. The spectral properties of the Laplacian matrix are of special interest 
to the present work. For example, a particular eigenvector of this matrix can be used to partition the 
vertices of a graph into two sets. 

The Laplacian matrix L(G) is a symmetric matrix of order N, where N = /VI. The components 1, of 
L(G) are defined as 

-1 if {ui, u,} E E 

f,j = 

{ 

Deg(v,) if i =j 
0 otherwise 

From this definition, it follows that the Laplacian matrix L(G) can be obtained from the degree matrix 
D(G) and the adjacency matrix A(G) of a given labeled graph G 
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L(G) = D(G) - A(G) 

where D(G) is a diagonal matrix of order N with diagonal components dii = Deg(u,), and A(G) is an 
adjacency matrix of order N with components aij = 1 if {ui, vi} E E and zero otherwise. Fig. 2(d) shows 
the Laplacian matrix L(NGA) associated with the node graph NGA, and Fig. 2(e) shows the Laplacian 
matrix L(DGA) associated with the dual graph DGA. 

The Laplacian matrix L(G) is positive semidefinite and it determines G up to isomorphism. Let the 
eigenvalues of L(G) be ordered as 

The smallest eigenvalue is always A, = 0 and the associated eigenvector y1 has all of its normalized 
elements equal to 1. If G is connected, the second eigenvalue A, is always non-zero and positive. The 
eigenvalue A, is designated ‘algebraic connectivity’ and is related to the vertex and edge connectivities 
of the graph. The components of the second eigenvector y, are associated with the corresponding 
vertices of the graph. Differences in the values of the components of y, give topological distance 
information about the vertices of the graph. The components of y, also provide a weighting for these 
vertices which can be used for partitioning the graph. For example, all vertices with weights below the 
median weight may be assigned to one partition, and the rest to the other partition. 

The special properties of the second eigenvalue A, and its corresponding eigenvector y, have been 
studied by Fiedler [19] and Anderson and Morley [20], among other researchers. The second 
eigenvector y, is called the Fiedler vector by Simon [l]. (It should be noted that Simon uses the 
opposite sign for the Laplacian matrix defined above, probably because it may be more convenient from 
a numerical point of view.) 

Fig. 2(f) and (g) show both the Fiedler vector y, and the algebraic connectivity A, for the node graph 
NGA and the dual graph DGA. In Fig. 2(f), a bisection of the vertices of the graph can be executed by 
assigning the vertices with values smaller than the median weight (= 0.282) to one subdomain and the 
remaining to the other. The same procedure can be used to partition the vertices in Fig. 2(g) into two 
sets. 

Algebraic connectivity of the partitioning 
The algebraic connectivity (A*) of a graph (or subgraph) serves as a measure of connectivity of the 

graph (or subgraph). Here, we introduce the algebraic connectivity vector (ACV) for the purpose of 
investigating the algebraic connectivity of the partitioning 

AC;;[Alg(G)] = (A:, A:, . . . , A?) 

where N, is the number of partitions, Alg denotes the partitioning algorithm being used and G denotes 
a graph associated with the finite element mesh. Each element of the ACV represents a measure of the 
algebraic connectivity of the ith partition, Ai, i E [l, NJ. Some comments about relationship of A, with 
the size and connectivity of a finite element mesh are given in the following. First, consider a square 
grid with n x n (n is a positive integer number) Q4 elements and its associated NG. As n increases, A, 
decreases because the diameter of the associated NG increases. Next, for the same n x n grid, if Q8 
elements are used instead of Q4 elements, A, increases. This is because [El is larger for the associated 
NG when Q8 elements are used. 

The ACV gives useful information for assessing load balancing among processors. If a graph 
(corresponding to a finite element domain) is partitioned into well-balanced subgraphs, one would 
expect that all the elements of the ACV are approximately equal, i.e. all the subdomains have nearly 
the same value for Ai, i E [l, NJ. This means that the normalized ACV would be close to a unity 
vector. 

The ACV gives conclusive information about the occurrence of the domain splitting problem. This 
problem occurs in the ith partition (or subgraph) when Ai = 0, where i E [l, NJ. Moreover, the 
multiplicity of the null eigenvalue is equal to the number of distinct connected components in the 
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specific partition which has domain splitting problems. If the subgraph is connected, its algebraic 
connectivity is always positive. 

The amount of information contained in the ACV should not be overstated because isomorphic 
graphs are isospectral (or cospectral) graphs, i.e. graphs with the same spectrum. (However, isospectral 
graphs are not necessarily isomorphic.) In this sense, the ACV can be viewed as a useful but not 
conclusive parameter for evaluating the quality of domain partitioning. 

2.2. Graph representation of finite element meshes 

One approach to partition a generic finite element mesh is to associate a proper graph representation 
with the mesh and to partition the graph. There are several ways to associate graphs with meshes. In 
particular, three types of graphs associated with a mesh are considered here: the node graph (NG), the 
dual graph (DG) and the communication graph (CG). 

An advantage of using the DG for partitioning of finite element meshes is that the number of edges in 
the connectivity graph is reduced because the DG defines the connectivity of the finite elements by 
means of their boundaries instead of their nodes. This leads to smaller data storage requirement and a 
lower-order algebraic eigenvalue problem (compare Figs. 2(b) and (c)). However, for finite element 
meshes consisting of only 1-D finite elements such as framed structures, the elements are connected to 
their adjacent elements through O-D boundary nodes (pointwise). Therefore, there is no clear 
advantage in using the DG approach for domain partitioning of meshes of 1-D elements. 

A disadvantage of the DG approach is that it does not represent the true interprocess communication 
in parallel finite element analysis. The actual interprocess communication occurs across shared nodes in 
the original finite element mesh, but not shared boundaries (e.g. edges between 2-D elements or faces 
between 3-D elements). To better describe the communication pattern, Venkatakrishnan et al. [21] 
proposed the use of a communication graph (CG) which is defined as follows. The vertices in the 
communication graph represent finite elements in the original mesh. The edges in the CG represent 
adjacent finite elements that share a common node in the original mesh. Fig. 3(a) and (b) show the 
same finite element mesh and its associated dual graph (DG*) as in Figs. 2(a) and (c), respectively. Fig. 

(a) Finite element mesh 

(b) Dual graph DG* 

W Communication graph CGA 

Fig. 3. Correspondence among mesh, dual graph and communication graph. 
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3(c) shows the associated communication graph (CGA). The heavy lines in Fig. 3(c) show that DG* is 
contained in CGA. 

Both the DG and the CG do not differentiate among different types of finite elements. For example, 
if one or more Q4 elements in Fig. 3(a) are replaced by QS elements, both the DG and the CG remain 
the same as in Figs. 3(b) and (c), respectively. Therefore, the partitioning algorithms employing these 
graphs may not produce partitions with well-balanced computational loads for generic meshes with 
mixed finite element types. Nevertheless, in this case, the CG is expected to provide better results than 
the DG because of its more realistic representation of interprocess communication. 

For node-based partitioning, since the focus is on partitioning nodes in finite element meshes, the NG 
seems to be a natural choice. The use of the NG is advantageous for meshes consisting of only 1-D 
finite elements (e.g. framed structures) because meshes of this type usually have a fewer number of 
nodes than of elements, so the NG requires less data storage. However, the opposite is true for meshes 
consisting of 2-D or 3-D elements, especially of higher interpolation order. 

The best choice among different possible graph representations may depend on several factors such 
as the type of partitioning desired (node-based or element-based), the parallel solution algorithms 
(explicit or implicit), the size and type of the structure, and the effectiveness and computational cost of 
the partitioning algorithm. This topic is further investigated in the remainder of this paper. 

2.3. Element-based versus node-based partitioning 

As discussed previously, two different types of partitioning strategies, element-based partitioning and 
node-based partitioning, are required for implicit and explicit solution methods, respectively. For the 
transient structural dynamics analyses adopted as prototype problems in the present paper, the parallel 
central difference method proposed by Hajjar and Abel [14] is considered an example of explicit 
solution methods which require the node-based partitioning, while a slightly modified version of the 
parallel Newmark constant average acceleration method [12] described by Hajjar and Abel [13] is 
considered an example of implicit solution methods which require the element-based partitioning. 
Descriptions of these two parallel solution methods and their partitioning requirements are briefly 
discussed next. 

Parallel explicit analysis 
The parallel central difference method developed by Hajjar and Abel [14] has been implemented for 

explicit solutions of structural dynamics. The formulation for the central difference method is well 
known [22,23] and is not repeated here. The central difference algorithm is inherently amenable to 
parallel processing. With the use of lumped masses to yield a diagonal mass matrix, the solution scheme 
may proceed on a degree-of-freedom level without assembly of the global matrices and solution of 
simultaneous equations. 

To take advantage of parallel processing, the finite element domain is first partitioned into a number 
of subdomains which are then distributed among the processors, and the computation involved in each 
subdomain is carried out by a separate processor. The structural partitioning needed by the present 
central difference algorithm is shown in Fig. 4 for a simple two-dimensional frame. The elements in a 
particular substructure are either interior elements if both their nodes lie completely within the 
boundary of the substructure, or border elements if one of their nodes is resident in a neighboring 
substructure. The interior nodes in a particular substructure are nodes lying within the boundary of the 
substructure. The boundary nodes are a subset of the interior nodes and connected to at least one 
border element. The adjacent nodes (see Fig. 4) are also connected to at least one border element, but 
lie outside the boundary of the substructure. 

With this partition of structural data, the interprocess communication can be minimized by including 
the border elements on both of the processors associated with neighboring substructures. In this case, 
only one nearest-neighbor communication for exchanging the displacements of the boundary nodes is 
required per time step. This communication efficiency is achieved at the expense of a duplication of 
effort to perform the element calculations for the border elements on the processors sharing these 
elements. This approach is suitable for parallel analyses in which the number of border elements is 
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Fig. 4. Node-based partitioning of framed structural data for the parallel explicit algorithm [I41 

Interior node 

A 
Iflterior element 

Border element 

significantly smaller than the number of interior elements and the cost of interprocess communication is 
relatively high. This is usually the case for the type of problem and environment characterizing the 
current work. 

Parallel implicit analysis 
The present research implements a slightly modified version of the parallel Newmark constant 

average acceleration method [12] described by Hajjar and Abel [13] for implicit transient solution of 
structural dynamics. The formulation of the Newmark constant average acceleration method is also well 
known in the technical literature [22,23] and is not repeated here. This parallel implicit method uses a 
domain decomposition approach within the Newmark time stepping outer loop. The domain decompo- 
sition approach starts with partitioning the structure into a number of subdomains and assigns each 
subdomain to a separate processor. Then, substructure condensation is carried out on each processor 
independently and concurrently without any inter-process communication. Finally, a condensed set of 
system equations associated with unknowns along subdomain interfaces is solved by a parallel 
diagonally-preconditioned conjugate gradient algorithm (for discussion of the preconditioned conjugate 
gradient algorithm, see [24]). 

As discussed previously, the domain decomposition approach requires that the finite element domain 
be partitioned into a number of subdomains for substructuring analysis. The structural partitioning 
needed is shown in Fig. 5 for the same two-dimensional frame of Fig. 4. The nodes in a particular 
subdomain are either interior nodes, which lie within the boundary of the subdomain, or boundary 
nodes, which lie along the interfaces between subdomains. The boundary nodes are further categorized 
into primary and secondary boundary nodes. Each boundary node is a primary node in only one 
subdomain but, at the same time, a secondary boundary node in all other subdomains which share it. 
The interior elements in a particular subdomain are connected to at least one interior node. Finally, for 
1-D finite elements only, a second category exists, boundary elements, which are those elements 
connected only to boundary nodes. 

3. The spectral algorithms 

Three recursive spectral partitioning algorithms are discussed in this section. The first one is the 
recursive spectral bisection (RSB) algorithm presented by Simon [l], while the other two are the 
recursive spectral sequential-cut (RSS) algorithm and the recursive spectral two-way (RST) algorithm 
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Fig. 5. Element-based 

0 Interior node - Interior element 

m Primary boundary node - Boundary element 

0 Secondary boundary node 

partitioning of framed structural data for the parallel implicit algorithm [13]. 

both proposed by the writers. The RSS and RST algorithms employ the spectral partitioning method 
used by the RSB algorithm. However, unlike the RSB algorithm in which the number of partitions is 
restricted to an integer power of two, both the present algorithms can efficiently yield an arbitrary 
number of partitions. 

Fig. 6 illustrates the overall approach of the spectral partitioning algorithms investigated in this work. 
This figure shows that the spectral partitioning method is used in a preprocessing stage of the parallel 
finite element analysis. Note that the element-based partitioning is naturally obtained from a DG or CG 
approach. The node-based partitioning can be obtained from a NG, DG or CG approach; in this case, 
if the DG or CG is used, common boundary nodes of adjacent subdomains must be assigned uniquely 
to a subdomain. The recursive part of the partitioning process consists of building a Laplacian matrix of 
the associated graph, computing the second eigenpair of the Laplacian matrix, and partitioning the 
graph according to the bisection, sequential-cut or two-way strategy. Note that these three strategies 
only differ in the way a simple domain is partitioned into two subdomains. This process is repeated until 
reaching a specified number of partitions (N,). Finally, the results are collected into a database which 
can be used later for visualization of the partitions and by the parallel finite element analysis. 

3.1. Recursive spectral bisection (RSB) partitioning algorithm 

Based on the spectral partitioning method proposed by Pothen et al. [18], Simon [l] presented a 
recursive bisection algorithm for automatic partitioning of unstructured grids. To establish the 
partitioning of the grid, a DG representation has been used. The partitioning algorithm is called 
recursive spectral bisection (RSB) algorithm by Simon (1991) and is summarized in Table 1. 

There are particularly two notable features of this algorithm. First, the DG is used to construct the 
partitioning problem. As discussed previously, this approach decreases significantly the size of the 
eigenproblem associated with the Laplacian matrix. As a result, the computational storage and 
execution time required to solve the eigensystem are reduced. Second, this algorithm employs the 
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f Generic finite element mesh 

1 
Domain partitioning strategy 

Tc d + 
Laplacian matrix 

4 
I Second eigenvector and eigenvalue I 

I Spectral partitioning (RSB, RSS, or RST) I 

4 
1 Repeat until number o 

I Set partitioning results into database I 

Fig. 6. Spectral domain partitioning method. 

global information of the graph provided by the Fiedler vector to obtain an edge separator which 
partitions the graph into two subgraphs of nearly equal size (one vertex difference at most). 

Excellent partitioning results have been obtained using this algorithm, as reported by Simon [l] and 
more recently by Hsieh [12]. It has also been shown by Pothen et al. [18] that the separators computed 
by this algorithm compare quite favorably with separators computed by other previously proposed 
algorithms. 

However, there are some drawbacks associated with the RSB algorithm. First, the DG associated 
with a finite element mesh may be a disconnected graph. This situation may happen when n- 
dimensional finite elements are not connected through all their (n - 1)-dimensional boundaries and 
when the adjacent finite elements do not have the same geometric dimensions [25]. Although 
theoretically this algorithm is capable of handling non-connected graphs [18], this situation may not 
only create difficulties and complexities in the partitioning process but also deteriorate the partitioning 
results. 

Second, as discussed earlier, the DG does not represent the true interprocess communication in 
parallel finite element analysis. To better describe the communication pattern, the CG may be used. In 
the present work, an extended version of the RSB algorithm has been implemented, as illustrated by 

Table 1 
The recursive spectral bisection (RSB) algorithm [l] 

(1) Construct the dual (DG), communication (CG), or node graph (NG) associated with the finite element mesh.’ 
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm. 
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector. 
(4) Assign half of the vertices to each subdomain. 
(5) Repeat recursively for each subdomain. 

a Only the dual graph is considered by Simon [l]. Both the dual and communication graphs are considered by Venkatakrishnan 
et al. [21]. 
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Fig. 6. For the node-based partitioning, the NG, DG or CG can be used, while the DG or CG can be 
used for the element-based partitioning. 

Third, the bisection nature of the RSB algorithm is suitable for hypercube computers in which the 
number of processors is an integer power of two, but it is too restrictive for computing environments 
consisting of an arbitrary number of processors, such as the networked workstation environment used 
by the writers. 

The last drawback associated with the RSB method is related to its computational cost. In general, 
the solution of the second eigenvector (y2) for large meshes can be quite expensive, even when the dual 
graph approach is used. Venkatakrishnan et al. [20] have compared the execution time of the RSB, 
RCB and RGB algorithms for a graph with 15 606 vertices on a Silicon Graphics workstation (Iris 
4D/70). They found that the RSB algorithm is ‘quite expensive’ (1750 s for the RSB algorithm, while 4 
and 3 seconds for the RCB and RGB algorithms, respectively) although the performance of the 
algorithm improves considerably on a vector computer such as the Cray Y-MP because matrix vector 
products in the Lanczos algorithm can be vectorized. Barnard and Simon [26] have recently developed a 
fast multilevel implementation of the RSB algorithm which is reported to attain ‘about an order-of- 
magnitude improvement in run time on typical examples.’ This multilevel approach has not been 
implemented in the present work. 

3.2. Recursive spectral sequential-cut (RSS) partitioning algorithm 

The recursive spectral sequential-cut (RSS) algorithm partitions the graph in such a way that 
subgraphs are cut out of the original graph one by one (or sequentially) in a recursive fashion. The 
algorithm is given in Table 2. The present implementation allows the use of the DG, CG or NG (see 
Fig. 6). Fig. 7 illustrates the process of partitioning a graph with seventeen vertices into five subdomains 
using this algorithm. 

3.3. Recursive spectral two-way (RST) partitioning algorithm 

Instead of using a bisection approach, the recursive spectral two-way (RST) algorithm uses a two-way 
partitioning approach which partitions the graph into two parts not necessarily equal in size. The 
algorithm is given in Table 3. The number of vertices in each subdomain Di when the partitioning task 
is completed is denoted by mi. This is computed in advance by sequentially employing the following 
equation for i = 1,. . . , Np 

i-l 

[ 1 N_&Tlj 
j=l 

mi= N,_(i-1) (+ 1 if remainder # 0) 

in which Np is the number of available processors and N is the total number of vertices of the whole 
domain. The number of partitions desired in the intermediate subdomain in each two-way partitioning 
step is denoted by n, (initially np = Np for the whole domain). Each intermediate subdomain maintains 
a list I of subdomam numbers associated with Di which has been assigned to it (initially the list is 
(1,. . . , N,} for the whole domain). The kth component of this list is denoted by I(k). Fig. 8 

Table 2 
The recursive spectral sequential-cut (RSS) algorithm 

(1) Construct the dual (DG), communication (CG) or node graph (NG) associated with the finite element mesh. 
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm. 
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector. 
(4) Assign llnp of the vertices (discard remainder) to one subdomain and the remaining to the other, in which np is initially 

equal to the number of partitions (or processors) desired. 
(5) Repeat recursively for the larger subdomain in the previous step with np = np - 1 until all subdomains are defined (i.e. 

np = 1). 
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Initialization 

17 vertices 
(np = 5) 

Subdomain #I 

3 vertices 

14 vertices 

(np = 41 

Subdomain #2 

3 vertices 

11 vertices 

(np = 3) 

Subdomain #3 8 vertices 

3 vertices (np =2) 

Subdomain 114 subdomain %5 

4 vertices 4 vertices 
hp = 1) 

Fig. 7. Example of the RSS partitioning process. 

demonstrates the process of partitioning a graph with seventeen vertices into five subdomains using this 
algorithm. 

Comparing Tables 1 and 3, and making use of Fig. 8 as an example, one can easily verify that the 
RSB algorithm is obtained as a particular case of the more general RST algorithm when the number of 
processors (N,) is equal to an integer power of two. 

4. Numerical examples 

The three partitioning algorithms discussed in the previous section have been evaluated and 
compared using different types of structures modelled by l-D, 2-D and 3-D finite elements. Some 
typical results are reported here. The following nomenclature is adopted in the present study: 

% = the number of partitions (or processors), 

Nb = the number of boundary nodes in a subdomain, 

N” = the number of nodes in a subdomain, 

Nt? = the number of elements in a subdomain, 

N,I = the number of 1-D elements in a subdomain, 

N,z = the number of 2-D elements in a subdomain, 

Table 3 
The recursive spectral two-way (RST) algorithm 

(1) Construct the dual (DG), communication (CG) or node graph (NG) associated with the finite element mesh. 
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm. 
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector. 
(4) Compute the following integers: 

pl = np12 (discard remainder) 

P2 =BP - PI 

n = C ml,,, k=I 
Assign n vertices and the list of the first pl components in I(k) to one subdomain, and set np = pl for this subdomain. 
Assign the remaining vertices and the list of the remaining components in I(k) to the other subdomain, and set np = p2 for 
this subdomain. 

(5) Repeat recursively for each subdomain with np> 1. 
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Ne3 
Nd 
Tot(x) 
Sum(x) 
Max(x) 
Min(x) 
NG 
DG 
CG 
T 

CPU 

s 

E (%I 

np=5 
pl = 512 =2 
p2=5-2=3 
1= (1,2,3,4,5) 
n=ml+mz=8 

6 vertices 9 vertices 

np=2 np = 3 
pl=2/2=1 pl=3/2=1 
p2=2-l=l 
I = (1,2) 

~2~3-1~2 
1 = (3,4,5) 

n=ml=4 n=ms=3 

4 vertices 

np= 1 
1 = (11 

4 vertices 
np= 1 
1 = (2) 

6 vertices 

np = 2 
pl=2/2=1 
p2=2-l=l 
1 = (4,5) 
n=m4=3 

/ \ 

3 vertices E3 np= 1 
1= (4) 3 3 vertices 

np= 1 
1 = (5) 

Fig. 8. Example of the RST partitioning process. 

= the number of 3-D elements in a subdomain, 
= the number of subdomains that have disconnected regions, 
= total values of x in the whole domain, 
= summation of values of x over all subdomains, 
= maximum value of x among subdomains, 
= minimum value of x among subdomains, 
= node graph, 
= dual graph, 
= communication graph, 
= the CPU time (s) required for partitioning on a single DECsystem 5000, which includes 

time spent in data preparation for the algorithm, execution of the algorithm, and setting 
results into the database. 

= speed-up = 
Elapsed wall clock time for solution on one processor 
El 

apsed wall clock time for solution on Np processors 

= efficiency = Speed-v x 1oo N 
P 

4.1. Element-based partitioning for implicit analysis 

Four structures of different types have been used to evaluate and compare the partitioning algorithms 
discussed in the previous section. They include a framed structure modelled by 1-D elements, a building 
structure modelled by 1-D and 2-D elements, and two solid structures modelled by 3-D elements. 
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Fig. 9. The finite element model of a space station with 1428 1-D elements and 304 nodes 

In the comparative studies below, Tot(N,) is used to indicate the amount of interprocess communica- 
tion required in the parallel implicit analysis. It is also directly related to the size of the condensed set of 
system equations that is solved by a parallel preconditioned conjugate gradient algorithm. Therefore, 
the larger Tot(&) is, the more interprocess communication and synchronization are required. 
Max&,) / Min(N,) s h ows the balancing of communication loads among processors. Max(N,) / Min(N,) 
indicates the balancing of the computational loads of element calculations and substructure condensa- 
tion among processors. In addition, it is undesirable to have fragmented subdomains (which is indicated 
by ZVd) because they usually result in longer subdomain boundaries which implies more communication 
overhead. 

A space structure modelled by 1-D elements 
The space station of Fig. 9 has been used to evaluate the performance of the partitioning algorithms. 

The results are given in Table 4 and the following observations are obtained: 
(1) The CPU time spent by all the partitioning algorithms is only a few seconds, which is practically 

negligible when compared to the execution time required by a dynamic analysis. 
(2) As expected, the RST algorithm produces the same results as the RSB algorithm when Nr is an 

integer power of two. 

Table 4 
Comparison of different algorithms for element-based partitioning of the space station of Fig. 9 

N* Parameter RSB RSS RST 

3 Tc,. 15 14 
Tot(N, ) _ 38 38 
Max(N, ) _ 28 28 
Min(N,) _ 20 20 
N, _ 0 0 
Max(N, , ) _ 476 476 
Min(N, ,I _ 476 476 

4 T CPU 15 18 15 
Tot@‘, ) 44 50 44 
Max(N,) 32 37 32 
Min(N,) 16 17 16 
Nd 1 1 1 
Max(N,,) 357 357 257 
Min(N,,) 357 357 357 
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Fig. 10. A finite element model of a 12-story L-shaped building with 468 1-D beam-column elements, 72 2-D shell elements and 
482 nodes, 

(3) For ail cases studied, the RST algorithm gives partitions with smaller or at least not larger 
Tot(&) than the RSS algorithm. 

(4) Domain splitting (i.e. Nd # 0) occurs for all three algorithms for the case of NP = 4. 

A building structure modelled by 1 -D and 2-D elements 
The 1Zstory L-shaped building of Fig. 10 has been partitioned using different algorithms. The results 

are reported in Table 5. Although the present implementation assumes that all elements in the mesh 
have the same weight in the partitioning process, the use of the CG approach with all the three 

Table 5 
Comparison of different algorithms for element-based partitioning of the 12-story L-shaped building of Fig. 10 

N, Parameter RSB RSB RSS RSS RST 

(DC) (CG) (DC) (CC) (DC) 

RST 

(CC) 

3 T CPU 
Tot@‘, 1 
MN%) 
Min(N,) 

Nd 
Max(N,,) 
Min(N,, ) 
Max(N,,) 
Min(NJ 

4 T CPU 
TN% ) 
M=+%) 
Min(N,,) 

N, 
Max(N,,) 
Min(N,, ) 
Max(N,,) 
Min(N,,) 

_ 
_ 
_ 
_ 

3 4 4 4 3 4 
155 42 155 42 155 42 
156 28 156 28 156 28 
56 14 56 14 56 14 

1 0 1 0 1 0 
135 117 135 117 135 117 
63 117 63 117 63 117 
72 18 72 18 72 18 
0 18 0 18 0 18 

3 3 3 3 
139 28 139 28 
139 28 139 28 
75 14 75 14 

1 0 1 0 
180 156 180 156 
108 156 108 156 
72 24 72 24 

0 24 0 24 
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algorithms considered still produces a satisfactorily balanced distribution of elements among subdo- 
mains in this example which represents a mixture of 1-D and 2-D elements (see, e.g. Fig. 11(a)). 
However, the use of the DG approach with all the three algorithms considered yields unacceptable 
distribution of elements among subdomains (see, e.g. Fig. 11(b)), mainly because the DG of the mesh 
in this case is a non-connected graph. In addition, both the RSS(CG) and RST(CG) algorithms give the 
same results and domain splitting does not occur. The RSS(DG) and RST(DG) algorithms also give the 
same results; however, domain splitting occurs. 

To further evaluate the quality of domain partitioning, the ACV is given for the RST(CG) algorithm 
and NP = 4: 

AC;JRST(CG)] = (15.30,15.20,15.08,15.19) 

Note that all the elements of this vector are about the same value. This result is consistent with the 
statistics of Table 5 and the partitioning result shown in Fig. 11(a) where the RST(CG) algorithm is 
shown to produce well-balanced subdomains for this example. 

Solid structures modelled by 3-D elements 
Two solid structures have also been used in the present comparative studies. The first one is the 

turbine blade of Fig. 12 created by Wawrzynek [27], while the second one is the 12-bladed turbine disk 
of Fig. 13. The partitioning results are given in Tables 6 and 7. 

Fig. 11. Partitionings of the 12-story building of Fig. 10 by the (a) RSS(CG) and (b) RST(DG) algorithms. 
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I 

(b) 

Fig. 11 (Contd.) 

Fig. 12. A finite element model of a turbine blade with 944 20-noded 3-D elements and 6427 nodes [27]. 
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Fig. 13. A finite element model of a 12-bladed turbine disk with 504 3-D elements and 3828 nodes. 

From Tables 6 and 7, the following observations are obtained: 

(1) 

(2) 

(3) 

In most cases studied, the DG approach produces smaller Tot(N,) than the CG approach for the 
RSS algorithm, while the CG approach produces smaller Tot(N,,) than the DG approach for the 
RST algorithm. 
For the bladed disk example, the optimal partitioning for NP = 3, 4 or 6 seems to be a trivial task 
for the human. However, it is not the case for the partitioning algorithms. The RSS(DG), 
RST(DG) and RST(CG) algorithms deliver the optimal solutions, while the RSS(CG) algorithm 
does not. 
Except for the case of Nr, = 8 in Table 6, the RST(CG) algorithm gives partitions with smallest 
Tot(N,,). 

In addition, the evolution of the ACVs is given for the RST(CG) algorithm during the recursive 
process of partitioning the 1Zbladed disk of Fig. 13 into 8 subdomains: 

AC;JRST(CG)] = (2.31) 

AC;2[RST(CG)] = (2.39,2.52) 

AC:JRST(CG)] = (3.17,3.46,3.25,3.45) 

Table 6 
Comparison of different algorithms for element-based partitioning of the turbine blade of Fig. 12 

N, Parameter RSB RSB RSS RSS RST RST 

(DG) (CG) (DG) (CG) (DG) (CG) 

6 T _ CPU 117 126 124 123 
Tot(N,) 881 868 839 821 
Max(N, ) - 435 381 382 377 
Min(N,) _ 169 180 166 160 
N‘, - 0 0 0 0 
Max(NJ _ 158 158 158 158 
Min(N,,) 157 157 157 157 

8 T CPU 113 118 119 125 113 118 
Tot(N,) 1138 1179 989 1043 1138 1179 
Max(NJ 444 460 374 365 444 460 
Min(N,) 195 155 144 143 195 155 
Nd 0 0 0 0 0 0 
Max(N,,) 118 118 118 118 118 118 
Min(N,,) 118 118 118 118 118 118 
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Table 7 

Comparison of different algorithms for element-based uartitioning of the 12-bladed turbine disk of Fig. 13 

N* 

3 

4 

6 

8 

Parameter 

T CPU 
Tot(W 
Max(N, ) 
Min(N,,) 

Nd 

Max(% ) 
Min (N,, ) 

T CPU 
Tot(N, ) 

Ma% ) 

Min(N,) 

Nd 

Max(N,, ) 

Min(N,J 

T CPU 
Tot(N,) 
Max(N,) 

Min(N,) 

N, 

Max(N,,) 

Min(N,,) 

T vu 
Tot(N,) 

Max(N,) 

Min(N,) 

N, 

Max(N,,) 

Min(N,, ) 

RSB RSB RSS RSS RST RST 

(DG) (CG) (DG) (CG) (DG) (CG) 

_ _ 40 40 39 38 
_ _ 87 87 87 87 

_ 58 58 58 58 
_ _ 58 58 58 58 
_ _ 0 0 0 0 
_ _ 168 168 168 168 

- 168 168 168 168 

41 40 41 40 40 40 

116 116 116 153 116 116 

58 58 58 79 58 58 

58 58 58 74 58 58 

0 0 0 1 0 0 

126 126 126 126 126 126 

126 126 126 126 126 126 

_ _ 40 41 39 38 
_ _ 174 258 174 174 

_ 58 92 58 58 
_ _ 58 74 58 58 

_ 0 3 0 0 
_ _ 84 84 84 84 
_ _ 84 84 84 84 

39 41 42 42 41 39 

304 276 308 387 304 276 

76 69 79 121 76 69 

76 69 76 81 76 69 

4 0 3 4 4 0 

63 63 63 63 63 63 

63 63 63 63 63 63 

AC;JRST(CG)] = (4.72,5.84,4.76,6.35,4.86,6.00,4.74,5.99) 

For the cases of N,, = 2 and NP = 4, all the elements of the ACV are approximately equal. This is 
consistent with the fact that the RST(CG) algorithm delivers well-balanced subdomains for both cases. 
For the case of N, = 8, the elements of the ACV have wider range of values than the former two cases. 
This is also consistent with the fact that the subdomains delivered by the RST(CG) algorithm in this 
case are not as well-balanced as those in the former two cases. Note that the magnitude of the 
eigenvalues show a tendency to increase as NP increases. This is expected because, in general, the 
diameter of the subgraphs (associated with the subdomains) decreases. The statistics of the partitioning 
results for NP = 4 and Nr, = 8 are given in Table 7. Moreover, the ACV for the RST(DG) algorithm and 
N, = 4 is 

AC;JRST(DG)] = (1.69,1.65,1.44,1.39) 

Comparing the numerical results for ACzJRST(CG)] and AC:JRST(DG)], one can see that the 
magnitude of the eigenvalues is larger in the former case than in the later one. In this example, it has 
also been observed that the four subdomains obtained using the RST(CG) algorithm are similar to 
those obtained using the RST(DG) algorithm. Therefore, ]Ej for each subdomain is larger when the 
CG approach is used than when the DG approach is used. This fact is reflected in the magnitude of the 
eigenvalues. 
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Table 8 
Comparison of different algorithms for node-based partitioning of the space station of Fig. 9 (N,, = 3) 

Parameter RSS RST 

NG DG&CG NG DG&CG 

T CPU 
SWW 
MW% 1 
Min(N,,) 

Max(N, ) 
Min(N,) 

Max(N, ,I 
MiW, ,I 
Nd 

2 16 2 16 
72 83 75 83 
29 39 29 39 
18 18 20 18 

132 156 132 156 
120 115 120 115 
521 60.5 523 605 
497 456 494 456 

0 0 0 0 

4.2. Node-based partitioning for explicit analysis 

In addition to the use of the node graph (NG) approach for the node-based partitioning, the present 
research performs a simple extra step at the end of the algorithms with either DG or CG approach to 
assign uniquely common boundary nodes of two or more subdomains to a subdomain so that they can 
be also used for node-based partitioning. In this extra step, boundary nodes common to any two 
subdomains are assigned to the subdomain which has fewer nodes. The boundary node assignment is 
made such that a smooth boundary is generated between subdomains, i.e. a ‘zig-zag’ type of boundary 
is avoided. 

Numerical comparative studies among the partitioning algorithms discussed have been conducted 
using three structures of different types: (a) the space station of Fig. 9 consisting of 1-D elements, (b) 
the 1Zstory L-shaped building of Fig. 10 consisting of both 1-D and 2-D elements, and (c) the 1Zbladed 
turbine disk of Fig. 13 consisting of 3-D elements. As has been shown, the RST algorithm produces the 
same results as the RSB algorithm when NP is an integer power of two. In the studies here, the focus is 
on the comparison between the RSS and RST algorithms. The partitioning results are given in Tables 
8-10. Sum(N,) is related to the amount of interprocess communication, while Max(N,,)lMin(N,) shows 
the balancing of communication loads among processors. Max(N,) / Min(N,) and Max(N,) /Min(N,) 
indicate the balancing of the computational loads of equation solving and element calculations, 
respectively, among processors. 

From Tables S-10, the following observations can be obtained: 

Table 9 
Comparison of different algorithms for node-based partitioning of the 12-storey L-shaped building of Fig. 10 (N, = 3) 

Parameter RSS RST 

NG DG CG NG DG CG 

TCP” 3 3 3 3 3 3 
Sum(N,) 90 439 81 87 439 81 
Max(N, ) 39 290 39 34 290 39 
Min(N,) 18 64 14 19 64 14 
Max(N, ) 218 474 223 214 474 223 
Min(N,) 175 232 170 176 232 170 
Max(N,,) 207 211 215 204 211 215 
Min(N,, ) 153 95 137 155 95 137 
Max(N,,) 30 72 30 29 72 30 
Min(N,,) 24 34 24 24 34 24 
Nd 0 1 0 0 1 0 
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Table 10 

Comparison of different algorithms for node-based partitioning of the 12-bladed disk problem of Fig. 13 

% Parameter RSS RST 

NG DG CG NG DG 

4 T<,,, 139 28 27 123 27 

Sum(N,) 280 280 426 3.56 280 

Max(N, ) 70 70 131 89 70 

Min(N,) 70 70 79 x9 70 

Max(N, ) 1027 1027 1101 1046 1027 

Min(N,) 1027 1027 1023 1046 1027 

Min(NJ 132 132 144 134 132 

Min(N,,) 132 132 126 134 132 

Nd 0 0 1 0 0 

6 Tcp. 190 28 29 145 29 

Sum(N, ) 675 420 624 566 420 

Max(N,,) 118 70 131 130 70 

Min(N,,) 105 70 79 80 70 

Max(N, ) 768 708 779 768 708 

Min(N,) 740 708 725 718 708 

Max(NJ 98 90 100 98 90 

Min(NJ 88 90 84 88 90 

N<j 2 0 3 1 0 

8 Tc,. 234 31 33 148 29 

Sum(N, ) 795 759 947 672 777 

Max(N, ) 126 116 149 94 130 

Min(N,,) 82 76 81 66 76 

Max(N,) 594 610 635 572 711 

Min(N,) 553 537 542 544 531 

Max(N,,) 74 78 84 74 87 

Min(&) 66 63 63 66 63 

Nd 3 3 4 0 4 

CG 

26 

280 

70 

70 

1027 

1027 

132 

132 

0 

28 

420 

70 

70 

708 

708 

90 

90 

0 

27 

740 

116 

69 

613 

529 

80 

63 

0 

(1) 

(2) 

(3) 

(4) 

(9 

(6) 

In all examples studied, the CPU time spent by all the algorithms is very small compared to the 
execution time of a dynamic analysis. 
In the example of the space station, the NG approach produces better results than the DG and 
CG approaches for both the RSS and RST algorithms. In addition, the RSS(NG) algorithm gives 
the best results. 
In the example of the 12-storey L-shaped building, the RSS(CG) and RST(CG) algorithms give 
partitions with smallest Sum(N,), while the RST(NG) algorithm produces partitions with most 
balanced Nb, N,, N,, , and Ne2 among subdomains. In addition, the use of the DG approach gives 
very bad results, and domain splitting occurs. 
In the example of the 12-bladed disk, although the optimal partitioning into four or six 
subdomains seems to be a trivial task for the human, it is not the case for the partitioning 
algorithms. Only the RSS(DG), RSS(NG), RST(DG) and RST(CG) algorithms give the optimal 
solution for the case of Np = 4. The RSS(DG), RST(DG) and RST(CG) algorithms also give the 
optimal solution for the case of N, = 6. For the case of N, = 8 which does not have a trivial 
optimal solution, the RST(NG) algorithm gives the best results among all the considered 
algorithms. In addition, the CG approach produces better or at least not worse partitioning 
results than the DG approach for the RST algorithms, while it is opposite for the RSS algorithm. 
As the number of partitions (N,) increases, the RSS(CG), RSS(DG), RSS(NG) and RST(DG) 
algorithms seem to have a tendency to generate fragmented subdomains. 
In all the cases studied, the RST(CG) algorithm, which consistently delivers good partitioning 
results, has the best overall performance among all the considered algorithms. 

To show the effect of different partitions on the performance of the parallel central difference 
method, actual parallel analyses have been carried out on the rotating bladed-disk (shown in Fig. 13) 
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partitioned into six subdomains by different algorithms. Both geometric and rotational non-linearities 
are considered in the dynamic analyses [12]. Fig. 14 shows the partitionings of the bladed-disk model by 
the RSS(NG), RSS(CG), RST(NG) and RST(CG) algorithms. It should be noted that border elements 
(elements in gray) shared by adjacent subdomains are included in each of these subdomains, as 
illustrated by Fig. 14. The partitioning results have already been given in Table 10. The performance of 
the parallel analyses using six DECsystem 5000s are given in Table 11. From Table 10 (for the case of 
NP = 6) and Table 11, the following observations can be obtained: 

(1) The RST(CG) algorithm delivers partitions with balanced subdomains and the smallest subdo- 
main boundaries, resulting in the best performance of the parallel analysis. 

(2) Although the RST(NG) algorithm gives partitions with Sum@,,) smaller than that of the 
RSS(NG) algorithm, the former produces less balanced communication loads among processors. 

Fig. 14. Partitionings of the bladed-disk model of Fig. 13 by the (a) RSS(NG), (b) RSS(CG), (c) RST(NG) and (d) RST(CG) 

algorithms. 
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Table 11 
Performance of the parallel finite element analysis of the 12-bladed disk problem of Fig. 13 partitioned by different algorithms 

(N, = 6) 

Partitioning 
algorithm 

RSS(NG) 
RSS( CG) 
RST(NG) 
RST(CG) 

ipeed-up) 

4.9 
4.7 
4.8 
5.4 

E(s) 
(efficiency) 

82 
78 
80 
90 

In this case, as indicated in Table 11, the synchronzation overhead associated with the 
unbalanced communication loads among processors is slightly more significant than the overall 
communication overhead required. 

5. Conclusions 

This paper has shown that both the RSS and RST algorithms can efficiently produce an arbitrary 
number of partitions for generic finite element meshes. The use of different graph representations of 
the finite element meshes in the partitioning algorithms has also been investigated. It is found that in 
most cases the RST(CG) algorithm gives the best partitioning results among all the considered 
algorithms. However, the best combination of the partitioning algorithm (RSS or RST) and the graph 
(NG, DG or CG) associated with the finite element mesh is, in general, problem-dependent. In 
addition, all the considered algorithms deliver partitions in a very small amount of time compared to 
the computational time of a parallel non-linear dynamic analysis. 

The algebraic connectivity vector (ACV) has been introduced as a parameter to assess the quality of 
the domain partitioning for load-balancing among processors. It also gives direct information about the 
occurrence of domain splitting problem (i.e. the ith partition is split if Ai = 0). In addition, the 
multiplicity of the null eigenvalue is equal to the number of distinct connected components in the 
specific split partition. Of course, split partitions are also apparent if displayed graphically. It is 
important to avoid domain splitting because it usually increases communication overhead, and 
performance of parallel computations (especially implicit computations) can be seriously degraded. 
Future research is required to examine the important question of how much extra information 
concerning the quality of the partitioning can be extracted from the ACV. 

It is apparent, from the results of the numerical examples studied, that all of the spectral partitioning 
algorithms considered do not guarantee the avoidance of domain splitting problems. However, 
compared to many non-spectral partitioning algorithms, the application of spectral algorithms to this 
problem is promising because of existing theoretical support [19,20]. Further research is therefore 
needed in this area. 

The RSS and RST algorithms have been considered in the context of a coarse-grained parallel 
computing environment. However, the use of these algorithms for fine-grained partitioning should be 
investigated in future research. In this case, the computational cost of the partitioning process, which is 
mainly determined by the efficiency of the eigensolver used, needs to be carefully addressed. The 
eigensolver has to cope efficiently with eigenproblems of a broad range of sizes. To this effect, the fast 
multilevel implementation of Barnard and Simon [26] might be considered. 

Very recently, a node weighting scheme has been implemented by Simon in the RSB algorithm [28] 
for meshes with different types of finite elements. In this scheme, each vertex in the graph associated 
with the mesh has a positive weight to account for different computational loads in different types of 
elements. The bisection is performed according to weights instead of the number of vertices. The 
Fiedler vector (yZ) components provide an ordering of the vertices. Then, the weights are added up 
from the first vertex, the second one, and so on, until half of the total weight is reached. This scheme 
can also be adopted by both the RSS and RST algorithms presented in this paper. Future research is 
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needed to investigate the effectiveness of this approach for parallel solution of finite element meshes 
with different types of elements, such as the example in Fig. 10. 

In the present work, attention has been on static load-balancing techniques which distribute 
computational loads among processors only once and before the actual computation starts. This 
approach is suitable for problems in which the distribution of computational loads among processors is 
constant throughout the course of the analysis. However, for dynamic analysis involving localized 
non-linear responses, the presence of localized non-linearity may create unbalanced workloads among 
processors, resulting in reduction in parallel efficiency. Therefore, there is a need to study and develop 
dynamic load-balancing techniques that can redistribute computational loads among processors during 
parallel analysis in a cost-effective fashion. In the present networked workstation environment where 
the cost of interprocess communication is high, the development of suitable dynamic load-balancing 
techniques is a particularly challenging research task. 
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