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Summary. This paper proposes the use of special sensitivities, called nodal sensitivities, as error indicators 
and estimators for numerical analysis in mechanics. Nodal sensitivities are defined as rates of change of 
response quantities with respect to nodal positions. Direct analytical differentiation is used to obtain the 
sensitivities, and the infinitesimal perturbations of the nodes are forced to lie along the elements. The idea 
proposed here can be used in conjunction with general purpose computational methods such as the Finite 
Element Method (FEM), the Boundary Element Method (BEM) or the Finite Difference Method (FDM); 
however, the BEM is the method of choice in this paper. The performance of the error indicators is evaluated 
through two numerical examples in linear elasticity. 

1 Introduction 

This paper proposes the use of special sensitivities, called nodal sensitivities, as error indicators or 

estimators in numerical analysis with methods such as the Boundary Element Method (BEM), 

the Finite Element Method (FEM) or the Finite Difference Method (FDM). Nodal sensitivities 

are defined here as rates of change of  response quantities (such as displacement, traction, stress or 
temperature) with respect to nodal positions (geometrical variables). The infinitesimal nodal 

perturbations are restricted such that the perturbed position is also on the element. Two schemes 

for nodal perturbation, Lagrangian and Eulerian, are described later in this paper. The Eulerian 

scheme, adopted in this work, leaves the shape of the element unchanged. Thus, sensitivities 
obtained by this approach are strictly due to a "mesh perturbation" without any change in the 

shape of the body. 
This proposal of using nodal sensitivities as error indicators, although heuristic in nature, has 

several appealing features. The first is that when a numerical solution coincides with the exact 
one, it is, of course, no longer mesh sensitive. The second is a calculation of"interpolation error", 

which shows that, for the case considered herein, the nodal sensitivity of the solution is equal to 
the slope of the "interpolation error" with respect to the nodal perturbation e. Of course, one is 

typically interested in "approximation errors" (rather than "interpolation errors") in BEM or 
FEM computations. However, the simple calculation involving "interpolation errors" serves as 

a logical motivation for the use of nodal sensitivities as error indicators. 
A unique feature of the work presented in this paper is that nodal sensitivities are obtained by 

analytical differentiation with respect to simultaneous perturbations of groups of nodes. This 
approach is very efficient and establishes a natural linkage between geometric modeling and 

engineering analysis. It is felt that further use of the techniques presented in this paper could be 
a significant contribution towards a reliable and automated environment in computational 
mechanics, in the sense described by, for example, Tworzydlo and Oden [1], Finnigan et al. [2], 
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and Shephard and Finnigan [3]. Further discussions on error estimation techniques in 
computational mechanics can be found in Reference [4]. 

The remainder of this paper is organized as follows. Initially, a brief literature survey and 
comments on previous related work are presented. Next, Eulerian and Lagrangian nodal 
perturbation schemes are discussed. Afterwards, a motivation is given for using nodal 
sensitivities as error indicators in computational mechanics. By means of a simple and 
enlightening example, the nodal sensitivity is related to the "interpolation error". The next 
Section is devoted to the actual method for obtaining error indicators. The standard BEM and 
the Derivative BEM (DBEM) are compared, and the use of the latter method is justified. Then, 
the special sensitivity formulation of the DBEM is presented in detail. A general procedure for 
obtaining design velocities is outlined and exemplified for two special cases. Next, the error 
indicators are presented. In order to validate the method presented here, two numerical 
examples, for which there exist available analytical solutions, are given. Finally, conclusions are 
inferred and extensions of this work are pointed out. 

2 Related work 

Several papers are important to the present work. Some of these papers are listed and 
commented on below. Kelly et al. [5] have presented a posteriori estimates of the solution error 
caused by discretization in the finite element, finite difference and boundary element methods. 
They have presented a theory that guarantees upper and lower bound estimates of the 
discretization error in numerical solutions of elliptic boundary value problems. Two examples in 
potential theory have been presented and applied to the FEM, BEM and FDM. Mitra et al. [6] 
recognized the importance of both geometric as well as functional discretization for the accuracy 
of BEM solutions. They have presented a two-step spline assisted grid optimization scheme for 
the BEM. Lean [7] has presented an adaptive mesh refinement scheme for solving magnetostatics 
problems by the BEM. He has pointed out that 05, ~05/~n, D05 and D(~05/~n) can be used as 
possible criteria for mesh refinement in the solution of the linear problem. The variables 05 and 
~05/~n denote potential and boundary flux, respectively, D is the tangential derivative operator 
(D--O/~t),  and n and t refer to the normal and tangential directions on the boundary of 
a two-dimensional (2-D) body. Recently, Paulino [4] and Paulino et al. [8] have applied the 
concept of directional derivatives of a Boundary Integral Equation (BIE) in order to develop an 
error estimation technique intrinsic to the BEM. This class of error estimates has been called 
"hypersingular residuals" because it is based on the residual of a hypersingular BIE. Bugeda and 
Oliver [9] have presented a methodology for 2-D shape optimization problems analyzed by the 
FEM. The boundary of the body is parameterized with B-splines. They perform sensitivity 
analyses of several response variables which include nodal coordinates (mesh sensitivity analysis) 
and the former Zienkiewicz and Zhu [10] error estimator 1. Note that, in the present work, the 
sensitivities themselves are used as the error indicators. Sussman and Bathe [13] have investigated 
the gradient of the total potential energy (II) with respect to nodal point-coordinates in the FEM. 
They have used these gradients to solve a simple example involving fracture mechanics and mesh 
optimization. In this particular example, the stress intensity factors of a Mode I crack are 
accurately determined using a finite element mesh which was improved upon using mesh 
optimization. 

1 In 1992, Zienkiewicz and Zhu published two consecutive papers [11], [12] which superseded their earlier 
work [10]. 
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Recent work by Guiggiani [14], Guiggiani and Lombardi [15] (which is a follow-up paper of 
Reference [14]) and Henneberger et al. [16] are closely related to the present work. Guiggiani [14] 
has determined how a BEM solution in linear elasticity changes due to finite perturbations in the 
positions of collocation points. He perturbs all the boundary collocation points, that are situated 
interior to boundary elements, together. He has carried out numerical experiments with different 
magnitudes of these finite perturbations. His method is based on the fact that, specifically in the 
collocation BEM, there exists the possibility of obtaining more than one numerical solution from 
a given boundary element mesh. Error indicators are obtained by comparing two BEM solutions 
which refer to the same boundary nodes, but with partly different sets of collocation points. This 
work was revisited by Guiggiani and Lombardi [15]. They added h-hierarchical shape functions 
and changed the norm for displacements in the error indicator. Henneberger et al. [16] have also 
calculated sensitivities of a response variable with respect to nodal positions - this time in the 
context of the FEM applied to electromagnetic problems. The response variable in their work is 
the total magnetic energy. The energy perturbation of the nodal position is used as the refinement 
indicator of the mesh generator. It is not clear from their paper exactly how the derivatives are 
evaluated, e.g. OA/~xi, OlG[/Ox~, etc. In these quantities, A is the vector potential, [GJ is a certain 
Jacobian and xf is the x coordinate of node i. Also, Henneberger et al. [16] calculate sensitivities 
with respect to each node separately, a procedure that can become extremely computer 
expensive, especially for three-dimensional (3-D) problems. 

In the present paper, sensitivities of response variables (such as tractions and generalized 
displacements), with respect to the positions of middle nodes of quadratic boundary elements, are 
calculated by direct analytic differentiation of the governing BEM equations of a problem. This 
Direct Differentiation Approach (DDA) is accepted as being more accurate, in general, than the 
Finite Difference Approach (FDA) for calculation of sensitivities (see, for example, Chapter 7 of 
the book by Haftka and Giirdal [17]). The FDA uses the finite difference of two neighboring 
solutions - one with a "reference" and the other with a "perturbed" set of design variables (here 
the position of certain boundary nodes) to calculate sensitivities. Also, the present work proposes 
an efficient analytical procedure for calculating sensitivities of response variables with respect to 
the positions of all the mid-side nodes of all the boundary elements together. It is worth restating 
that the idea of using nodal sensitivities as error indicators is generally applicable to a variety of 
numerical methods (e.g. BEM, FEM, and FDM); although the details have been carried out here 
for the BEM only. Moreover, the present method can be directly used with existing codes since 
the sensitivity solution is obtained in a post-processing stage, i.e. after the solution of the 
boundary value problem. This is not the case with the work by Guiggiani [14], which is specific to 
the BEM, and requires modification of the actual BEM implementation and special treatment of 
singular integrals. 

3 Nodal perturbation schemes 

There are various possibilities for perturbing nodes in a mesh. The nodal perturbation schemes 
are classified here in two groups: Lagrangian and Eulerian [4]. These schemes are illustrated by 
means of Fig. 1, which shows the perturbation of the middle node of a quadratic boundary 
element. 

3.1 Lagrangian 

Figure 1 a shows the original and perturbed nodal configuration schemes. The middle node is 
perturbed along the physical boundary of the body. Its intrinsic coordinate, however, remains at 
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Fig. 1. Schemes for perturbing the middle node 
of a quadratic boundary element; Xi q) denotes 
the Cartesian coordinate of node i in the configu- 
ration (]), where j = 1 refers to the original 
configuration and j = 2 refers to the perturbed 
configuration 

the location ~ = 0, as shown in Fig. 1 b. Consequently, the shape of the quadratic boundary 
element is altered and the sensitivity of a length element ds with respected to the nodal 
perturbation (i.e. ds) 2 is not zero. Using the BEM for potential problems, Shi et al. [18] have 
employed the DDA to compute sensitivities of response variables (potential and flux), with 
respect to the positions of the intermediate nodes of pairs of linear boundary elements. All the 
pairs of linear boundary elements in the mesh are perturbed simultaneously. 

3.2 Eu~r~n  

Figure I c shows the Eulerian scheme for perturbing the middle node of a quadratic boundary 
element. Now the middle node is perturbed along the quadratic boundary element. The intrinsic 
coordinate of the middle node is perturbed from ~ = 0 to ~ = e (see Section 4 and Appendix A), 
as shown in Fig. 1 c. Consequently, the shape of the quadratic boundary element is not altered 
and the sensitivity of a length element ds with respect to the nodal perturbation (i.e. ds) 2 is zero. In 
this work, the Eulerian nodal perturbation scheme is adopted. The BEM for elasticity problems 
is considered, and the DDA is used to compute sensitivities of response variables (generalized 
displacements and tractions), with respect to the positions of the middle nodes of quadratic 
elements. 

2 The quantity d*s is explained in detail later in this paper. 
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4 Mot ivat ion  for using nodal  sensitivities as error es t imates  

This Section provides a motivat ion for using nodal  sensitivities as error estimates in 
computat ional  mechanics. In particular, it at tempts to relate the nodal  sensitivity of a generic 
function to the error by means of simple interpolation concepts. Thus, the reasoning below should 
be understood just as a motivation to the present work because numerical methods, such as BEM 
and FEM, essentially involve approximation, which is not considered in this Section. 

By definition, the local error 

er = ~be - ~ba (1) 

is a measure of the difference between the exact (~be) and an approximate  (Ca) solution to 
a response quanti ty ~b. Figure 2 is used to illustrate the present derivations. Note  that, in 
a numerical method,  the calculated nodal values have some discretization error, which is 
neglected in this figure. F rom the definition in Eq. (1), 

~b~(~) = ~.(~) + e~b(~) (2) 

where ~,(r is a quadratic interpolation of ~be(~) at r = - 1 ,  0, 1, and by definition, 
e , ( -  1) = e,(0) = e,(1) = 0. Thus, 4,(~) is a quadratic function which can be expressed as 

cb,,(~) = (P.4MI(r + c~BMz(~) + q~cM3(~), (3) 

where ~ba = q~,(- 1), ~bn = ~b,(0), qSc = ~be(1), and the standard shape functions M~(~), i = 1, 2, 3, 
are 

~(~ - 1) 
MI(~) - 

2 

M2(~) = (1 -- ~) (1 + ~), (4) 

#(~ + 1) 
M3(~) - 

2 

Now suppose that  one seeks an alternative expression for ~ba(r in terms of its values at the 
same end-points A and C, but at a different interior point /~ located at ~ = ~ (see Fig. 2). 
Considering Eq. (3) with ~ = ~, 

q~.(e) = q~aMl(~) + CBMz(e) + (acM3(e) (5) 

0A . . . .  ,B 

i 
A B B C Fig. 2. ~ba (~) is a quadratic interpolation of Ce(~). Note that 

both functions have the same values at A, B and C 
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and solving for qS~, one obtains 

1 

Substitution of Eq. (6) into Eq. (3) gives 

[ Mt(e) M2(~)l + q ~ c [ M 3 ( ~ ) - -  ~o(~, 8) = q~ M~(~) M~(~) 

(6) 

M~(r M3(e) M2(~) + q~.(e) (7) 
M2(s) M2(g)" 

Define a new function qS,,(~, e) which has the same form as qS, in Eq. (7), but with qSo(e) replaced by 
the exact value qS,(e), given by Eq. (2). Simplifying the resulting expression by means of Eqs. (6) 

and (3), one obtains 

r ~) = r + e,(~) M~(~) (8) 
M:(e) 

Note that qSe~(~, 8) is simply a quadratic interpolation of ~b,(~) at ~ = - 1, s, 1, and by definition, 

e+(-  1) = e,(s) = e,(t) = 0. 
The sensitivity of ~b~,(~, e) with respect to the position of the interior interpolation point/~ is 

@ea(~,g ) __ O~ea(~'S) (9) 

which can be readily obtained from Eq. (8), 

, (10 )  
Oea(~, ~ )  = (M2(e) [Mz(e)] 2 J 

where the fact that ( = 0 has been used above. Finally, the sensitivity at the mid-point B is 
obtained by setting ~ = 0 and ~ = 0 in Eq. (10), and thus 

~L(o, o) = e;(O) (11) 

since M2(O) = 1 and Mz'(O) = O. Equation (I1) shows that the nodal sensitivities of ~ .  at the 
mid-point B are equal to the slope of the (interpolation) error function at that point. 

O 
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Fig. 3. q~ea(~, 8) as function of ~ for different values 
of e, Here q~a= 1.0, q~B=2.5, qSc= 3.0 and 
e(~) = 3 sin (n~). The bullets correspond to q59 for 
/~ located at ~ = 0.0, 0.05, 0.1, and 0.2 
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4.1 A simple example 

A simple example, which illustrates the motivat ion for using nodal  sensitivities as error estimates, 
is given in Fig. 3. The error function has been arbitrarily chosen as e,~(~) = ~ sin (~z~), where ~ = 3 
in Fig. 3. 

4.2 Comments 

Note that ~be, is the general quadratic interpolation of ~b~ at ~ = - 1, E, 1. Indeed, ~ba is a particular 
case of q~,. This can be immediately verified by setting 8 = 0 and using e~(0) = 0 in Eq. (8) (see 
also Fig. 3) to obtain 

~b~(~, ~)l==0 = ~b,({). (12) 

The above discussion motivates the use of nodal sensitivities as error indicators in numerical 
methods. Although a quadratic interpolation has been assumed, this discussion can be readily 

extended to higher order polynomials  (also see Appendix A). Moreover,  a complete discussion 
would require a rigorous analysis of  a solution obtained f rom a numerical technique such as the 
BEM or FEM. This analysis is not  carried out here. 

5 Eulerian framework for sensitivity and error analyses 

The main idea in this work is that ira numerical solution matches the exact solution of  a boundary 

value problem, then it is not sensitive to perturbation of  internal nodes within elements. Therefore, 

the sensitivities of  the numerical solution with respect to the nodal perturbations are used here as 
error indicators. Consider the solution of a boundary  value problem where ~b is a generic 

variable. Then 

q~ : ~b]meshl - -  •[mesh2 tim (13) 
s~O 8 

in which ~bln, e~hl and ~b[,nesh2 represent the specific values of the response variable corresponding 
to the adopted discretizations for two mesh configurations (mesh 1 and mesh 2, respectively) for 
exactly the same problem. If ~b can be exactly represented by the adopted basis functions, then, 
clearly ~ = 0. 

Here, the middle node of each quadratic boundary  element is perturbed, in Eulerian sense, 
from ~ = 0 to ~ = e (see Fig. 1 c) and the same set of interpolation functions is used for both cases. 
However,  for the perturbed mesh, these functions are constructed in terms of the values at 

= - 1, e, 1. This is expressed by Eq. (7), which can be rewritten as (see Fig. 2) 

~(r ~) = ~A~1(r ~) + ~ ( r  ~) + ~c~3(~, ~) (14) 

with 

g,II(r = M 1 ( r  - -  

-M2(~,r = M2(~) 
M 2 ( 8 ) '  

g~3(~, e) = M 3 ( ~ ) -  - -  

Ml(~) 
Mz(~), 

M2(~) 

M3(~) 
M2(r 

M2(~) 

(15) 
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For  the differential element ds of the length parameter  s 

ds = 0 (16) 

because ds is not a function of ~ or e. Neither the shape of the body nor the element density 
changes (i.e. no distortion or stretching). However, to be consistent, q~ must include contributions 
from M~. F rom Eq. (14), 

~(~) = lira [0AMI(~, 5) + O~M2(~, 5) + dpcM3(~, e) 
~-'*0 

+ (~AMI(~, g) q- q~/?M2(~, 5) + OcMa((, 5)]. (17) 

It  can be easily shown that (see Fig. 1 c) 

-. 1 
lira Mt(~, 5) = Mz(r 
8 ~  0 2 -  

lim M2(~, ~) = 0, (18) 
~--~0 

-* 1 
lira M3(~, 5) = - - M2(Q. 
~-~o 2 

Considering the limit e ~ 0 and substituting Eqs. (18) in Eq. (17), one obtains 

* * * 1 
~(~) = 4~AMI(~) + 4.M2(~) + 4)cM3(~) + ~ (r - 4)c) M2(~). (19) 

where the last term arises due to the sensitivity of the shape functions. Note that  in this case 
/ ~ -  B. Equation (19) is used later in the numerical discretization. 

6 The error est imation method 

The proposed error estimation method, in conjunction with the Derivative Boundary Element 
Method (DBEM), is presented in this Section. Of course, the idea of using nodal sensitivities as 
error indicators can be applied together with other computat ional  techniques such as the FEM. 

6.1 Boundary element formulations 

The standard direct BEM formulation for linear elasticity [19], in the absence of body forces, can 
be written as 

Cij(P) ui(P) = ~ [Ui~(P, Q) zi(Q) - T~(P, Q) ui(Q)] ds(Q) (20) 
OB 

where u and ~ are the displacement and traction vectors, respectively, C is the corner tensor, 
U and T are the usual Kelvin kernels (see Appendix B), and ds denotes a differential length 
element in 2-D, or a differential surface element in 3-D problems. The upper case letters P and 
(2 denote the source and field points, respectively, on the boundary  3B of a body B. The first 
integral on the Right-Hand-Side (RHS) of Eq. (20) is weakly singular and the second integral is 
strongly singular. This last integral can be evaluated by direct [20], [21] or indirect [20] 
approaches. Note  that  the functional form of Eq. (20) holds for both  2-D and 3-D problems. 

Ghosh  et al. [22] and Ghosh and Mukherjee [23] have proposed a derivative BEM (DBEM) 
where the tractions are still retained as pr imary boundary  variables, but the displacements 



Nodal sensitivities as error estimates in computational mechanics 199 

are not. Instead, the other primary boundary variables are the tangential derivative of the 
boundary displacements OudOs (i = 1, 2) for 2-D problems [22] or the displacement gradients 
ul,j(i,j = 1, 2, 3) for 3-D problems [23]. 

For a simply-connected 2-D region B with boundary 0B, the DBEM formulation is of 
the form 

S [U~j(P, Q) zi(Q) - w~j(P, Q) A,(Q)] ds(Q) = 0 
OB 

(21) 

where i, = 1, 2;j  = 1, 2, and, as explained before, Ai = OuJt3s. The kernels Uand Ware given in 
Appendix B. An equation relating the stress tensor a at a boundary point to �9 and A at that point, 
can be found, for example, in Zhang and Mukherjee [24]. 

It is important to restate that the present error estimation method can be used in conjunction 
with the standard BEM (Eq. (20)), the DBEM (Eq. (21)) or other alternative BEM formulations, 
such as the Boundary Contour Method (BCM) [25] [26] or Galerkin type methods, e.g. [27]. For 
reasons given below, the DBEM is adopted in this work. 

6.2 Choice o f  primary variables 

In this work, the error indicators are formulated in terms of tractions and displacement 
derivatives (rather than in terms of tractions and displacements). Reasons for this choice, based 
on both theoretical as well as practical arguments, are given below. 

Theoretical evidence, based on the notion of Error Equidistribution [28], can be found in the 
literature on adaptive methods. For example, in the FEM, Diaz et al. [29] have presented 
a method for mesh optimization. The condition for obtaining optimum meshes, in second order 
elliptic boundary value problems, is expressed in terms of Sobolev seminorms for displacements 
(see Eqs. (18) and (19) of Diaz et al. [29, page 36]). These seminorms involve displacement 
derivatives rather than displacements themselves. Analogous arguments, to the ones used by 
Diaz et al. [29], have been employed by Ingber and Mitra [30] in the solution of biharmonic 
equations by the BEM. 

It is worth quoting two statements from the literature, based on practical experience, which 
also confirm the point of this Section. The first one is with respect to the FEM, and the second one 
is with respect to the BEM. Zienkiewicz and Zhu [12, p. 1382] have stated that "... we have 
concentrated here on error norms involving the derivatives (a) and not the basic function u (such 
as displacements)." Guiggiani and Lombardi [15, p. 272] have stated that "... two displacement 
fields should be regarded as truly different when they have different gradients, not just because of 
a different mean value. Different mean values are generally related to errors in other parts of the 
boundary". 

Table 1 summarizes the primary variables in both the BEM and DBEM. Since the DBEM 
employs tractions and displacement derivatives, it provides an adequate set of primary variables. 
Therefore, it is the method of choice in the present work. 

Table 1. Primary variables for BEM and DBEM (i = 1, 2) 

Method Equation Primary variables 

BEM 20 ui % 

DBEM 21 ~-~ zi 
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6.3 Sensitivity formulation 

A DBEM for sensitivities has been presented by Zhang and Mukherjee [24]. By applying the 
DDA to Eq. (21), they have obtained the following equation for sensitivities: 

[U~j(b; P, Q) ~i(b; Q) - Wij(b; P, Q) A*i(b; Q)] ds(b; Q) 
OB 

+ S [Uzj(b; P, Q) z~(b; Q) - W~j(b; P, Q) A~(b; Q)] ds(b; Q) (22) 
OB 

+ ~ [U,j(b; P, Q) zi(b; Q) - Wo(b; P, Q) A,(b; Q)] ds(b; Q) = 0 
OB 

where a superscribed �9 denotes a derivative with respect to a typical component b~ = b of a design 
vector b, i.e. 

L .*) 
( = Ob (')" (23) 

The design variables in this work are defined as coordinates of nodal positions. Calculations ofds 
within the scope of standard sensitivity analysis can be found, for example, in References [24], 
[31]. The particular choice of the design vector is discussed further in Section 6.4. 

From Eqs. (22) and (16), a special sensitivity version of the governing DBEM formulation, for 
this work, obtained by means of the DDA, is 

S [Uij(b; P, Q) z~(b; Q) - Wij(b; P, Q) A*~(b; Q)] ds(b; Q) 
OB 

+ ~ [U~j(b; P, Q) zz(b; Q) - W~j(b; P, Q) Az(b; Q)] ds(b; Q) = 0. (24) 
0B 

It is worth mentioning that the sensitivity formulation, presented in Eq. (24), is different from the 
one used in shape design sensitivity analysis, where the shape of the body under study changes 
continuously (see, for example, References [24] and [32]). Here, the shape of the body remains 
unaltered. Moreover, the design perturbations in this work involve moving the middle points of 
quadratic elements along the boundary elements themselves, so that a differential element ds 
remains unaffected [4]. Consequently, the extra term associated with ds does not contribute to 
Eq. (24). 

It has been shown [24], [31] that 

u~j(b; P, Q) = U~j,k(b; P, Q)[~k(Q) - ~(e) ]  (25) 

I~(b; P, Q) = W~j.k(b; P, Q) [~k(Q) - kk(P)] (26) 

where kis the design velocity at a boundary point. Note that both Uand Ware regular by virtue 
of the fact that 

~k(Q) - ~k(P) ~ O(r) (27) 

where r is the Euclidean distance between P and Q. 
Note that geometrical variables (here the positions of the source and field points) appear 

explicitly in the expressions of the kernels U(Eq. (B.1)) and W(Eq. (B.3)) in Eq. (21). Further, since 
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in this work the design variables are also geometric, the sensitivity version of the DBEM, Eq. (24), 
explicitly accounts for the geometry through the design velocities ~ in Eqs. (25) and (26). Also, 
since the star quantities (~, A; U, ~ are associated with geometry, Eq. (24) is strongly influenced 
by geometrical variables. 

6.4 Design velocities 

The main idea in the proposed error estimation method is the explicit consideration of both 
geometrical and physical variables of the problem. A procedure, which relies on the considera- 
tion of geometrical variables, is presented for obtaining the design velocities (sensitivities of the 
coordinates of boundary nodes with respect to appropriate design variables) in 2-D BEM 
problems. This involves parameterization of element curves. Extension of this procedure to 3-D 
BEM problems involves parameterization of element surfaces. Techniques for representation of 
curves and surfaces can be found, for example, in the survey paper by B6hm et al. [33]. 

As mentioned above, design velocities are sensitivities of the coordinates of boundary nodes, 
here the mid-nodes of quadratic boundary elements, with respect to appropriate design varia- 
bles. For 2-D problems, a design variable must be chosen such that the direction of the design 
perturbation of a node is tangential to the boundary OB at that point. Thus, use of a para- 
meterization in terms of the arc length s on OB is an obvious choice. In 2-D, a boundary element is 
therefore geometrically parameterized as x(s) = (xl(s), x2(s)). 

With reference to Fig. 4a, a generic internal point B on a boundary element has the 
coordinates 

xi(B) =- XI(S)I,=Lo+bL = x~(Co + bC) (28) 

(a) ~ -'s=o 

• 

• 

d ._ ]O 

(b) 

e 
," B 

O 
(c) 

Fig. 4. Boundary elements with parameterization along the arc 
length; a general; b straight line; and e arc of a circle 



202 G.H. Paulino et al. 

where i = 1, 2 and s = Lo + bL at B, with 

C A 

L = ~ ds, Lo = ~ ds (29) 
A 0 

the length of the boundary  segment AC and the length of the arc OA, respectively. The reference 
point O is at s = 0. 

The only design variable here is the scalar b e [0, 1] such that  bL measures the distance, along 
the curve, from point A to a generic point B along a boundary  element. I fB  is the middle point of 
the element, b = 0.5. This choice o f  parameterization is quite general and also very efficient since 

the perturbation o f  a single scalar variable b perturbs all the middle nodes o f  all the boundary 

elements on 8B in a regulated manner. Note that  this particular choice of design variables makes 
the error estimation method practical for engineering applications. 

The present approach consists of deriving analytical expressions for kl, i = 1, 2, for each type 
of boundary  curve involved in a given problem, e.g. segment of a straight line, arc of a circle, 

parabola,  hyperbola, Hermite, etc. Next, design velocities are calculated for the first two cases. 
Other shapes can be handled in a similar fashion. 

6.4.1 Special case 1 - segment of a straight line 

With reference to Fig. 4 b, 

xl(s) = d + s cos (0), 

x2(s) = s sin (0). 

At B, 

xl(B) = d + (Lo + bL) cos (0) = xl(A) + bLcos  (0), 

x2(B) = (Lo + bL) sin (0) = x2(A) + bL sin (0), 

so that  

~I(B) = g cos (0), 

k2(B) = L sin (0). 

(30) 

(31) 

(32) 

6.4.2 Special case 2 - arc of a circle 

With reference to Fig. 4 c, 

xl(s) = e cos 

At B, with Lo = ROA and L = R(Oc - OA), 

xl(B) = R cos [OA + b(Oc -- 0n)], 

x2(B) = R sin [0A + b(Oc - 0A)], 

(33) 

(34) 
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so that 

k~(B) = - R  sin [0a + b(0c - 0,0] (0c - 0A,  

3~2(B ) = .R cos [0 A + b(Oc - OA)] (Oc - OA). 

(35) 

6.5 Discretization 

Equation (21), for tractions and tangential displacement derivatives, and Eq. (24), for sensitivities 
of both tractions and tangential displacement derivatives, are discretized as follows. The 
boundary is subdivided into piecewise quadratic conforming boundary elements where the 
variables % As in Eq. (21), and ~, As in Eq. (24) are approximated. The logarithmically singular 
kernels are treated using log-weighted integration (see, for example, Appendix A of [34]). 

Due to the adopted Eulerian approach for sensitivity calculations (see Section 5), the 
numerical discretization of Eq. (24) deserves special attention. Recall Eq. (19) and let the response 
variable now be v or A, instead of ~b. Therefore, for each boundary element 

1 
"~(~) = "~aMt(() + ~BM2(~) + r162 + ~ (Ta -- ~c) Mz(() ,  (36) 

* * * 1 

A(~) = AAM~(~) + AICFI2(~) + AcM3(~) + ~ (AA -- Ac) Mz(~). (37) 

Note that, in addition to the usual terms in a quadratic interpolation, there is an extra term 
(underlined) in Eqs. (36) and (37). When solving for the sensitivities (~, A), the contributions 
involving these terms are known and can be taken to the RHS of the system of equations. 

After the collocation 3 and assembling processes are completed, the resulting systems 
associated with Eqs. (21) and (24) are of the form 

[AJ {~} + [B] {A} = {0}, (38) 

[AI {~} + [B] {J} = {h}, 

respectively, where the standard and sensitivity systems of equations share the same governing 
discrete operators [A] and [B], and {h} is a known vector. After switching appropriate columns, 
one obtains 

[K] {x} = {cl}, (39) 

[K] {k} = {cz} 

for the boundary unknowns {x} and {k}. It is important to observe that Eqs. (39) are governed by 
the same discrete operator [K]. Moreover, the vector {c2} contains the contributions from both 
the first and second lines of Eq. (24) because of the reasons explained above, with respect to 
Eqs. (36) and (37). Finally, Eqs. (38) and (39) are overdetermined but have full column rank [24]. 
Here they have been solved by QR decomposition [35]. 

6.6 Error indicators 

Some heuristic arguments are used to propose the form of the error indicators. The basic ideas for 
deriving the error indicators in this work are simplicity and completeness. In the interest of 

3 Here "collocation" means to enforce the respective BIE at a series of selected points which are element 
nodal points. 
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simplicity, discrete quantities are used here. However, integrated quantities can also be used (e.g. 
Guiggiani [14]). What is meant by completeness is that all the primary variables in the problem 
must be explicitly included in the error indicator scheme. 

From the boundary integral equation for sensitivities, Eq. (24,), there are four primary 
boundary variables at each boundary point. These variables are: ~, Ai, i = 1, 2. Typically, either 
, * , * * 
z~ or A ~, and either z2 or A z, are prescribed, while the rest is unknown. An error indicator at an 
element, r/(~), is defined as follows. First, consider the normalized nodal sensitivities 

~n(e) _ wt(e)'~"(e). , ~ __ wt(e)'~t(~), 

q ; r e f  '/Tref 

z~i(e) - WA(e)Zjn , L (e) _ WA(e'A; 

A re f  /1 r e f  

(40) 

where 

(41) 

Jrof = w~(")) 2 (~)~ + ,(~ 

Here, N is the total number of boundary elements, and the subscripts n and t refer to the normal 
and tangential components, respectively, of the relevant boundary quantities. 

The functions w~ (e) and w~ (e) refer to weighting parameters for the sensitivities of tractions and 
tangential displacement derivatives, respectively. In this work, 

W~ (e) -~- Wa (e) -~- W (e) (42) 

is found to be adequate. Note that, physically, both primary variables, i.e. tractions and 
displacement derivatives (see Eq. (21)), are of similar nature because both are functions of first 
order displacement derivatives. Therefore, the function w (e) refers to the weighting for the element. 
This type of parameter may be chosen based on the notion of error equidistribution (see Section 
6.2). For example, typical weight parameters are 

W (e)--~. 1 ,  W (e) = f ( L  (')) 

wheref(L (e)) denotes a function of the element length L (~) (normalized). For the sake of simplicity, 
w (~) = 1 is adopted in the present work. As mentioned before, the sensitivities are evaluated at the 
mid-points of each boundary element. 

Finally, the error indicator at an element is: 

q(~) = max [I ~,(~)1, I~,(')l, I z~,(')l, }zt,(')l]- (43) 

7 Computational results 

Two examples of plane strain problems in linear elasticity, for which analytical solutions are 
available, are considered in this Section. The first one is a circular cylinder with a concentric 
cylindrical hole under internal pressure. The second one is a finite portion of an infinite plate, 
with a centered circular hole, subjected to remote uniaxial tension. For each example, each 
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segment of the boundary is subdivided into uniform boundary elements. This is done so as not to 
bias the mesh a priori to reflect the nature of the solution. Standard isoparametric quadratic 
boundary elements are used for representation of both the geometry and the boundary variables 
�9 , A, r and A (see Zhang and Mnkherjee [24] for details regarding discretization and modeling of 

corners). 
The error indicator ~/~e~ is computed at each element mid-point according to Eqs. (40) to (43). 

In Section 4, it has been conjectured that the nodal sensitivity of the response function is related 
to the slope of the error. Thus these nodal sensitivities are taken as the error indicators ~/(~), 
Eq. (43), which can be readily used as drivers for adaptive meshing. The idea, in the numerical 
examples presented below, is to calculate the error indicators ~/~) and to carry out some 

evaluation of their performance. 

7.1 Circular cylinder under internal pressure 

Figure 5 a shows a hollow cylinder, under internal pressure, in plane strain. The inner and outer 
radii of the cylinder are a = 1.0 and b = 1.5, respectively. The material constants are G = 5 880.0 
and v = 0.3. The applied internal pressure is p = 12. Consistent units are used. The boundary 
conditions on a quarter of the cylinder are shown in Fig. 5 b. The boundary of the quarter 

cylinder is discretized with 5 uniform quadratic elements on each segment - with a total of 20 
elements. 

The analytical solution for stresses (Lamr's solution, first published in 1833) and displace- 
ments for a thick-walled circular cylinder under internal pressure can be found, for example, in 
the book by Cook and Young [36, pp. 91 - 92]. If desired, this solution can be used to calculate the 
actual local errors (see Eq. (1)). 

The numerical results obtained are summarized in Table 2. The dominant quantities and 
the range of the error indicator r/~e~ on each segment (see Fig. 5 b) are obtained according to 
Eq. (43). Note that, in order to show the scaling effect of the reference quantities (see Eqs. (40) 
and (41)), the maximum value of ~/~e~ (i.e. 0.6 in the last column of Table 2) is not renormalized 
to the unit. 

Further examination of this example reveals certain important facts. It  is seen that the error 
indicators on the segments AB and CD are nearly symmetric, as expected, with larger values near 
the high stress concentration points A and D. Thus, this distribution of ~(e) would suggest 
subdivision of elements near point A in segment AB and point D in segment CD, in an adaptive 
scheme. Also, r/(e) is low on the segment BC as expected, since the far field stress gradients are 

r 

I" 2a "1 
I 2b  t 

(a) 

x2 

C 

"~2=0 1 
Zx 1 =0 

D ~ 2 = 

A/7"777777 B 
"rl=O 

~2=0 

( b )  

~X 1 

Fig. 5. Example i - Hollow cylin- 
der under internal pressure; a confi- 
guration; b boundary conditions 
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Table 2. Error indicators around the quarter cylinder 
with b/a = 1.5 (see Fig. 5) 

Segment Elements Dominant Range of t/(~) 
quantities 

AB 1 - 5 ~, 0 .6-  0.05 
BC 6 - 1 0  A, ~ 0.05 
CD 11-15 z, 0.05-0.6 
DA 16-20 A. ~ 0.45 

Table 3. Error indicators around the quarter cylinder 
with b/a = 4.0 and c~ = 1.146 (see Fig. 5) 

Segment Elements Dominant Range of t/(~ 
quantities 

AB 1 - 5 z, 0.7 - 0.01 
BC 6 -  8 A, ~ 0.01 
CD 9 -13  z. 0.01-0.7 
DA 14-16 A, ~ 0.57 

small in this example. The situation on segment DA is particularly interesting. In this 

axisymmetric problem, the tangential gradients of quantities of interest are zero along DA. This 

might suggest that only a few elements (to model the geometry) are sufficient on DA. It is 

important  to note, however, that radial stress gradients are significant along DA, and intuitively 

one expects that a fine mesh should be used wherever the magnitude of the gradient vector of 

a solution field is high. The error indicators reflect the physics of the problem by virtue of the 

fact that t/Ce) contains geometrical information regarding curvature of segment DA. Qualitatively, 

this fact is obvious from Figs. 10b and 11 b of Zienkiewicz and Zhu [10] which show optimized 

domain meshes, for the FEM, applied to the same type of problem. In view of the above, the 

error indicator being uniform and reasonably high on segment DA (see Table 2) is particularly 

encouraging. 
In summary, all the features oft/(e) in Table 2 appear to be consistent in this example. It should 

be repeated here that the mesh used in this example is piecewise uniform on the four boundary 

segments, and therefore unbiased with respect to the expected solution for this problem. 
Next, the above problem was attempted with the same mesh (5 uniform quadratic elements 

on each segment) but for a = 1.0 and b = 4.0 according to the notation of Fig. 5 a. Not  

surprisingly, it was realized from this example that the ratio (see Fig. 5) 

C( = 

Element length on AB 

Element length on DA 

is an important  factor. For the case b/a = 3, c~ = 1.273, while for b/a = 4.0, e -- 1.91, if a fixed 
number of uniform elements is used on each of the segments AB and DA. In view of this, the 

discretization for the case b/a = 4.0 was changed to 5 uniform elements on each of the segments 
AB and CD, and 3 uniform elements on each of the segments DA and CB. For  this case, ~ = 1.146. 
It should be mentioned here that the discretization on the segment BC is relatively unimportant  
since the stress gradients are small there, Numerical results for the error indicators, for the case 

b/a = 4 and c~ = 1.146, are excellent. These are shown in Table 3. 
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7.2 d plate with a circular hole under remote uniaxial tension 

Figure 6 a shows an infinite plate, with a centered circular hole, subjected to remote uniaxial 
tension. Figure 6b shows the portion of the plate to be analyzed assuming plane strain state. The 
boundary conditions on the quarter plate, obtained from the mechanics fields for the infinite 
plate (see Fig. 6a), are shown in Fig. 6c. The size of the full plate is 100 x 100 and the hole 
diameter is 10.0. The material constants are E = 5 880.0 and v = 0.3. The applied remote tension 
is rr~ = 1.0. Consistent units are used here. The boundary of the quarter plate is discretized with 
5 uniform quadratic elements on each segment (as in the previous example) - with a total of 25 

elements. 
The complete analytical solution for stresses (first obtained by G. Kirsch in 1898) and 

displacements for the present example can be found in the classical book by Muskhelishvili [37, 
p. 205]. If desired, this solution can be used to calculate the actual local errors (see Eq. (1)). 

The error indicator ~/(e) as a function of element number is shown in Fig. 7. The dominant 

quantities on each segment, according to Eq. (43), are also given in the caption of this figure. 
Again, these are the error indicators evaluated at the mid-point of the elements. Careful 
examination of Fig. 7, as in the previous example, reveals correct trends. The error indicator 

distributions on the segments A B  and DE have opposite trends, as expected. The indicator is high 
near the stress concentration point A and low on the far field segments BC and CD. Finally, the 
distribution of t/(e) on the circular boundary EA has progressively larger values as one moves 

from point E to point A. In an adaptive scheme, this suggests the use of small elements near point 
A (with a stress concentration of 3 for the infinite plate) and relatively larger ones near point 

E where the tangential stress is compressive but of magnitude equal to that of the remote tensile 
stress if| 

• 

(SOO 

X~ 

1111111111~ 

C 
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/ i / i / / / / / / / / / / / 5 3  
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Fig. 6. Example 2 - a Infinite 
plate, with a centered circular 
hole, subjected to uniaxial ten- 
sion; b portion of the plate analy- 
zed here; c boundary conditions 
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are: AB: %; BC: A,; CD: An, At; DE: %; EA: An 

Relatively poor numerical accuracy of the DBEM, with this coarse piecewiese uniform mesh, 
results for the calculation of A over EA, in this particular example. It is encouraging to note that 
even though there are substantial errors in the numerical results for A over the circular boundary 
EA, the error indicator q(~), nevertheless, shows the correct behaviour over this segment. This fact 
is a tribute to the robustness of t~ (e) a s  an error indicator, at least for this example. Further details 
about this example can be found in Ref. [4]. It should be mentioned here that with a more 
"realistic" mesh the DBEM gives excellent results for this type of problem, as shown by Ghosh et 

al. [221. 

8 Conclusions and extensions 

This paper proposes the idea using nodal sensitivities as error estimates in computational 
mechanics calculations. Their performance as error indicators is evaluated in two numerical 
examples. These sensitivities appear to provide a good indication of the error in uniformly coarse 
grid approximations. The advantages of the new error estimation method presented herein are: 
(1) computationally efficient scheme; (2) explicit consideration of both geometrical and physical 
variables; (3) natural linkage between geometric modeling and numerical analysis; and (4) 
generality (applicable to boundary-type formulations, e.g. BEM, as well as domain-type 
formulations, e.g., FEM, and to various operators, e.g., harmonic, biharmonic, etc.). This last 
advantage might prove useful for error estimation when coupled numerical methods are used, 

e.g. BEM and FEM [38]. 
In the present work, the error estimation method has been developed in conjunction with the 

BEM (see Section 6). Use of the new method in conjunction with the FEM requires sensitivity 
analysis of the governing equations [39], [40]. The process for obtaining nodal sensitivities, by the 
DDA, involves direct analytical differentiation of the element stiffness matrices. An efficient 
numerical technique for differentiating the element stiffness matrix, which can be readily applied 
here, has been presented by Lin and Abel [411. 
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Comments on the nodal perturbation scheme, for calculations of nodal sensitivities in the 3-D 
BEM, as well as both the 2-D and 3-D FEM, are in order. For consistency, this explanation is 
given here with regard to quadratic elements. For the 3-D BEM and 2-D FEM, the nodal 
perturbation schemes are similar. In this case, two design variables are needed. The midside 
nodes of eight-node quadratic (Q8 family) elements, for example, are perturbed along the element 
edges. This scheme has the advantage of being general, i.e. it can be applied to corner elements as 
well as interior elements. The nodal perturbations on the curved surface of a body must lie on the 
local tangent plane, in specific chosen directions. The idea of surface gradients and directional 
derivatives on the local tangent plane (see, for example, Bonnet and Bui [42]), might prove to be 
useful for this purpose. Further information on surface geometry can be found in the book by 
Sokolnikoff [43]. For the 3-D FEM, nodal perturbations involve nodes on the surface as well as 
nodes in the interior. In this case, 3 design variables are needed. The midside nodes of 
twenty-node brick (B20) elements, for example, should be perturbed. Perturbation of nodes on 
the surface is analogous to the 3-D BEM case, explained previously. Perturbations of interior 
nodes are in the directions of the global frame of reference. 

It is worth mentioning that, in this work, nodal perturbations have been discussed in the 
context of quadratic elements. However, in principle, the method presented here can also be 
extended to linear or higher order elements [4]. 

We feel that the new error estimation method presented here deserves further attention. An 
immediate subject of future work is the investigation of the proposed error indicators in 
a self-adaptive analysis. Possible adaptive strategies include h-remeshing (increasing mesh 
refinement), p-enrichment (increasing degree of polynomial shape functions), r-relocation 
(relocation of the nodes of a grid with fixed topology in order to satisfy a set of optimality 
conditions), and combined methods (e. g. r -  h, r -  h -  p). It is also worth investigating alternative 
forms of the error indicator (other than the one in Eq. (43)), such as one which still uses sensitivity 
quantities, but is free from scaling effects of reference quantities (see Eqs. (40) and (41)) and has an 
intrinsic physical meaning (such as energy) attached to it. 

The range of application of the idea of using nodal sensitivities as errors is large, even though, 
in this paper, we have concentrated on linear elasticity problems by the BEM. However, it is clear 
that use of nodal sensitivities as error estimates has potential advantages in many fields of 
computational mechanics. 

Appendix A: generalized proof of Eq. (11): ~be. = %' 

A shorter and more general proof of Eq. (11)follows. The overall procedure is illustrated by 
Fig. 8, which is a modified version of Fig. 2. Let ~ba(~) be a quadratic interpolation of ~e(~) with 
the interior interpolation point located at ~ = ~o. Thus 

~b,(~o) = q~e(~o). (A.1) 

Let qSe,(~) be a quadratic interpolation of ~be (~) with the interior interpolation point located at 
= ~o +/3. Therefore, 

~)ea(~O -~ /3) = ~e(~O "4- 13). (A.2) 

Since the interpolation is quadratic, exact Taylor expansion gives 

dqS.(~o) 1 d2~b~(~o)/3z. (A.3) 
4.(r + ~) = ~o(~o) + ~ / 3  + 2 ct~ ~ 
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Fig. 8. Quadratic interpolation of (~e(~) considering a 
generic interior point 

Thus, 

Oea(~o -'~ 8) - -  0a(~0 + 8) : (Oea(~ o -{- 8) - -  q~a(~0) 
_ _  1 dZqg,(r sa (A.4) d4.(~o)  

d{ 2 d~ 2 

and substitution of Eqs. (A.1) and (A.2) into Eq. (A.4) yields 

4e.(~o + e) - 4a(~o + ~) = r + ~) - -  4o(~0) 
1 dZqS.(r e2. dqL(r e (A.5) 

d~ 2 d~ z 

Dividing this equation by ~ and taking the limit as e --> 0, one obtains 

+ 1 
Note that the limit term on the left-hand-side is ~b~a(~O, 0) and the limit term on the RHS is 

d4~e(r Therefore, the RHS of Eq. (A.6) is d[4~e(~o)- qS,(r162 = d%(~o)/d~ = eo'(~o), 

and thus 

~)ea(~O, 0) ~--- e~bt(~0). (A.7) 

Equation (A.7) is a generalized proof  of Eq. (11) because r does not need to be located at the 

middle point (~ = 0) of the element. 

Appendix B: B E M  and D B E M  kernels 

The BEM and D B E M  kernels for 2-D problems are presented here. The B E M  kernels (see 
Eq. (20)) are obtained from Kelvin's singular solutions for a point force in a mathematically 
infinite elastic body. These kernels are available in many  references on the BEM, e. g., Rizzo [19]. 

They are 

U U -  87 t (1 -v )  G ( 3 - 4 v )  l n - r  6 ~ j + r ~ r j  , (B.1) 

} T/j = 47z(1 - v) r ~nn [(1 -- 2v) 6 u + 2r,ir,~] + (1 - 2v) (njri --  nir~) (B.2) 

where 5~j is Kronecker  delta, G is the shear modulus and v is Poisson's ratio of the material. Also, 
r is the Euclidean distance between a source point P (or p) and a field point Q (or q). The 
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upper case letters P and Q denote points on the boundary OB while the lower case letters p and 
q denote points in B. A comma denotes a derivative with respect to the corresponding coordinate 

of the field point. Finally, n denotes the unit outward normal to 0B, and OrlOn is the derivative of 

r with respect to the normal at a field point. 
The D B E M  kernels [22] are U, as given by the previous Eq. (B.1), and W, given below 

1 
W/i = 4~r(1 - v) [2(1 - v) ~'rlj  + ~ikr,jr,k --  (1 -- v) 71j In r] (B.3) 

where 

~11 = ~22 = O, ~12 : - - ~ 2 1  = 1 

and r is the angle, measured in a counter-clockwise sense, between the line joining P and Q (i. e. 

r(P, Q)) and a reference direction, e.g., the line through P parallel to the global xl axis (see, for 

example, Fig. 1 in Ghosh et. al. [22, p. 70]). 
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