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Abstract 

The fixed smeared crack concept with strain decomposition is reformulated utilizing a self-adaptive strategy at the 
constitutive level. This formulation focuses on continuous adaptation of the crack band width based on the incremental 
finite element solution and the idea of nonlocal continuum. The required nonlocal forms are obtained by means of the 
superconvergent patch recovery procedure. Comparison with experimental results indicates the superiority of the present 
formulation over the standard smeared cracking. © 1997 Elsevier Science B.V. 

1. Introduction 

One of the fundamental components in nonlinear problems undergoing localized damage is the 
existence of an internal length parameter. This characteristic length determines the width of the 
localization zone. In smeared cracking terminology, this length parameter is the crack band width 
(we). When this parameter is related to the adopted finite element size, the spurious mesh 
dependency on tl~Le structural load-deformation response can be eliminated. The relation between 
wc and the finite dement size can be determined by trial-and-error fitting of some reliable results 
(e.g. experimental results or selected discrete crack results [1]). Some ad hoc rules depending on the 
chosen element type, element size, element shape, integration scheme and even on the particular 
problem considered, can be established to determine we. In the existing literature, Ba~ant [2] and 
Oliver [3] have attempted to rationalize the arbitrariness of the choice of the crack band width. In 
[2-1, Ba~ant has used stability analysis to determine wo. As he states, this stability analysis seems 
useful in principle:, but not in practice, as it is not known how to perform this analysis. In [3-1, Oliver 
has analyzed a singular band in a two-dimensional (2D) domain, in which a crack is modeled as 
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a limiting case of two singular lines with continuous displacements but discontinuous gradients 
across them. This allowed him to relate the crack band width to the crack orientation and the 
characteristics of the finite element interpolation functions. Although this approach is interesting, it 
renders the estimated value of the crack band width constant throughout the entire loading history. 

In many applications, upon increasing the damage level (determined here by the crack strain), 
cracking tends to localize in a band of decreasing width. By simply relating w~ to the finite element 
size (in 2D problems, the finite element area, Ae), one cannot capture such decrease of this band 
upon increase of the damage. A remedy to such shortcoming is to adapt the finite element mesh to 
the present level of damage (cracking). Accordingly, the element size is determined in a manner 
consistent to the nature of the localization process. Upon such automated adjustment of the finite 

element size, a simple rule for the crack band width, e.g. we oc x / ~ ,  may be sufficient for accurately 
capturing localization. This adaptation requires continuous modification of the topology of the 
finite element mesh and needs a robust transfer operator I-4]. Unfortunately, such tasks in a highly 
nonlinear problem are difficult to execute. In this paper, a practical adaptation of the crack band 
width, without any change in the topology of the finite element mesh, is developed. In this process, 
the crack band width is treated as a material parameter in the constitutive model, which greatly 
simplifies the technique. 

2. Smeared cracking 

Smeared cracking is a continuum approach for fracture mechanics in which local discontinuities 
are distributed (i.e. smeared) over a certain tributary area within the finite element. Accordingly, 
crack strain can be defined as a function of the relative displacement (displacement jump or 
displacement discontinuity) of the crack surfaces and some length parameter over which this 
displacement jump is distributed. The introduction of such characteristic length allows modeling of 
the cracked material in terms of stress-strain relations. 

Since the advent of the smeared crack concept by Rashid [5], it has been refined by several 
researchers [6]. Significant improvements of the smeared crack concept have been provided by the 
fictitious crack model developed by Hillerborg et al. [7] and the crack band theory developed by 
Ba~ant and Oh [8]. In the fictitious crack model, the tensile strength (ft) and the fracture energy 
(f#f) are the model parameters. The fracture energy is the amount of energy required to create one 
unit area of crack surface. The two parameters (ft and ~f) are also included in the crack band 
theory, in addition to a third parameter, termed the crack band width (we). 

The modern approach for smeared cracking models is based on the idea of strain decomposition 
(e.g. [1]). In this idea, an increment of the total strain vector Ae is decomposed into an increment of 
the crack strain vector A*cr and an increment of the solid material (i.e. material between cracks) 
strain vector Agma , i.e. 

Ag = Ai~cr + Agma. (1) 

Note that in Eq. (1) and the sequel, bold face letters indicate matrix type quantities. The above 
concepts are illustrated by Fig. i. Consider a Gauss point in one element (Fig. l(a)) of the mesh. The 
principal stresses (ax, o2) can be obtained by means of the Mohr circle (Fig. 1 (b)). Next, the cracking 
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Fig. 1 Smeared cracking and superconvergent patch recovery (SPR) technique: (a) example of a patch; (b) Mohr circle; 
(c) tension cut-off in 2D principal stress space; (d) strain decomposition; (e) total fracture energy density (full cracking); 
(f) apparent fracture energy density (partial cracking). 

criterion, as determined by the Rankine failure surface of Fig. l(c), is checked. If cracking occurs, 
then the strains are decomposed according to Eq. (1), as shown in Fig. l(d). 

A family of crack normal stress versus crack normal strain (S~r -- e ,)  relations is considered in 
this study. This family is based on curve-fitting of a large number of experiments, as reported by 
Reinhardt [91, to determine the crack normal stress versus crack opening ( s ,  - 6¢r) relations of 
concrete. This family of relations is governed by the exponent k in the following equation: 

'] k 
Scr = 1 - -=- (2) 
f ,  ' 

where 6~r is the stress-free crack opening (i.e. opening at total loss of load carrying capacity). This 
crack opening can be related to the total fracture energy (fgf) by considering the following relation: 

u cr 
~f  = Ser d3cr. (3) 

This definition implies that ~f is the area under the stress versus crack opening graph. F rom Eqs. 
(2) and (3), one easily obtains 

(k + 1)fqr 
6~ = (4) 

kf t  
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Assuming uniform distribution of the crack opening over we, one gets the following simple and 
important relationship (see Fig. l(d)) 

~er 
/3or = ~ (5) 

We 

Substitution of Eqs. (4) and (5) into Eq. (2) leads to 

s ,  = f t ( 1  ( kftWe/3cr ~ k )  
- \ ( k  + 1)f~f} } '  (6) 

which gives the softening (descending) branch of a smeared crack in terms of the basic three 
parameters of the previously mentioned crack band theory [8], namely ft, f#f and we. From the 
assumption stated by Eq. (5) and for constant we, one obtains the (total) fracture energy density as 

fl © r  

gf = S¢r de~r = faf/w¢, (7) 

where gr is the total area under the stress versus crack strain graph (cf. with Eq. (3)), as illustrated by 
Fig. l(e). The apparent fracture energy density (gt), shown in Fig. l(f), is the fracture energy density 
determined at a particular load level (t), i.e. 

fo ~'' 
gt = Ser dec. (8) 

which is the partial area under the stress versus crack strain graph (see Fig. 1(0). 

3. Local and nonlocal apparent fracture energy 

The nonlocal continuum is an approach for which at least some variables are defined by spatial 
averaging [10]. Here, the apparent fracture energy density gt (see Fig. l(f)) is first established on the 
local level, i.e. in terms of the pointwise strains and crack band widths. Then, this form is 
generalized to give a nonlocal expression for gt, which is called ~t, in terms of nonlocal quantities 
which are the spatial averaging (smoothing) of their equivalent local ones. The smoothing process, 
required to obtain the spatially averaged quantities, is described in the next section. 

After simplification, Eqs. (6) and (8) lead to 

( 1 ( kft ) k ~  [Ak(eor)(W¢li)k]) ' (9) 
g " = f t  e~r k + l  ( k + l ) ~ f }  ,=1 

where n is the number of load increments up to the load level t, we [~ is the constant crack band 
width during increment i, and the operator A k is defined as 

= ( . , ) k ÷  1 _ ( . , - , ) k ÷  1.  ( 1 0 )  

Eq. (9) gives the local form of the apparent fracture energy density. The nonlocal form of such 
quantity (~t) is similar to Eq. (9) but expressed as a function of the nonlocal crack strain (ecr) and 
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a nonlocal form of the crack band width (#~). This function is given by 

( 1 (kft(k + 1) (~f] ~k ~ [A'(eer)(ffel/)k]) °"=f '  k + l  i=1 
Subtracting Eq. (9) from Eq. (11), one obtains 

k +1 (1  ik +-kf-il) ~f,}']k~[Ak(e¢')(l~¢il)k--Ak(e¢')(Wdi)k])i=l 
f 

where 

g0 = 9" - 9 ~ 

(11) 

(12) 

-" " (13) and ~f~°, = ger -- /3er 
are measures of the local errors (see, for example, Refs [4, 11]) for the apparent fracture energy 
density and the crack strain, respectively. From Eq. (12), an expression for the nonlocal crack band 
width after n load increments, or for the new load level (t + 1), is readily obtained as 

(14) 

wt+a = w¢l, C 

k +  it. ~f, ] g~<- -~ t  t -27-~[A~(gor)(m¢13 k] 
- 

+ Z7:1 

This is the evolution equation for the crack band width. 
Assuming A~(e,) ~ A~_ 1 (~)  and setting w¢ll = ~ l i- 1, a simpler form of Eq. (14) is obtained as 

t, kl/  
A k(&, ) . (15) 

Note that A~ (e¢0 , 1 ,k+ 1 = te,) , which comes from the fact that the counter i in Eq. (10) starts at the 
onset of cracking. 

4. Nonlocal forms and superconvergent patch recoveries 

The nonlocal forms for the apparent fracture energy density and the crack strain, denoted by 0 t 
and err,-t respectively, are obtained by means of a spatial averaging of their local forms• To obtain 
these nonlocal forms, the superconvergent patch recovery (SPR), originally proposed by Zien- 
kiewicz and Zhu [11], is employed here. 

The fields ~t and ~t can be approximated by the polynomial expansions 

~ t = ~ a  and ~ t r = ~ c ,  (16) 

where ~ contains the appropriate polynomial terms, and both a and c are sets of unknown 
parameters. For 2D problems and bilinear (4-noded isoparametric) finite elements (see Fig. 1 (a)), 
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the following approximation is recommended [11-1 

~i~ = [1 X y X y ] ,  a = [ a  0 a l  a2 a3 ]  T, c = [c  O c 1 c 2 c3]  T (17) 

The unknown coefficients a and c can be obtained through a weighted least-square f i t  of the 
polynomial expansions (16) to the values ofg t and etr obtained from the finite element solution at the 
sampling points, i.e. Ot and ecr.̂ t The finite element solution (e.g. stresses, strains or a combination of 
them such as the fracture energy density) at these sampling points is generally the most accurate 
one (i.e. superconvergent upon enhancing the interpolation or the discretization). Instead of 
applying the least square fit to the whole domain of the problem (globalfit),  Zienkiewicz and Zhu 
[11] have suggested the use of small patches of elements to perform local least-squares fit. This 
procedure is adopted here. However, a weighting parameter (w~) is added to emphasize the 
influence of the sampling points which are closer to the patch assembly node (see Fig. l(a)). Thus, 

w, = 1/pe,  (18) 

where pl is the Euclidean distance between the sampling point i and the patch assembly node, and 
p is an integer. In practical applications, p is generally in the range from 0 to 4. The case p = 0 
corresponds to the original SPR (with uniform weighting). 

Consider a patch of elements containing m sampling points as illustrated by Fig. l(a), in which 
m = 16. For a generic sampling point i in this patch, let (xi, y~) be the Cartesian coordinates in the 
global axes. Thus, the weighted least-squares problem reduces to the minimization of the following 
functionals: 

m 

= W 2 [ g t ( x i ,  Yi ) - -  Ot(xi ,  Yl)] 2 and ~ = ~ w 2 [gt~r(xi,yl) - ^t ger(Xi, Yi)] 2 , (19) 
i = 1  i = i  

where the terms in square brackets are analogous to the ones given by Eq. (13). Substituting 
expressions (16) into (19), and solving the minimization problem by setting 

t3~/Oa = 0 and O ~ / O c  = 0, (20) 

one obtains the following sets of linear algebraic equations: 

Aa  = b and A c  = d, (21) 

where 

A = 
t/1 

E wZ~T(X', y,)~(X, ,  y,) (22) 
i = 1  

b = 
m 

2 T At w, ~ (xi, y,) g (x,, Yi), d = ~ w 2 ~T(x , ,  y,) y,) (23) 
i = 1  i = 1  

Since m is a small number compared to the actual problem size, the sets of simultaneous equations 
given by (21) can be easily solved for the unknown vectors a and c. 
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5. Numerical implementation 

The method for adapting the crack band width in the smeared cracking model has been 
implemented in the DIANA 2 (Displacement ANAlyzer) system. The main steps for this specific 
implementation are summarized as follows: 
1. Determine the mesh and initialize the material parameters. 
2. Compute eCr̂ " at the load increment n. 
3. Calculate ~" (Eq. (9)) using the history of both the crack strain (e~r) and the corresponding crack 

band width (we li)- 
4. Solve the weiglated least-squares minimization problems in the SPR procedure to obtain the 

fields e~r-" and ~ .  
5. Update the crack band width at each sampling point using either Eq. (14) or Eq. (15). 
6. Continue the incremental iterative solution scheme until the final load step. 

6. Numerical application 

The crack-line-wedge-loaded double-cantilever-beam (CLWL-DCB), tested by Kobayashi et al. 
[12] and analyzed by Rots [1], is selected to check the validity of the proposed adaptive 
characteristic length method. Other examples will be presented elsewhere. The dimensions, mater- 
ial parameters and boundary conditions are illustrated in Fig. 2(a). In this figure, E and v are, 
respectively, Young's modulus and Poisson's ratio for the material of the specimen. The shear 
retention factor fl ~ 0.0 is chosen as such to cause the axes of principal stress to remain practically 
fixed after crack formation. The specimen is assumed to be in a state of plane stress. The ratio of the 
diagonal force (F2) to the wedge force (F1) is kept approximately constant at 0.6 until 
F2 = 3.78 KN. Then, F2 is kept constant and only F1 is altered [12]. The diagonal force is applied 
under load control and the wedge loading under displacement control. The adopted finite element 
mesh is shown in ]Fig. 2(b), and consists of four node quadrilaterals (Q4) with two by two Gaussian 
integration. The transition from a coarser mesh to a finer one at the upper-right corner of the plate 
is achieved by using slave nodes along the mesh transition line. The reported results for this 
example have been obtained using Eq. (15) and considering p = 2 in Eq. (18). The double- 
directional fixed smeared cracking model has been adopted here, and the nonlinear finite element 
system of equations for this example is solved using the Newton-Raphson method where the 
tangential stiffness matrix is set up before each iteration. The convergence criterion for the 
equilibrium iteration process is based on checking the norm of the out-of-balance force vector 
( 4  10 -3 ) .  

Fig. 3(a) shows the graph for the wedge force (Fz) versus the crack mouth opening displacement 
(CMOD). Note that a better agreement with the experimental results is achieved when the 
evolutionary characteristic length method (adaptive we) is used than when we is kept constant 
throughout the analysis (standard smeared cracking). At highly damaged states, e.g. 
CMOD 1> 0.25 mm in Fig. 3(a), there is a departure from the adapted and experimental results. 

2 DIANA is a finite element code developed at TNO Building and Construction Research in The Netherlands. 
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Fig. 2 Crack-line-wedge-loaded double-cantilever-beam (CLWL-DCB) specimen: (a) dimensions, boundary conditions 
and material properties; (b) finite element mesh. 
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A solution to this problem consists of freezing the value of we. This technique is currently under 
investigation. The corresponding results for the crack mouth sliding displacement (CMSD) versus 
the CMOD are illustrated in Fig. 3(b), which clearly shows the difference of the curve considering 
the adapted wc from that with constant we. 
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Fig. 4 shows contour plots for the apparent fracture energy density before (Fig. 4(a)) and after 
(Fig. 4(b)) smoothing. The region considered for these plots is the shaded area in Fig. 2(a). It should 
be noted that these plots are shown in a distorted scale for clarity of the distributions. The 
non-smoothed contour (Fig. 4(a)) tends to follow the mesh pattern. This reflects one of the main 
deficiencies of smeared cracking models, which cannot properly capture mixed mode cracking 
when the fracture zig-zags through the mesh. In this case there is a tendency for the cracks to 
propagate parallel to the element boundaries (mesh bias). This problem is circumvented by the 
smooth contour plot of Fig. 4(b). 

7. Concluding remarks 

The smeared cracking formulation with softening involves the introduction of the crack band 
width. Traditionally, this characteristic length has been determined using ad hoc rules. A systematic 



108 K.M. Mosalam, G.H. Paulino / Finite Elements in Analysis and Design 27 (1997) 99-108 

procedure to determine the evolution of this parameter during the nonlinear numerical analysis has 
been presented here. It is based on the incremental finite element solution and the idea of nonlocal 
continuum. The required nonlocal forms for the apparent fracture energy density and the crack 
strains are obtained by means of the superconvergent patch recovery procedure, which makes the 
computations efficient for practical applications. Thus, the present methodology is potentially 
advantageous for three dimensional computations. The results obtained indicate the superiority of 
the present formulation over the standard smeared cracking, and show that the new technique is 
promising for solving challenging problems of localized fracture such as those involving mixed 
mode cracking. 
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