
Computer methods
in applied

mechanlcs and
englneerlng

ELSEWIER Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Recursive spectral algorithms for automatic domain
partitioning in parallel finite element analysis

Shang-Hsien Hsieh”.*,l, Glaucio H. PaulinobT2, John F. Abelb’3
“School of Civil Engineering, 1284 Civil Engineering Building, Purdue University, West Lafayette, IN 47907-1284, USA

bSchool of Civil and Environmental Engineering, Hollister Hall, Cornell University, Ithaca, NY 14853-3501, USA

Received 19 July 1993; revised manuscript received 24 January 1994

Abstract

Recently, several domain partitioning algorithms have been proposed to effect load-balancing among processors in parallel
finite element analysis. The recursive spectral bisection (RSB) algorithm [l] has been shown to be effective. However, the
bisection nature of the RSB results in partitions of an integer power of two, which is too restrictive for computing environments
consisting of an arbitrary number of processors. This paper presents two recursive spectral partitioning algorithms, both of which
generalize the RSB algorithm for an arbitrary number of partitions. These algorithms are based on a graph partitioning approach
which includes spectral techniques and graph representation of finite element meshes. The ‘algebraic connectivity vector’ is
introduced as a parameter to assess the quality of the partitioning results. Both node-based and element-based partitioning
strategies are discussed. The spectral algorithms are also evaluated and compared for coarse-grained partitioning using different
types of structures modelled by l-D, 2-D and 3-D finite elements.

1. Introduction

To take advantage of distributed-memory parallel-processing in finite element analysis, the domain is
usually partitioned (or decomposed) into a number of subdomains which are distributed among the
processors. The computation for each subdomain is carried out by a separate processor. The key
problems of this approach are how to partition the domain to achieve well-balanced workload
distribution among processors and how to minimize the amount of interprocess communication so that
significant speed-up can be obtained in the parallel analysis.

The problem of domain partitioning of finite element meshes is equivalent to the problem of
partitioning the graph associated with the mesh. Graph partitioning is an important NP-complete
problem [2] and so is the general nature of mesh partitioning. Therefore, obtaining optimal solutions is
practically intractable, but is also unnecessary because satisfactory near-optimal solutions can always be
sought at a relatively low cost by the use of fast and efficient heuristic algorithms.

Since the finite element meshes considered may be large and generic (irregular shapes, including
multiply connected and/or branched domains), manual partitioning may be difficult even with the help
of interactive computer graphics. Simon [l] has shown that visual perception alone may be inadequate
for the task of partitioning large three-dimensional structures. Therefore, automatic algorithms are
generally required.

* Corresponding author.
I Postdoctoral Research Associate; formerly Graduate Research Assistant at the School of Civil and Environmental

Engineering and the Program of Computer Graphics, Cornell University.
* Graduate Research Assistant.
’ Professor of Structural Engineering.

Elsevier Science S.A.
SSDI 0045-7825(94)00704-7

138 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Several automatic partitioning algorithms have been proposed. For example, Flower et al. [3]
presented a simulated annealing method for mapping irregular finite element domains to parallel
processors. Although these types of methods can give almost optimal results, they are usually expensive
and time-consuming, especially for problems of large size. Malone [4] proposed an automated mesh
decomposition method for transient dynamic analysis on hypercube multiprocessor computers using an
explicit time integrator. The method is called reduced bandwidth decomposition (RBD) and is based on
a scheme which reduces the bandwidth of the matrix representation of the nodal connectivities in the
mesh. Farhat [5] also proposed an automatic finite element domain decomposer which is based on a
greedy algorithm and seeks to decompose a finite element mesh into a set of balanced domains sharing
a minimum number of common nodal points. In an attempt to avoid domain splitting problems,
Al-Nasra and Nguyen [6] incorporated geometrical information of the finite element meshes into an
automatic decomposition algorithm similar to the one proposed by Farhat [5]. Padovan and Kwang [7]
developed a direct element connect filling (DECF) scheme which employs multiple starting nodes and
proceeds with an algorithm similar to the one by Farhat [5], simultaneously for each starting node, to
avoid possible domain splitting. The symmetry of the finite element domain is considered in the
selection of starting nodes and during the partitioning process. Recently, Miler et al. [S] developed a
partitioning method which makes use of the geometric structure of a given finite element or finite
difference mesh to find the desired partitions.

Simon [l] proposed the recursive spectral bisection (RSB) algorithm for hypercube architectures,
which consist of 2d processors (d is the dimension of the hypercube). Simon [l] also compared the RSB
algorithm with two other algorithms: the recursive coordinate bisection (RCB) and the recursive graph
bisection (RGB) algorithms, and showed the superiority of the RSB algorithm over both the RCB and
the RGB algorithms. Recently, Hendrickson and Leland 19, lo] extended the spectral bisection through
the use of multiple eigenvectors to allow for partitioning of a domain into 4 or 8 subdomains at each
stage of a recursive decomposition. They proposed the recursive spectral quadrisection (RSQ)
algorithm for 4k partitions and the recursive spectral octasection (RSO) for 8k partitions; in each, k is a
positive integer number. They have also concluded that the RSQ and RSO algorithms are less
expensive than multiple levels of the RSB algorithm. However, all these algorithms (RSB, RSQ and
RSO) have been specifically developed for hypercube or mesh machine architectures.

Williams [ll] evaluated the performance of three partitioning algorithms for dynamic load-balancing
using a 16-processor NCUBE machine. He compared the simulated annealing, the orthogonal recursive
bisection and the eigenvector recursive bisection (analogous to the RSB) methods. He concluded that
the eigenvector recursive bisection seems to be a good compromise between the other two methods.

In numerical comparative studies using structures of different types, Hsieh [12] has demonstrated that
the RSB algorithm is more effective than the algorithms proposed by Al-Nasra and Nguyen [6], Farhat
[5] and Malone [4] for coarse-grained partitioning. A main reason the spectral algorithms are SO
effective is that they use global properties of the graph associated with the mesh to perform the
partitioning, i.e. a spectral analysis is conducted to compute separators based on eigenvector
components of the graph. The algorithms by Al-Nasra and Nguyen [6], Farhat [5] and Malone [4]
mainly use local information in the graph, such as the neighboring information of a vertex.

The bisection nature of the RSB algorithm is suitable for hypercube computers, but it is too
restrictive for applications on coarse-grained parallel computing environments consisting of an arbitrary
number of processors. To generalize the RSB algorithm for an arbitrary number of partitions, two new
recursive spectral algorithms called the recursive spectral sequential-cut (RSS) algorithm and the
recursive spectral two-way (RST) algorithm, respectively, are investigated in this paper.

Different solution methods used in the analysis may require different strategies for domain
partitioning. Two types of partitioning strategies may be classified: element-based partitioning and
node-based partitioning. The element-based partitioning focuses on partitioning elements in finite
element meshes, while the node-based partitioning focuses on partitioning nodes. For parallel solutions
of structural dynamics, implicit solution methods often require element-based partitioning (see, e.g.,
[13]), while explicit methods may require either type depending on the parallel implementation (see,
e.g. [4, 141). Both types of partitioning are considered in this paper.

The partitioning algorithms addressed in this paper are not specific to a single hardware configura-

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 139

tion, but instead are suitable for a variety of machine environments which share a few common
features. The parallel computing environment used in this work consists of up to six DECsystem 5000s.
These UNIX workstations are connected by Ethernet and communicate via the TCP/IP (Transmission
Control Protocol / Internet Protocol). The interprocess communication and synchronization are
achieved in a message-passing environment provided by ISIS [15]. This is a coarse-grained, distributed-
memory environment where the number of processors used is small and no global memory is shared
among processors.

The remainder of this paper is organized as follows. Section 2 presents relevant concepts of graph
theory. This includes a discussion about spectral techniques applied to graphs and various graph
representations of finite element meshes. Moreover, element-based and node-based partitioning
strategies for implicit and explicit solution methods, respectively, in dynamic analysis are discussed. In
Section 3, the spectral algorithms RSB, RSS and RST are presented. These algorithms are evaluated
and compared in Section 4 using practical finite element examples such as a space station, an L-shaped
building, a 12-bladed turbine disk, and a turbine blade. Finally, in Section 5, conclusions are drawn and
directions for future work are discussed.

2. Preliminaries

For the purpose of discussion of domain partitioning algorithms, it is necessary to introduce some
essential concepts and definitions of graph theory and to establish their relationship to matrix analysis
and finite element analysis. These concepts and definitions are presented in this section. Next, various
graph representations of finite element meshes and different partitioning strategies for implicit versus
explicit dynamic analysis are also discussed.

2.1. Applied graph theory

This section presents some basic concepts and definitions of graph theory which are central to this
paper. For further details the reader is referred to the books by Harary [16] and Deo [17].

A graph G = (V, E) consists of a non-null finite set of vertices V= {u, , u2, . . . , un} together with a set
of edges E = {e,, e2,. . . , e,} which are unordered pairs of distinct values form V; E = {(ui, u,) 1 ui E V,
uj E V, i #j}. Edges are elements of the set E and IEl = m is the cardinality of the set E. Vertices are
elements of the set V and /VI = n is the cardinality of the set V. A graph obeying the above definition is
an undirected graph because the set E is comprised of unordered pairs of vertices.

The correspondence between a graph and a matrix can be established by considering a symmetric
matrix K of order N with non-null diagonal components kii. The ordered and undirected graph of K is
denoted by G K = (V”, EK). This graph has N vertices numbered from 1 to N, and {u;, vi} E EK if and
only if k,, = kji # 0, i Zj, where ui denotes the vertex of EK with label i.

The vertices u and u in G are adjacent vertices if {u, u} E E. Two graphs G and H are said to be
isomorphic (G E H) if there exists a one-to-one correspondence between their vertices which preserves
adjacency, i.e. the graphs have the same topology.

The adjacent set of the subset W of the vertices of G, Adj(W), is defined as

Adj(W)={uE(V-W))(u,u)EE,uEW,WCV}

If W = {u}, Adj(W) = Adj(u). The degree of the set W is defined as

Deg(W) =]Adj(W)]

Similarly, the degree of a vertex u is defined as

Des(u) =]Adj(u)]

A path in a connected graph G = (V, E) is an ordered set of vertices (ul, u2, . . . , u,,+*) such that uk

and ‘k+l are adjacent for k = 1, . . . , n. This path has length n and it may also be interpreted as an

140 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

ordered set of IZ edges (e,, e2, . . . , e,). The distance d(u, u) between two vertices u and u of G is the
length of the shortest path joining these vertices. The eccentricity of a vertex u is defined as

e(u) = max{d(u, u) 1 u E V}

The diameter of G is given by

S(G) = max{e(u)) u E V} = max{d(u, u) 1 u, u E V}

Consider, for example, the finite element mesh of Fig. l(a) with nine nodes, four T3 elements, two
Q4 elements, and no boundary conditions. For the sake of simplicity, assume one degree of freedom
(dof) per node. The stiffness matrix representation associated with this mesh is given in Fig. l(b) by the
symmetric matrix K (of order nine) with non-null elements k, represented by x’s. With respect to the
corresponding (node) graph in Fig. l(c), VK = (1, . . . ,9} and EK = { {1,2}, {1,4}, {1,5}, . . . , {8,9}},
where each pair {i, i} contains two adjacent vertices. If W= { 1,2,3}, then Adj(W) = {4,5,6} and
Deg(W) = 3. For the sixth vertex, Adj(6) = {2,3,5,8,9} and Deg(6) = 5. By inspection, one can easily
verify that for this graph S(G) = 3.

Suppose that the vertex No. 5 in the graph GK of Fig. l(c) is relocated between the vertices No. 7
and No. 8, as shown in Fig. l(d) by the graph HL. The graphs G K and HL are isomorphic under the
correspondence it, i - 10 (i = 1, . . . ,9) for the vertex labels.

Next, consider the finite element mesh of Fig. 2(a) with fifteen nodes, eight T3 elements, four Q4
elements, and no boundary conditions. The connectivity of the nodes can be represented topologically
by the node graph (NG) of Fig. 2(b). To establish the connectivity of the finite elements in a topological
sense, a dual graph (DG) representation is used as illustrated by Fig. 2(c).

The geometric aspect of the dual graph is used here for the purpose of representing the connectivity
of the finite elements in a generic mesh. The vertices in the dual graph represent finite elements in the
original mesh. The edges in the dual graph represent adjacent finite elements that share a common
boundary in the original mesh. According to this definition, a finite element of dimension n (n = 1,2,3)

1 2 3

4 5

ISI

6

7 8 9

FEM mesh
(9 nodes; 6 elements)

(a)

Graph G”
(9 vertices; 18 edges)

(c)

-xx xx
xxxxxx

xx xx
xx xx x
xxxxxxxx

xx xx xx
xx xx

xxxxx
X xx

Matrix K
(9 x 9)

(b)

Graph HL = GK
(9 vertices; 18 edges)

(d)

Fig. 1. Correspondence among mesh, matrix and graph

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 141

Finite Element Mesh (arbitrary nodal and element numbering)

(b) Node graph NG*

Cd) L(NG*)

Cc) Dual graph DG*

i-1 0 0 0 o-1 0 0 0 0 d
.13 o-1 0 0 o-1 0 0 0 0
002-10-1000000
o-1-1 3 0 0 0 o-1 0 0 0
00001-1000000
0 o-1 o-1 3 0 0 0 o-1 0
.1000002-10000
o-1 0 0 0 O-l 3 o-1 0 0
0 0 o-1 0 0 0 0 3-1 o-1
0 0 0 0 0 0 O-l-l 2 0 0
00000-100002-1
_o 0 0 0 0 0 0 o-1 o-1 2

(e) UDG*)

WJ Fiedler vector for L(NG*)
(h = 0.639)

(g) Fiedler vector for L(DG* 1
(h = 0.264)

Fig. 2. Spectral analysis.

has boundaries of dimension (n - 1). As an example, by applying this definition to the finite element
mesh of Fig. 2(a), the dual graph of Fig. 2(c) is obtained.

Spectral techniques for graph partitioning
A spectral method, based on algebraic properties of the graph associated with the finite element

mesh, can be used to solve the partitioning problem [Ml. The spectral method associates an adequate
graph representation (G) to the finite element mesh and forms the Laplacian matrix L(G). Here, G is
assumed to be a connected graph. The spectral properties of the Laplacian matrix are of special interest
to the present work. For example, a particular eigenvector of this matrix can be used to partition the
vertices of a graph into two sets.

The Laplacian matrix L(G) is a symmetric matrix of order N, where N = /VI. The components 1, of
L(G) are defined as

-1 if {ui, u,} E E

f,j =

{

Deg(v,) if i =j
0 otherwise

From this definition, it follows that the Laplacian matrix L(G) can be obtained from the degree matrix
D(G) and the adjacency matrix A(G) of a given labeled graph G

142 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

L(G) = D(G) - A(G)

where D(G) is a diagonal matrix of order N with diagonal components dii = Deg(u,), and A(G) is an
adjacency matrix of order N with components aij = 1 if {ui, vi} E E and zero otherwise. Fig. 2(d) shows
the Laplacian matrix L(NGA) associated with the node graph NGA, and Fig. 2(e) shows the Laplacian
matrix L(DGA) associated with the dual graph DGA.

The Laplacian matrix L(G) is positive semidefinite and it determines G up to isomorphism. Let the
eigenvalues of L(G) be ordered as

The smallest eigenvalue is always A, = 0 and the associated eigenvector y1 has all of its normalized
elements equal to 1. If G is connected, the second eigenvalue A, is always non-zero and positive. The
eigenvalue A, is designated ‘algebraic connectivity’ and is related to the vertex and edge connectivities
of the graph. The components of the second eigenvector y, are associated with the corresponding
vertices of the graph. Differences in the values of the components of y, give topological distance
information about the vertices of the graph. The components of y, also provide a weighting for these
vertices which can be used for partitioning the graph. For example, all vertices with weights below the
median weight may be assigned to one partition, and the rest to the other partition.

The special properties of the second eigenvalue A, and its corresponding eigenvector y, have been
studied by Fiedler [19] and Anderson and Morley [20], among other researchers. The second
eigenvector y, is called the Fiedler vector by Simon [l]. (It should be noted that Simon uses the
opposite sign for the Laplacian matrix defined above, probably because it may be more convenient from
a numerical point of view.)

Fig. 2(f) and (g) show both the Fiedler vector y, and the algebraic connectivity A, for the node graph
NGA and the dual graph DGA. In Fig. 2(f), a bisection of the vertices of the graph can be executed by
assigning the vertices with values smaller than the median weight (= 0.282) to one subdomain and the
remaining to the other. The same procedure can be used to partition the vertices in Fig. 2(g) into two
sets.

Algebraic connectivity of the partitioning
The algebraic connectivity (A*) of a graph (or subgraph) serves as a measure of connectivity of the

graph (or subgraph). Here, we introduce the algebraic connectivity vector (ACV) for the purpose of
investigating the algebraic connectivity of the partitioning

AC;;[Alg(G)] = (A:, A:, . . . , A?)

where N, is the number of partitions, Alg denotes the partitioning algorithm being used and G denotes
a graph associated with the finite element mesh. Each element of the ACV represents a measure of the
algebraic connectivity of the ith partition, Ai, i E [l, NJ. Some comments about relationship of A, with
the size and connectivity of a finite element mesh are given in the following. First, consider a square
grid with n x n (n is a positive integer number) Q4 elements and its associated NG. As n increases, A,
decreases because the diameter of the associated NG increases. Next, for the same n x n grid, if Q8
elements are used instead of Q4 elements, A, increases. This is because [El is larger for the associated
NG when Q8 elements are used.

The ACV gives useful information for assessing load balancing among processors. If a graph
(corresponding to a finite element domain) is partitioned into well-balanced subgraphs, one would
expect that all the elements of the ACV are approximately equal, i.e. all the subdomains have nearly
the same value for Ai, i E [l, NJ. This means that the normalized ACV would be close to a unity
vector.

The ACV gives conclusive information about the occurrence of the domain splitting problem. This
problem occurs in the ith partition (or subgraph) when Ai = 0, where i E [l, NJ. Moreover, the
multiplicity of the null eigenvalue is equal to the number of distinct connected components in the

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 143

specific partition which has domain splitting problems. If the subgraph is connected, its algebraic
connectivity is always positive.

The amount of information contained in the ACV should not be overstated because isomorphic
graphs are isospectral (or cospectral) graphs, i.e. graphs with the same spectrum. (However, isospectral
graphs are not necessarily isomorphic.) In this sense, the ACV can be viewed as a useful but not
conclusive parameter for evaluating the quality of domain partitioning.

2.2. Graph representation of finite element meshes

One approach to partition a generic finite element mesh is to associate a proper graph representation
with the mesh and to partition the graph. There are several ways to associate graphs with meshes. In
particular, three types of graphs associated with a mesh are considered here: the node graph (NG), the
dual graph (DG) and the communication graph (CG).

An advantage of using the DG for partitioning of finite element meshes is that the number of edges in
the connectivity graph is reduced because the DG defines the connectivity of the finite elements by
means of their boundaries instead of their nodes. This leads to smaller data storage requirement and a
lower-order algebraic eigenvalue problem (compare Figs. 2(b) and (c)). However, for finite element
meshes consisting of only 1-D finite elements such as framed structures, the elements are connected to
their adjacent elements through O-D boundary nodes (pointwise). Therefore, there is no clear
advantage in using the DG approach for domain partitioning of meshes of 1-D elements.

A disadvantage of the DG approach is that it does not represent the true interprocess communication
in parallel finite element analysis. The actual interprocess communication occurs across shared nodes in
the original finite element mesh, but not shared boundaries (e.g. edges between 2-D elements or faces
between 3-D elements). To better describe the communication pattern, Venkatakrishnan et al. [21]
proposed the use of a communication graph (CG) which is defined as follows. The vertices in the
communication graph represent finite elements in the original mesh. The edges in the CG represent
adjacent finite elements that share a common node in the original mesh. Fig. 3(a) and (b) show the
same finite element mesh and its associated dual graph (DG*) as in Figs. 2(a) and (c), respectively. Fig.

(a) Finite element mesh

(b) Dual graph DG*

W Communication graph CGA

Fig. 3. Correspondence among mesh, dual graph and communication graph.

144 S.H. Hsieh et al. / Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

3(c) shows the associated communication graph (CGA). The heavy lines in Fig. 3(c) show that DG* is
contained in CGA.

Both the DG and the CG do not differentiate among different types of finite elements. For example,
if one or more Q4 elements in Fig. 3(a) are replaced by QS elements, both the DG and the CG remain
the same as in Figs. 3(b) and (c), respectively. Therefore, the partitioning algorithms employing these
graphs may not produce partitions with well-balanced computational loads for generic meshes with
mixed finite element types. Nevertheless, in this case, the CG is expected to provide better results than
the DG because of its more realistic representation of interprocess communication.

For node-based partitioning, since the focus is on partitioning nodes in finite element meshes, the NG
seems to be a natural choice. The use of the NG is advantageous for meshes consisting of only 1-D
finite elements (e.g. framed structures) because meshes of this type usually have a fewer number of
nodes than of elements, so the NG requires less data storage. However, the opposite is true for meshes
consisting of 2-D or 3-D elements, especially of higher interpolation order.

The best choice among different possible graph representations may depend on several factors such
as the type of partitioning desired (node-based or element-based), the parallel solution algorithms
(explicit or implicit), the size and type of the structure, and the effectiveness and computational cost of
the partitioning algorithm. This topic is further investigated in the remainder of this paper.

2.3. Element-based versus node-based partitioning

As discussed previously, two different types of partitioning strategies, element-based partitioning and
node-based partitioning, are required for implicit and explicit solution methods, respectively. For the
transient structural dynamics analyses adopted as prototype problems in the present paper, the parallel
central difference method proposed by Hajjar and Abel [14] is considered an example of explicit
solution methods which require the node-based partitioning, while a slightly modified version of the
parallel Newmark constant average acceleration method [12] described by Hajjar and Abel [13] is
considered an example of implicit solution methods which require the element-based partitioning.
Descriptions of these two parallel solution methods and their partitioning requirements are briefly
discussed next.

Parallel explicit analysis
The parallel central difference method developed by Hajjar and Abel [14] has been implemented for

explicit solutions of structural dynamics. The formulation for the central difference method is well
known [22,23] and is not repeated here. The central difference algorithm is inherently amenable to
parallel processing. With the use of lumped masses to yield a diagonal mass matrix, the solution scheme
may proceed on a degree-of-freedom level without assembly of the global matrices and solution of
simultaneous equations.

To take advantage of parallel processing, the finite element domain is first partitioned into a number
of subdomains which are then distributed among the processors, and the computation involved in each
subdomain is carried out by a separate processor. The structural partitioning needed by the present
central difference algorithm is shown in Fig. 4 for a simple two-dimensional frame. The elements in a
particular substructure are either interior elements if both their nodes lie completely within the
boundary of the substructure, or border elements if one of their nodes is resident in a neighboring
substructure. The interior nodes in a particular substructure are nodes lying within the boundary of the
substructure. The boundary nodes are a subset of the interior nodes and connected to at least one
border element. The adjacent nodes (see Fig. 4) are also connected to at least one border element, but
lie outside the boundary of the substructure.

With this partition of structural data, the interprocess communication can be minimized by including
the border elements on both of the processors associated with neighboring substructures. In this case,
only one nearest-neighbor communication for exchanging the displacements of the boundary nodes is
required per time step. This communication efficiency is achieved at the expense of a duplication of
effort to perform the element calculations for the border elements on the processors sharing these
elements. This approach is suitable for parallel analyses in which the number of border elements is

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 145

Fig. 4. Node-based partitioning of framed structural data for the parallel explicit algorithm [I41

Interior node

A
Iflterior element

Border element

significantly smaller than the number of interior elements and the cost of interprocess communication is
relatively high. This is usually the case for the type of problem and environment characterizing the
current work.

Parallel implicit analysis
The present research implements a slightly modified version of the parallel Newmark constant

average acceleration method [12] described by Hajjar and Abel [13] for implicit transient solution of
structural dynamics. The formulation of the Newmark constant average acceleration method is also well
known in the technical literature [22,23] and is not repeated here. This parallel implicit method uses a
domain decomposition approach within the Newmark time stepping outer loop. The domain decompo-
sition approach starts with partitioning the structure into a number of subdomains and assigns each
subdomain to a separate processor. Then, substructure condensation is carried out on each processor
independently and concurrently without any inter-process communication. Finally, a condensed set of
system equations associated with unknowns along subdomain interfaces is solved by a parallel
diagonally-preconditioned conjugate gradient algorithm (for discussion of the preconditioned conjugate
gradient algorithm, see [24]).

As discussed previously, the domain decomposition approach requires that the finite element domain
be partitioned into a number of subdomains for substructuring analysis. The structural partitioning
needed is shown in Fig. 5 for the same two-dimensional frame of Fig. 4. The nodes in a particular
subdomain are either interior nodes, which lie within the boundary of the subdomain, or boundary
nodes, which lie along the interfaces between subdomains. The boundary nodes are further categorized
into primary and secondary boundary nodes. Each boundary node is a primary node in only one
subdomain but, at the same time, a secondary boundary node in all other subdomains which share it.
The interior elements in a particular subdomain are connected to at least one interior node. Finally, for
1-D finite elements only, a second category exists, boundary elements, which are those elements
connected only to boundary nodes.

3. The spectral algorithms

Three recursive spectral partitioning algorithms are discussed in this section. The first one is the
recursive spectral bisection (RSB) algorithm presented by Simon [l], while the other two are the
recursive spectral sequential-cut (RSS) algorithm and the recursive spectral two-way (RST) algorithm

146 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Fig. 5. Element-based

0 Interior node - Interior element

m Primary boundary node - Boundary element

0 Secondary boundary node

partitioning of framed structural data for the parallel implicit algorithm [13].

both proposed by the writers. The RSS and RST algorithms employ the spectral partitioning method
used by the RSB algorithm. However, unlike the RSB algorithm in which the number of partitions is
restricted to an integer power of two, both the present algorithms can efficiently yield an arbitrary
number of partitions.

Fig. 6 illustrates the overall approach of the spectral partitioning algorithms investigated in this work.
This figure shows that the spectral partitioning method is used in a preprocessing stage of the parallel
finite element analysis. Note that the element-based partitioning is naturally obtained from a DG or CG
approach. The node-based partitioning can be obtained from a NG, DG or CG approach; in this case,
if the DG or CG is used, common boundary nodes of adjacent subdomains must be assigned uniquely
to a subdomain. The recursive part of the partitioning process consists of building a Laplacian matrix of
the associated graph, computing the second eigenpair of the Laplacian matrix, and partitioning the
graph according to the bisection, sequential-cut or two-way strategy. Note that these three strategies
only differ in the way a simple domain is partitioned into two subdomains. This process is repeated until
reaching a specified number of partitions (N,). Finally, the results are collected into a database which
can be used later for visualization of the partitions and by the parallel finite element analysis.

3.1. Recursive spectral bisection (RSB) partitioning algorithm

Based on the spectral partitioning method proposed by Pothen et al. [18], Simon [l] presented a
recursive bisection algorithm for automatic partitioning of unstructured grids. To establish the
partitioning of the grid, a DG representation has been used. The partitioning algorithm is called
recursive spectral bisection (RSB) algorithm by Simon (1991) and is summarized in Table 1.

There are particularly two notable features of this algorithm. First, the DG is used to construct the
partitioning problem. As discussed previously, this approach decreases significantly the size of the
eigenproblem associated with the Laplacian matrix. As a result, the computational storage and
execution time required to solve the eigensystem are reduced. Second, this algorithm employs the

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 147

f Generic finite element mesh

1
Domain partitioning strategy

Tc d +
Laplacian matrix

4
I Second eigenvector and eigenvalue I

I Spectral partitioning (RSB, RSS, or RST) I

4
1 Repeat until number o

I Set partitioning results into database I

Fig. 6. Spectral domain partitioning method.

global information of the graph provided by the Fiedler vector to obtain an edge separator which
partitions the graph into two subgraphs of nearly equal size (one vertex difference at most).

Excellent partitioning results have been obtained using this algorithm, as reported by Simon [l] and
more recently by Hsieh [12]. It has also been shown by Pothen et al. [18] that the separators computed
by this algorithm compare quite favorably with separators computed by other previously proposed
algorithms.

However, there are some drawbacks associated with the RSB algorithm. First, the DG associated
with a finite element mesh may be a disconnected graph. This situation may happen when n-
dimensional finite elements are not connected through all their (n - 1)-dimensional boundaries and
when the adjacent finite elements do not have the same geometric dimensions [25]. Although
theoretically this algorithm is capable of handling non-connected graphs [18], this situation may not
only create difficulties and complexities in the partitioning process but also deteriorate the partitioning
results.

Second, as discussed earlier, the DG does not represent the true interprocess communication in
parallel finite element analysis. To better describe the communication pattern, the CG may be used. In
the present work, an extended version of the RSB algorithm has been implemented, as illustrated by

Table 1
The recursive spectral bisection (RSB) algorithm [l]

(1) Construct the dual (DG), communication (CG), or node graph (NG) associated with the finite element mesh.’
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm.
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector.
(4) Assign half of the vertices to each subdomain.
(5) Repeat recursively for each subdomain.

a Only the dual graph is considered by Simon [l]. Both the dual and communication graphs are considered by Venkatakrishnan
et al. [21].

148 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Fig. 6. For the node-based partitioning, the NG, DG or CG can be used, while the DG or CG can be
used for the element-based partitioning.

Third, the bisection nature of the RSB algorithm is suitable for hypercube computers in which the
number of processors is an integer power of two, but it is too restrictive for computing environments
consisting of an arbitrary number of processors, such as the networked workstation environment used
by the writers.

The last drawback associated with the RSB method is related to its computational cost. In general,
the solution of the second eigenvector (y2) for large meshes can be quite expensive, even when the dual
graph approach is used. Venkatakrishnan et al. [20] have compared the execution time of the RSB,
RCB and RGB algorithms for a graph with 15 606 vertices on a Silicon Graphics workstation (Iris
4D/70). They found that the RSB algorithm is ‘quite expensive’ (1750 s for the RSB algorithm, while 4
and 3 seconds for the RCB and RGB algorithms, respectively) although the performance of the
algorithm improves considerably on a vector computer such as the Cray Y-MP because matrix vector
products in the Lanczos algorithm can be vectorized. Barnard and Simon [26] have recently developed a
fast multilevel implementation of the RSB algorithm which is reported to attain ‘about an order-of-
magnitude improvement in run time on typical examples.’ This multilevel approach has not been
implemented in the present work.

3.2. Recursive spectral sequential-cut (RSS) partitioning algorithm

The recursive spectral sequential-cut (RSS) algorithm partitions the graph in such a way that
subgraphs are cut out of the original graph one by one (or sequentially) in a recursive fashion. The
algorithm is given in Table 2. The present implementation allows the use of the DG, CG or NG (see
Fig. 6). Fig. 7 illustrates the process of partitioning a graph with seventeen vertices into five subdomains
using this algorithm.

3.3. Recursive spectral two-way (RST) partitioning algorithm

Instead of using a bisection approach, the recursive spectral two-way (RST) algorithm uses a two-way
partitioning approach which partitions the graph into two parts not necessarily equal in size. The
algorithm is given in Table 3. The number of vertices in each subdomain Di when the partitioning task
is completed is denoted by mi. This is computed in advance by sequentially employing the following
equation for i = 1,. . . , Np

i-l

[1 N_&Tlj
j=l

mi= N,_(i-1) (+ 1 if remainder # 0)

in which Np is the number of available processors and N is the total number of vertices of the whole
domain. The number of partitions desired in the intermediate subdomain in each two-way partitioning
step is denoted by n, (initially np = Np for the whole domain). Each intermediate subdomain maintains
a list I of subdomam numbers associated with Di which has been assigned to it (initially the list is
(1,. . . , N,} for the whole domain). The kth component of this list is denoted by I(k). Fig. 8

Table 2
The recursive spectral sequential-cut (RSS) algorithm

(1) Construct the dual (DG), communication (CG) or node graph (NG) associated with the finite element mesh.
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm.
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector.
(4) Assign llnp of the vertices (discard remainder) to one subdomain and the remaining to the other, in which np is initially

equal to the number of partitions (or processors) desired.
(5) Repeat recursively for the larger subdomain in the previous step with np = np - 1 until all subdomains are defined (i.e.

np = 1).

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (199.5) 137-162 149

Initialization

17 vertices
(np = 5)

Subdomain #I

3 vertices

14 vertices

(np = 41

Subdomain #2

3 vertices

11 vertices

(np = 3)

Subdomain #3 8 vertices

3 vertices (np =2)

Subdomain 114 subdomain %5

4 vertices 4 vertices
hp = 1)

Fig. 7. Example of the RSS partitioning process.

demonstrates the process of partitioning a graph with seventeen vertices into five subdomains using this
algorithm.

Comparing Tables 1 and 3, and making use of Fig. 8 as an example, one can easily verify that the
RSB algorithm is obtained as a particular case of the more general RST algorithm when the number of
processors (N,) is equal to an integer power of two.

4. Numerical examples

The three partitioning algorithms discussed in the previous section have been evaluated and
compared using different types of structures modelled by l-D, 2-D and 3-D finite elements. Some
typical results are reported here. The following nomenclature is adopted in the present study:

% = the number of partitions (or processors),

Nb = the number of boundary nodes in a subdomain,

N” = the number of nodes in a subdomain,

Nt? = the number of elements in a subdomain,

N,I = the number of 1-D elements in a subdomain,

N,z = the number of 2-D elements in a subdomain,

Table 3
The recursive spectral two-way (RST) algorithm

(1) Construct the dual (DG), communication (CG) or node graph (NG) associated with the finite element mesh.
(2) Compute the second eigenvector of the Laplacian matrix (Fiedler vector) of the graph using the Lanczos algorithm.
(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector.
(4) Compute the following integers:

pl = np12 (discard remainder)

P2 =BP - PI

n = C ml,,, k=I
Assign n vertices and the list of the first pl components in I(k) to one subdomain, and set np = pl for this subdomain.
Assign the remaining vertices and the list of the remaining components in I(k) to the other subdomain, and set np = p2 for
this subdomain.

(5) Repeat recursively for each subdomain with np> 1.

150 S.H. Hsieh et al. i Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Ne3
Nd
Tot(x)
Sum(x)
Max(x)
Min(x)
NG
DG
CG
T

CPU

s

E (%I

np=5
pl = 512 =2
p2=5-2=3
1= (1,2,3,4,5)
n=ml+mz=8

6 vertices 9 vertices

np=2 np = 3
pl=2/2=1 pl=3/2=1
p2=2-l=l
I = (1,2)

~2~3-1~2
1 = (3,4,5)

n=ml=4 n=ms=3

4 vertices

np= 1
1 = (11

4 vertices
np= 1
1 = (2)

6 vertices

np = 2
pl=2/2=1
p2=2-l=l
1 = (4,5)
n=m4=3

/ \

3 vertices E3 np= 1
1= (4) 3 3 vertices

np= 1
1 = (5)

Fig. 8. Example of the RST partitioning process.

= the number of 3-D elements in a subdomain,
= the number of subdomains that have disconnected regions,
= total values of x in the whole domain,
= summation of values of x over all subdomains,
= maximum value of x among subdomains,
= minimum value of x among subdomains,
= node graph,
= dual graph,
= communication graph,
= the CPU time (s) required for partitioning on a single DECsystem 5000, which includes

time spent in data preparation for the algorithm, execution of the algorithm, and setting
results into the database.

= speed-up =
Elapsed wall clock time for solution on one processor
El

apsed wall clock time for solution on Np processors

= efficiency = Speed-v x 1oo N
P

4.1. Element-based partitioning for implicit analysis

Four structures of different types have been used to evaluate and compare the partitioning algorithms
discussed in the previous section. They include a framed structure modelled by 1-D elements, a building
structure modelled by 1-D and 2-D elements, and two solid structures modelled by 3-D elements.

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 151

Fig. 9. The finite element model of a space station with 1428 1-D elements and 304 nodes

In the comparative studies below, Tot(N,) is used to indicate the amount of interprocess communica-
tion required in the parallel implicit analysis. It is also directly related to the size of the condensed set of
system equations that is solved by a parallel preconditioned conjugate gradient algorithm. Therefore,
the larger Tot(&) is, the more interprocess communication and synchronization are required.
Max&,) / Min(N,) s h ows the balancing of communication loads among processors. Max(N,) / Min(N,)
indicates the balancing of the computational loads of element calculations and substructure condensa-
tion among processors. In addition, it is undesirable to have fragmented subdomains (which is indicated
by ZVd) because they usually result in longer subdomain boundaries which implies more communication
overhead.

A space structure modelled by 1-D elements
The space station of Fig. 9 has been used to evaluate the performance of the partitioning algorithms.

The results are given in Table 4 and the following observations are obtained:
(1) The CPU time spent by all the partitioning algorithms is only a few seconds, which is practically

negligible when compared to the execution time required by a dynamic analysis.
(2) As expected, the RST algorithm produces the same results as the RSB algorithm when Nr is an

integer power of two.

Table 4
Comparison of different algorithms for element-based partitioning of the space station of Fig. 9

N* Parameter RSB RSS RST

3 Tc,. 15 14
Tot(N,) _ 38 38
Max(N,) _ 28 28
Min(N,) _ 20 20
N, _ 0 0
Max(N, ,) _ 476 476
Min(N, ,I _ 476 476

4 T CPU 15 18 15
Tot@‘,) 44 50 44
Max(N,) 32 37 32
Min(N,) 16 17 16
Nd 1 1 1
Max(N,,) 357 357 257
Min(N,,) 357 357 357

152 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Fig. 10. A finite element model of a 12-story L-shaped building with 468 1-D beam-column elements, 72 2-D shell elements and
482 nodes,

(3) For ail cases studied, the RST algorithm gives partitions with smaller or at least not larger
Tot(&) than the RSS algorithm.

(4) Domain splitting (i.e. Nd # 0) occurs for all three algorithms for the case of NP = 4.

A building structure modelled by 1 -D and 2-D elements
The 1Zstory L-shaped building of Fig. 10 has been partitioned using different algorithms. The results

are reported in Table 5. Although the present implementation assumes that all elements in the mesh
have the same weight in the partitioning process, the use of the CG approach with all the three

Table 5
Comparison of different algorithms for element-based partitioning of the 12-story L-shaped building of Fig. 10

N, Parameter RSB RSB RSS RSS RST

(DC) (CG) (DC) (CC) (DC)

RST

(CC)

3 T CPU
Tot@‘, 1
MN%)
Min(N,)

Nd
Max(N,,)
Min(N,,)
Max(N,,)
Min(NJ

4 T CPU
TN%)
M=+%)
Min(N,,)

N,
Max(N,,)
Min(N,,)
Max(N,,)
Min(N,,)

_
_
_
_

3 4 4 4 3 4
155 42 155 42 155 42
156 28 156 28 156 28
56 14 56 14 56 14

1 0 1 0 1 0
135 117 135 117 135 117
63 117 63 117 63 117
72 18 72 18 72 18
0 18 0 18 0 18

3 3 3 3
139 28 139 28
139 28 139 28
75 14 75 14

1 0 1 0
180 156 180 156
108 156 108 156
72 24 72 24

0 24 0 24

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 153

algorithms considered still produces a satisfactorily balanced distribution of elements among subdo-
mains in this example which represents a mixture of 1-D and 2-D elements (see, e.g. Fig. 11(a)).
However, the use of the DG approach with all the three algorithms considered yields unacceptable
distribution of elements among subdomains (see, e.g. Fig. 11(b)), mainly because the DG of the mesh
in this case is a non-connected graph. In addition, both the RSS(CG) and RST(CG) algorithms give the
same results and domain splitting does not occur. The RSS(DG) and RST(DG) algorithms also give the
same results; however, domain splitting occurs.

To further evaluate the quality of domain partitioning, the ACV is given for the RST(CG) algorithm
and NP = 4:

AC;JRST(CG)] = (15.30,15.20,15.08,15.19)

Note that all the elements of this vector are about the same value. This result is consistent with the
statistics of Table 5 and the partitioning result shown in Fig. 11(a) where the RST(CG) algorithm is
shown to produce well-balanced subdomains for this example.

Solid structures modelled by 3-D elements
Two solid structures have also been used in the present comparative studies. The first one is the

turbine blade of Fig. 12 created by Wawrzynek [27], while the second one is the 12-bladed turbine disk
of Fig. 13. The partitioning results are given in Tables 6 and 7.

Fig. 11. Partitionings of the 12-story building of Fig. 10 by the (a) RSS(CG) and (b) RST(DG) algorithms.

154 S. H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

------------ ---_-_ _____--_----- -s-e-

I

(b)

Fig. 11 (Contd.)

Fig. 12. A finite element model of a turbine blade with 944 20-noded 3-D elements and 6427 nodes [27].

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 155

Fig. 13. A finite element model of a 12-bladed turbine disk with 504 3-D elements and 3828 nodes.

From Tables 6 and 7, the following observations are obtained:

(1)

(2)

(3)

In most cases studied, the DG approach produces smaller Tot(N,) than the CG approach for the
RSS algorithm, while the CG approach produces smaller Tot(N,,) than the DG approach for the
RST algorithm.
For the bladed disk example, the optimal partitioning for NP = 3, 4 or 6 seems to be a trivial task
for the human. However, it is not the case for the partitioning algorithms. The RSS(DG),
RST(DG) and RST(CG) algorithms deliver the optimal solutions, while the RSS(CG) algorithm
does not.
Except for the case of Nr, = 8 in Table 6, the RST(CG) algorithm gives partitions with smallest
Tot(N,,).

In addition, the evolution of the ACVs is given for the RST(CG) algorithm during the recursive
process of partitioning the 1Zbladed disk of Fig. 13 into 8 subdomains:

AC;JRST(CG)] = (2.31)

AC;2[RST(CG)] = (2.39,2.52)

AC:JRST(CG)] = (3.17,3.46,3.25,3.45)

Table 6
Comparison of different algorithms for element-based partitioning of the turbine blade of Fig. 12

N, Parameter RSB RSB RSS RSS RST RST

(DG) (CG) (DG) (CG) (DG) (CG)

6 T _ CPU 117 126 124 123
Tot(N,) 881 868 839 821
Max(N,) - 435 381 382 377
Min(N,) _ 169 180 166 160
N‘, - 0 0 0 0
Max(NJ _ 158 158 158 158
Min(N,,) 157 157 157 157

8 T CPU 113 118 119 125 113 118
Tot(N,) 1138 1179 989 1043 1138 1179
Max(NJ 444 460 374 365 444 460
Min(N,) 195 155 144 143 195 155
Nd 0 0 0 0 0 0
Max(N,,) 118 118 118 118 118 118
Min(N,,) 118 118 118 118 118 118

156 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Table 7

Comparison of different algorithms for element-based uartitioning of the 12-bladed turbine disk of Fig. 13

N*

3

4

6

8

Parameter

T CPU
Tot(W
Max(N,)
Min(N,,)

Nd

Max(%)
Min (N,,)

T CPU
Tot(N,)

Ma%)

Min(N,)

Nd

Max(N,,)

Min(N,J

T CPU
Tot(N,)
Max(N,)

Min(N,)

N,

Max(N,,)

Min(N,,)

T vu
Tot(N,)

Max(N,)

Min(N,)

N,

Max(N,,)

Min(N,,)

RSB RSB RSS RSS RST RST

(DG) (CG) (DG) (CG) (DG) (CG)

_ _ 40 40 39 38
_ _ 87 87 87 87

_ 58 58 58 58
_ _ 58 58 58 58
_ _ 0 0 0 0
_ _ 168 168 168 168

- 168 168 168 168

41 40 41 40 40 40

116 116 116 153 116 116

58 58 58 79 58 58

58 58 58 74 58 58

0 0 0 1 0 0

126 126 126 126 126 126

126 126 126 126 126 126

_ _ 40 41 39 38
_ _ 174 258 174 174

_ 58 92 58 58
_ _ 58 74 58 58

_ 0 3 0 0
_ _ 84 84 84 84
_ _ 84 84 84 84

39 41 42 42 41 39

304 276 308 387 304 276

76 69 79 121 76 69

76 69 76 81 76 69

4 0 3 4 4 0

63 63 63 63 63 63

63 63 63 63 63 63

AC;JRST(CG)] = (4.72,5.84,4.76,6.35,4.86,6.00,4.74,5.99)

For the cases of N,, = 2 and NP = 4, all the elements of the ACV are approximately equal. This is
consistent with the fact that the RST(CG) algorithm delivers well-balanced subdomains for both cases.
For the case of N, = 8, the elements of the ACV have wider range of values than the former two cases.
This is also consistent with the fact that the subdomains delivered by the RST(CG) algorithm in this
case are not as well-balanced as those in the former two cases. Note that the magnitude of the
eigenvalues show a tendency to increase as NP increases. This is expected because, in general, the
diameter of the subgraphs (associated with the subdomains) decreases. The statistics of the partitioning
results for NP = 4 and Nr, = 8 are given in Table 7. Moreover, the ACV for the RST(DG) algorithm and
N, = 4 is

AC;JRST(DG)] = (1.69,1.65,1.44,1.39)

Comparing the numerical results for ACzJRST(CG)] and AC:JRST(DG)], one can see that the
magnitude of the eigenvalues is larger in the former case than in the later one. In this example, it has
also been observed that the four subdomains obtained using the RST(CG) algorithm are similar to
those obtained using the RST(DG) algorithm. Therefore,]Ej for each subdomain is larger when the
CG approach is used than when the DG approach is used. This fact is reflected in the magnitude of the
eigenvalues.

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 1.57

Table 8
Comparison of different algorithms for node-based partitioning of the space station of Fig. 9 (N,, = 3)

Parameter RSS RST

NG DG&CG NG DG&CG

T CPU
SWW
MW% 1
Min(N,,)

Max(N,)
Min(N,)

Max(N, ,I
MiW, ,I
Nd

2 16 2 16
72 83 75 83
29 39 29 39
18 18 20 18

132 156 132 156
120 115 120 115
521 60.5 523 605
497 456 494 456

0 0 0 0

4.2. Node-based partitioning for explicit analysis

In addition to the use of the node graph (NG) approach for the node-based partitioning, the present
research performs a simple extra step at the end of the algorithms with either DG or CG approach to
assign uniquely common boundary nodes of two or more subdomains to a subdomain so that they can
be also used for node-based partitioning. In this extra step, boundary nodes common to any two
subdomains are assigned to the subdomain which has fewer nodes. The boundary node assignment is
made such that a smooth boundary is generated between subdomains, i.e. a ‘zig-zag’ type of boundary
is avoided.

Numerical comparative studies among the partitioning algorithms discussed have been conducted
using three structures of different types: (a) the space station of Fig. 9 consisting of 1-D elements, (b)
the 1Zstory L-shaped building of Fig. 10 consisting of both 1-D and 2-D elements, and (c) the 1Zbladed
turbine disk of Fig. 13 consisting of 3-D elements. As has been shown, the RST algorithm produces the
same results as the RSB algorithm when NP is an integer power of two. In the studies here, the focus is
on the comparison between the RSS and RST algorithms. The partitioning results are given in Tables
8-10. Sum(N,) is related to the amount of interprocess communication, while Max(N,,)lMin(N,) shows
the balancing of communication loads among processors. Max(N,) / Min(N,) and Max(N,) /Min(N,)
indicate the balancing of the computational loads of equation solving and element calculations,
respectively, among processors.

From Tables S-10, the following observations can be obtained:

Table 9
Comparison of different algorithms for node-based partitioning of the 12-storey L-shaped building of Fig. 10 (N, = 3)

Parameter RSS RST

NG DG CG NG DG CG

TCP” 3 3 3 3 3 3
Sum(N,) 90 439 81 87 439 81
Max(N,) 39 290 39 34 290 39
Min(N,) 18 64 14 19 64 14
Max(N,) 218 474 223 214 474 223
Min(N,) 175 232 170 176 232 170
Max(N,,) 207 211 215 204 211 215
Min(N,,) 153 95 137 155 95 137
Max(N,,) 30 72 30 29 72 30
Min(N,,) 24 34 24 24 34 24
Nd 0 1 0 0 1 0

158 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Table 10

Comparison of different algorithms for node-based partitioning of the 12-bladed disk problem of Fig. 13

% Parameter RSS RST

NG DG CG NG DG

4 T<,,, 139 28 27 123 27

Sum(N,) 280 280 426 3.56 280

Max(N,) 70 70 131 89 70

Min(N,) 70 70 79 x9 70

Max(N,) 1027 1027 1101 1046 1027

Min(N,) 1027 1027 1023 1046 1027

Min(NJ 132 132 144 134 132

Min(N,,) 132 132 126 134 132

Nd 0 0 1 0 0

6 Tcp. 190 28 29 145 29

Sum(N,) 675 420 624 566 420

Max(N,,) 118 70 131 130 70

Min(N,,) 105 70 79 80 70

Max(N,) 768 708 779 768 708

Min(N,) 740 708 725 718 708

Max(NJ 98 90 100 98 90

Min(NJ 88 90 84 88 90

N<j 2 0 3 1 0

8 Tc,. 234 31 33 148 29

Sum(N,) 795 759 947 672 777

Max(N,) 126 116 149 94 130

Min(N,,) 82 76 81 66 76

Max(N,) 594 610 635 572 711

Min(N,) 553 537 542 544 531

Max(N,,) 74 78 84 74 87

Min(&) 66 63 63 66 63

Nd 3 3 4 0 4

CG

26

280

70

70

1027

1027

132

132

0

28

420

70

70

708

708

90

90

0

27

740

116

69

613

529

80

63

0

(1)

(2)

(3)

(4)

(9

(6)

In all examples studied, the CPU time spent by all the algorithms is very small compared to the
execution time of a dynamic analysis.
In the example of the space station, the NG approach produces better results than the DG and
CG approaches for both the RSS and RST algorithms. In addition, the RSS(NG) algorithm gives
the best results.
In the example of the 12-storey L-shaped building, the RSS(CG) and RST(CG) algorithms give
partitions with smallest Sum(N,), while the RST(NG) algorithm produces partitions with most
balanced Nb, N,, N,, , and Ne2 among subdomains. In addition, the use of the DG approach gives
very bad results, and domain splitting occurs.
In the example of the 12-bladed disk, although the optimal partitioning into four or six
subdomains seems to be a trivial task for the human, it is not the case for the partitioning
algorithms. Only the RSS(DG), RSS(NG), RST(DG) and RST(CG) algorithms give the optimal
solution for the case of Np = 4. The RSS(DG), RST(DG) and RST(CG) algorithms also give the
optimal solution for the case of N, = 6. For the case of N, = 8 which does not have a trivial
optimal solution, the RST(NG) algorithm gives the best results among all the considered
algorithms. In addition, the CG approach produces better or at least not worse partitioning
results than the DG approach for the RST algorithms, while it is opposite for the RSS algorithm.
As the number of partitions (N,) increases, the RSS(CG), RSS(DG), RSS(NG) and RST(DG)
algorithms seem to have a tendency to generate fragmented subdomains.
In all the cases studied, the RST(CG) algorithm, which consistently delivers good partitioning
results, has the best overall performance among all the considered algorithms.

To show the effect of different partitions on the performance of the parallel central difference
method, actual parallel analyses have been carried out on the rotating bladed-disk (shown in Fig. 13)

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (199.5) 137-162 159

partitioned into six subdomains by different algorithms. Both geometric and rotational non-linearities
are considered in the dynamic analyses [12]. Fig. 14 shows the partitionings of the bladed-disk model by
the RSS(NG), RSS(CG), RST(NG) and RST(CG) algorithms. It should be noted that border elements
(elements in gray) shared by adjacent subdomains are included in each of these subdomains, as
illustrated by Fig. 14. The partitioning results have already been given in Table 10. The performance of
the parallel analyses using six DECsystem 5000s are given in Table 11. From Table 10 (for the case of
NP = 6) and Table 11, the following observations can be obtained:

(1) The RST(CG) algorithm delivers partitions with balanced subdomains and the smallest subdo-
main boundaries, resulting in the best performance of the parallel analysis.

(2) Although the RST(NG) algorithm gives partitions with Sum@,,) smaller than that of the
RSS(NG) algorithm, the former produces less balanced communication loads among processors.

Fig. 14. Partitionings of the bladed-disk model of Fig. 13 by the (a) RSS(NG), (b) RSS(CG), (c) RST(NG) and (d) RST(CG)

algorithms.

160 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

Table 11
Performance of the parallel finite element analysis of the 12-bladed disk problem of Fig. 13 partitioned by different algorithms

(N, = 6)

Partitioning
algorithm

RSS(NG)
RSS(CG)
RST(NG)
RST(CG)

ipeed-up)

4.9
4.7
4.8
5.4

E(s)
(efficiency)

82
78
80
90

In this case, as indicated in Table 11, the synchronzation overhead associated with the
unbalanced communication loads among processors is slightly more significant than the overall
communication overhead required.

5. Conclusions

This paper has shown that both the RSS and RST algorithms can efficiently produce an arbitrary
number of partitions for generic finite element meshes. The use of different graph representations of
the finite element meshes in the partitioning algorithms has also been investigated. It is found that in
most cases the RST(CG) algorithm gives the best partitioning results among all the considered
algorithms. However, the best combination of the partitioning algorithm (RSS or RST) and the graph
(NG, DG or CG) associated with the finite element mesh is, in general, problem-dependent. In
addition, all the considered algorithms deliver partitions in a very small amount of time compared to
the computational time of a parallel non-linear dynamic analysis.

The algebraic connectivity vector (ACV) has been introduced as a parameter to assess the quality of
the domain partitioning for load-balancing among processors. It also gives direct information about the
occurrence of domain splitting problem (i.e. the ith partition is split if Ai = 0). In addition, the
multiplicity of the null eigenvalue is equal to the number of distinct connected components in the
specific split partition. Of course, split partitions are also apparent if displayed graphically. It is
important to avoid domain splitting because it usually increases communication overhead, and
performance of parallel computations (especially implicit computations) can be seriously degraded.
Future research is required to examine the important question of how much extra information
concerning the quality of the partitioning can be extracted from the ACV.

It is apparent, from the results of the numerical examples studied, that all of the spectral partitioning
algorithms considered do not guarantee the avoidance of domain splitting problems. However,
compared to many non-spectral partitioning algorithms, the application of spectral algorithms to this
problem is promising because of existing theoretical support [19,20]. Further research is therefore
needed in this area.

The RSS and RST algorithms have been considered in the context of a coarse-grained parallel
computing environment. However, the use of these algorithms for fine-grained partitioning should be
investigated in future research. In this case, the computational cost of the partitioning process, which is
mainly determined by the efficiency of the eigensolver used, needs to be carefully addressed. The
eigensolver has to cope efficiently with eigenproblems of a broad range of sizes. To this effect, the fast
multilevel implementation of Barnard and Simon [26] might be considered.

Very recently, a node weighting scheme has been implemented by Simon in the RSB algorithm [28]
for meshes with different types of finite elements. In this scheme, each vertex in the graph associated
with the mesh has a positive weight to account for different computational loads in different types of
elements. The bisection is performed according to weights instead of the number of vertices. The
Fiedler vector (yZ) components provide an ordering of the vertices. Then, the weights are added up
from the first vertex, the second one, and so on, until half of the total weight is reached. This scheme
can also be adopted by both the RSS and RST algorithms presented in this paper. Future research is

S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162 161

needed to investigate the effectiveness of this approach for parallel solution of finite element meshes
with different types of elements, such as the example in Fig. 10.

In the present work, attention has been on static load-balancing techniques which distribute
computational loads among processors only once and before the actual computation starts. This
approach is suitable for problems in which the distribution of computational loads among processors is
constant throughout the course of the analysis. However, for dynamic analysis involving localized
non-linear responses, the presence of localized non-linearity may create unbalanced workloads among
processors, resulting in reduction in parallel efficiency. Therefore, there is a need to study and develop
dynamic load-balancing techniques that can redistribute computational loads among processors during
parallel analysis in a cost-effective fashion. In the present networked workstation environment where
the cost of interprocess communication is high, the development of suitable dynamic load-balancing
techniques is a particularly challenging research task.

Acknowledgment

The writers wish to thank Dr. Horst D. Simon of NASA Ames Research Center for kindly providing
the source code of the RSB algorithm. The support of NASA Lewis Research Center under Grant No.
NAG 3-1063 has been essential to this work and is appreciated. The partial support from the U.S. Air
Force Office of Scientific Research under Contract No. AFOSR-90-0211 is also appreciated. Equipment
grants from both the Digital Equipment Corporation and Hewlett-Packard to the Cornell Program of
Computer Graphics are gratefully acknowledged. In addition, Glaucio H. Paulino would like to
acknowledge the financial support provided by the Brazilian Agency CNPq (National Council for
Research and Development). Any opinions expressed herein are those of the writers and do not
necessarily reflect the views of the sponsors or equipment donors.

References

[l] H.D. Simon, Partitioning of unstructured problems for parallel processing, Comput. Syst. Engrg. 2 (1991) 135-148.
[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman

and Company, New York, 1979).
[3] J. Flower, S. Otto and M. Salama, Optimal mapping of irregular finite element domains to parallel processors, in: A.K.

Noor, ed., Parallel Computations and Their Impact on Mechanics (ASME, New York, 1987) 239-250.
[4] J.G. Malone, Automatic mesh decomposition and concurrent finite element analysis for hypercube multiprocessor

computers, Comput. Methods Appl. Mech. Engrg. 70 (1988) 27-58.
[5] C. Farhat, A simple and efficient automatic FEM domain decomposer, Comput. & Structures 28 (1988) 579-602.
[6] M. Al-Nasra and D.T. Nguyen, An algorithm for domain decomposition in finite element analysis, Comput. & Structures 39

(1991) 277-289.
[7] J. Padovan and A. Kwang, Hierarchically parallelized constrained nonlinear solvers with automated substructuring, Comput.

& Structures 41 (1991) 7-33.
[8] G.L. Miler, S.-H. Teng, W. Thurston and S.A. Vavasis, Automatic mesh partitioning, Technical report CTC92TR112,

Cornell Theory Center, Cornell University, Ithaca, NY 14853, 1992.
[9] B. Hendrickson and R. Leland, An improved spectral partitioning algorithm for mapping parallel computations, Sandia

Report SAND92-1460, Category UC-405, Sandia National Laboratories, Albuquerque, NM 87185, 1992.
[lo] B. Hendrickson and R. Leland, Multidimensional spectral load balancing, Sandia Report SAND93-0074, Category UC-405,

Sandia National Laboratories, Albuquerque, NM 87185, 1993.
[ll] R.D. Williams, Performance of dynamic load balancing algorithms for unstructured mesh calculations, Concurrency: Practice

and Experience 3 (1991) 457-481.
[12] S.H. Hsieh, Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies,

Ph.D. dissertation, Cornell University, Ithaca, New York, 1993.
[13] J.F. Hajjar and J.F. Abel, Parallel processing for transient nonlinear structural dynamics of three-dimensional framed

structures using domain decomposition, Comput. & Structures 30 (1988) 1237-1254.
[14] J.F. Hajjar and J.F. Abel, Parallel processing of central difference transient analysis for three-dimensional nonlinear framed

structures, Commun. Appl. Numer. Methods 5 (1989) 39-46.
[15] K.P. Birman, R. Cooper, T.A. Joseph, K.P. Kane and F. Schmuck, ISIS - A distributed programming environment, version

3.0 - user’s guide and reference manual, Department of Computer Science, Cornell University, Ithaca, New York, 1991.

162 S.H. Hsieh et al. I Comput. Methods Appl. Mech. Engrg. 121 (1995) 137-162

[16] F. Harary, Graph Theory (Addison Wesley, Reading, Massachusetts, 1969).

[17] N. Deo, Graph Theory with Applications to Engineering and Computer Science (Prentice-Hall, Englewood Cliffs, New

Jersey, 1974).

[18] A. Pothen, H. Simon and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl.

11 (1990) 430-452.

[19] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak

Math. J. 25 (1975) 607-618.

[20] W.N. Anderson Jr. and T.D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra 18 (1985)

141-145 (originally published as University of Maryland Technical Report TR-71-45, October 1971).

[21] V. Venkatakrishnan, H.D. Simon and T.J. Barth, A MIMD implementation of a parallel Euler solver for unstructured grids,

J. Supercomputing 6 (1992) 117-137.

[22] K.J. Bathe, Finite Element Procedures in Engineering Analysis (Prentice Hall, Englewood Cliffs, New Jersey, 1982).

(231 R.D. Cook, D.S. Malkus and M.E. Plesha, Concepts and Applications of Finite Element Analysis, 3rd edition (Wiley, New

York, 1989).

[24] G.H. Golub and CF. Van Loan, Matrix Computations, 2nd edition (The John Hopkins University Press, Baltimore and

London, 1989).

[25] S.J. Fenves and K.H. Law, A two-step approach to finite element ordering, Internat. J. Numer. Methods Engrg. 19 (1983)

891-911.

[26] S.T. Barnard and H.D. Simon, A fast implementation of recursive spectral bisection for partitioning unstructured problems,

in: R.F. Sincovec et al., ed., Parallel Processing for Scientific Computing (SIAM, 1993) 711-718.

[27] P.A. Wawrzynek, Discrete modeling of crack propagation: theoretical aspects and implementation issues in two and three

dimensions, Ph.D. dissertation, Cornell University, Ithaca, New York, 1991.

[28] H.D. Simon, Personal communication (1994).

