
*Lecturer of Computer-Aided Engineering
sGraduate Research Assistant
tProfessor of Structural Engineering

CCC 0029—5981/97/061025—27 Received 17 May 1994
(1997 by John Wiley & Sons, Ltd. Revised 17 July 1996

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 40, 1025—1051 (1997)

EVALUATION OF AUTOMATIC DOMAIN PARTITIONING
ALGORITHMS FOR PARALLEL FINITE ELEMENT

ANALYSIS

SHANG-HSIEN HSIEH*

Department of Civil Engineering, National ¹aiwan ºniversity, ¹aipei, ¹aiwan, R.O.C.

GLAUCIO H. PAULINOs AND JOHN F. ABELt

School of Civil and Environmental Engineering, Hollister Hall, Cornell ºniversity, Ithaca, N½ 14853-3501, º.S.A.

SUMMARY

This paper studies and compares the domain partitioning algorithms presented by Farhat,1 Al-Nasra and
Nguyen,2 Malone,3 and Simon4/Hsieh et al.5,6 for load balancing in parallel finite element analysis. Both
the strengths and weaknesses of these algorithms are discussed. Some possible improvements to the
partitioning algorithms are also suggested and studied. A new approach for evaluating domain partitioning
algorithms is described. Direct numerical comparisons among the considered partitioning algorithms are
then conducted using this suggested approach with both regular and irregular finite element meshes of
different order and dimensionality. The test problems used in the comparative studies along with the results
obtained provide a set of benchmark examples for other researchers to evaluate both new and existing
partitioning algorithms. In addition, interactive graphics tools used in this work to facilitate the evaluation
and comparative studies are presented.

KEY WORDS: algorithms; domain partitioning; load balancing; mesh partitioning; parallel finite element analysis;
partitioning algorithms

1. INTRODUCTION

A number of domain partitioning techniques have been proposed in recent years to effect load
balancing in parallel finite element analysis. The domain partitioning techniques decompose the
domain of a finite element mesh into a number of subdomains which are distributed among
processors for computation. Well-balanced distribution of computations among subdomains (or
processors) and minimization of interprocess communication are sought so that significant
speed-up can be obtained in the parallel analysis. The domain partitioning techniques are also
important for domain decomposition solution methods in computational mechanics. For a thor-
ough survey of the general field of domain decomposition methods, see Reference 7.

° Abbreviations of the partitioning algorithms used in this paper are summarized in the appendix

Because domain partitioning is an NP-complete problem,8 optimum solutions are practically
intractable. Therefore, satisfactory near-optimal solutions are always sought using efficient
heuristic algorithms. An optimization approach known as Simulated Annealing (SA°) has been
proposed by several researchers9, 10 to solve the partitioning problem. Although this approach
can give almost optimal results, it is usually expensive and time-consuming, especially for
large-scale problems. This paper studies and compares several alternative partitioning ap-
proaches proposed in the literature which seek satisfactory near-optimal solutions at a relatively
low computational cost.

Because the finite element meshes used in solving engineering problems may be large and
generic (irregular shapes, including multiply connected and/or branched domains), manual
partitioning may be difficult even with the help of interactive graphics tools. Simon4 has shown
that visual perception alone may be inadequate for the task of partitioning large three-dimen-
sional meshes. Therefore, automatic algorithms are ideally required. On the other hand, none of
the existing automatic partitioning algorithms guarantees optimal solutions or produces parti-
tions that generally meet all the needs of various numerical solution strategies. Therefore, Farhat
and Lesoinne11 proposed a ‘multiple choice solution’ which obtains partitions from several
automatic partitioning algorithms and then selects the best for the parallel solution algorithm
considered. In addition to the ‘multiple choice solution’ approach, Hsieh5 used interactive
graphics tools to allow for manually improving results obtained from automatic partitioning. In
this paper, the emphasis is on automatic heuristic partitioning algorithms.

1.1. Classification of algorithms

The techniques considered here are static load balancing techniques because (a) they assume
a priori knowledge of the static characteristics of the computations and the system to distribute
the computations among processors and (b) the distribution is done only once and before the
actual analysis starts (i.e. in the preprocessing phase). This is opposed to the dynamic load
balancing (sometimes referred to as adaptive load balancing) techniques which utilize short-term
knowledge of current state information of the computations and the system to distribute
dynamically the computations among processors during the analysis. The computations origin-
ally assigned to a processor may be migrated (or redistributed) to other processors at any
time during the analysis to improve load balance. Dynamic load balancing may be important
in problems involving material non-linearity, self-adaptive mesh refinement, crack propaga-
tion, etc.

For the sake of discussion in this paper, most of the existing automatic heuristic domain
partitioning algorithms may be classified in the following ways.

¹opology-based vs. geometry-based: The topology-based algorithms partition a mesh using
topological information of the mesh or its associated graph (for background material in graph
theory, see the excellent book by Harary12). For example, the GReedy (GR) algorithm,1 the
Reduced Bandwidth Decomposition (RBD) algorithm,3,13 the Recursive Graph Bisection (RGB)
algorithm,4 and the Recursive Spectral algorithms4,6,14,15 belong to this category. On the other
hand, the geometry-based algorithms partition a mesh using geometrical information. Examples
are the Recursive Co-ordinate Bisection (RCB) algorithm4 and the inertial algorithms.11,16 In
addition, there are algorithms which use both topological and geometrical information for
partitioning. For example, Al-Nasra and Nguyen’s Partitioning (ANP) algorithm,2 the

1026 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

± The subdomain aspect ratio is defined here as H
.!9

/H
.*/

, where H
.*/

and H
.!9

are the smallest and largest distances
between two boundary nodes of the subdomain, respectively
E Note that both the RCM reordering and the RCM based partitioning algorithms have the same abbreviation

‘combination algorithm’ of Rodriguez and Sun,17 the ‘automated substructuring’ approach of
Padovan and Kwang,18 and the algorithm by Miller et al.19 belong to this category.

Spectral vs. non-spectral: Spectral methods, based on algebraic properties of a certain graph
associated with the finite element mesh, have been proposed to solve the partitioning problem
(see, for example, References 20 and 21). Algorithms based on these methods can be classified as
spectral algorithms, while the others are non-spectral ones. The spectral methods use global
properties of the graph associated with the mesh to perform the partitioning, i.e. a spectral
analysis is conducted to compute separators based on eigenvector components of the graph. This
is opposed to most of the non-spectral algorithms which, in general, use only local information in
the graph, such as the neighbouring information of a vertex. Several spectral partitioning
algorithms have been presented in the literature. For example, Simon4 proposed the Recursive
Spectral Bisection (RSB) algorithm for hypercube architectures, which consist of 2d processors (d
is the dimension of the hypercube). Hendrickson and Leland14,15 extended the spectral bisection
through the use of multiple eigenvectors to allow for partitioning of a domain into 4 or
8 subdomains at each stage of a recursive decomposition. They proposed the Recursive Spectral
Quadrisection (RSQ) algorithm for 4k partitions (k is a positive integer number) and the Recursive
Spectral Octasection (RSO) for 8k partitions. However, all these algorithms (RSB, RSQ, and
RSO) have been specifically developed for the hypercube or mesh (machine) architectures. To
generalize the RSB algorithms for an arbitrary number of processors, Hsieh5 and Hsieh et al.6
presented the Recursive Spectral Sequential-cut (RSS) and the Recursive Spectral Two-way (RST)
algorithms. The RSB, RSQ, RSO, RSS, and RST algorithms are based on spectral properties of
the Laplacian matrix22,23 of a graph associated with the mesh.

Recursive vs. non-recursive (sequential): The partitioning algorithms are either recursive in
nature or not. For example, the GR, RCB, RGB, RSB, and RST algorithms are recursive, while
the RBD and PI algorithms are non-recursive. For some partitioning techniques, there may exist
both recursive and sequential versions. For example, the sequential versions of the RCB, RGB,
and RSB algorithms have been studied and compared with their recursive counterparts by
Venkatakrishnan et al.24 It is found that the sequential versions tend to produce stripwise
partitions with longer boundaries but fewer neighbours, while the recursive ones often generate
domainwise partitions with smaller aspect ratios±, shorter boundaries, but more neighbours.
Similar findings have also been reported by Farhat and Simon25 between the Reverse
Cuthill—McKee-based partitioning (RCME) algorithm, and the Recursive RCM (RRCM) algo-
rithm.

1.2. Comparative studies

Several comparative studies among some automatic partitioning algorithms have been re-
ported. Fox26 reviewed five automatic load balancing and decomposition methods for the
hypercube computer: (1) scattered decomposition, (2) self-scheduling, (3) Orthogonal Recursive
Bisection (ORB), (4) SA and (5) Neural Networks. According to Fox,26 the first two algorithms
are easy to use and work well for a broad class of problems, while the remaining three algorithms
represent more powerful techniques that are generally applicable but require a more elaborate
environment on the hypercube computer. Simon4 compared the RCB, RGB, and RSB algorithms

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1027

and showed the superiority of the RSB algorithm over both the RCB and the RGB algorithms.
Williams27 evaluated the performance of three partitioning algorithms for dynamic load balanc-
ing using a 16-processor NCUBE machine. He compared the SA, ORB, and Eigenvector
Recursive Bisection (ERB—essentially the same as the RSB algorithm) algorithms. He concluded
that the ERB algorithm seems to be a good compromise between the other two algorithms. In
numerical comparative studies using finite element meshes of different types, Hsieh5 demon-
strated that the RST algorithm is a good generalization of the RSB algorithm. He also showed
that the RST algorithm, when used with the communication graph approach, produces the best
results among the GR, ANP, and RBD algorithms for most cases studied. Farhat and
Lesoinne11, 16 compared the GR, minimum bandwidth, inertial, and recursive inertial algorithms,
and indicated that the GR algorithm performs the best in all the reported examples. Very recently,
Farhat and Simon25 compared the GR, RCM, RRCM, Principal Inertial (PI), Recursive Princi-
pal Inertial (RPI), RGB, RSB, and 1D Topology Frontal (1DTF) algorithms. They have reported
that, for the three test problems studied, ‘the GR and RSB algorithms outperform all of the other
partitioning algorithms in reducing the interface size’ (Reference 25, p. 19).

The comparative studies mentioned above have provided some useful information for engin-
eers to select appropriate partitioning algorithms that meet the needs of a specific parallel
solution strategy. However, these studies have not fully addressed the sensitivity of partitioning
algorithms with respect to the following:

1. The granularity of partitions (i.e. coarse-grained vs. fine-grained partitioning).
2. Slight variations in the number of partitions required.
3. Finite element meshes of similar shapes but of varying mesh density and element interpola-

tion order.
4. Nodal and/or element numbering of a finite element mesh.

Recently, Hsieh and Paulino28 have presented a critical assessment of partitioning algorithms
which addresses the above issues. This paper presents a more comprehensive study which uses
both regular and practical (generic or non-structured) finite element meshes to evaluate the above
and other properties of domain partitioning algorithms.

In this work, the GR, ANP, RBD, and RST algorithms are selected for comparative studies and
demonstration of the proposed evaluation methodology. Whether or not these algorithms are
widely used is not the major criterion used for selection. These four algorithms represent four
different approaches and have apparent characteristics that are worth investigating. For example,
the GR algorithm is a simple topology-based algorithm, while the ANP algorithm uses both
topological and geometrical information. The RBD algorithm is based on bandwidth reduction
technique and is non-recursive. The RST algorithm is based on spectral methods and is recursive.
Moreover, the strengths and weaknesses of these algorithms are also critically studied.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 briefly describes the four
partitioning algorithms investigated and their implementation in this work. Both strengths and
weaknesses of these algorithms are then discussed in Section 3. Possible improvements to some of
these partitioning algorithms are suggested and evaluated. In Section 4, an evaluation methodo-
logy for domain partitioning is described. In addition, the interactive graphics program PSAINT
(Parallel Structural Analysis Interface) used in this work for implementing and evaluating
domain partitioning algorithms is presented. In Section 5, direct numerical comparisons are
then conducted using finite element meshes of different regularity, order, numbering, and

1028 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

Table II. Al-Nasra and Nguyen’s Partitioning (ANP) algorithm2

(1) Assign an initial weight to each node. The initial weight of a node is defined as the number of elements
connected to it.

(2) Adjust the initial weight of each node based on its geometric location in the mesh such that extra weight
is added increasingly along the long direction of the mesh.

(3) Locate a node that has a non-zero minimal weight and is not located at the boundaries with other
subdomains.

(4) Assign unassigned elements that are connected to this node and their associated nodes to the current
subdomain, and reduce the weight of the nodes by one.

(5) Locate a node with minimum weight and with at least one adjacent unassigned element in the current
subdomain.

(6) Repeat (4) and (5) until the number of elements equals to the total number of elements divided by the
number of processors.

(7) Repeat (3)—(6) until all subdomains are defined.

Table I. GReedy (GR) partitioning algorithm1

(1) Locate a node that belongs to the boundary of the previously defined subdomains (for the first time, use
the whole domain) and has a non-zero minimal weight.

(2) Assign unassigned elements that are connected to this node to the current subdomain. Recursively,
assign unassigned elements that are adjacent to the elements in the current subdomain to the current
subdomain until the number of elements equals to the total number of elements divided by the number of
processors.

(3) Repeat (1) and (2) until all subdomains are defined.

dimensionality to study the characteristics and to evaluate the performance of the partitioning
algorithms. Finally, several conclusions are drawn and directions for future work are discussed in
Section 6.

2. THE DOMAIN PARTITIONING ALGORITHMS

Brief descriptions of the four automatic partitioning algorithms investigated are provided below.
Their implementation in this work is also described.

GReedy (GR) algorithm:1 The algorithm is summarized in Table I. The weight of a node is
defined as the number of unassigned elements connected to it. The boundary of a subdomain is
defined as the subset of its boundary that connects to other subdomains. The present implementa-
tion uses the routines provided in the paper by Farhat1 with some corrections.29

Al-Nasra and Nguyen’s partitioning (ANP) algorithm:2 The algorithm is similar to Farhat’s
algorithm but incorporates the geometrical information of the finite element mesh in the
partitioning procedure. A summary of the algorithm is presented in Table II. The present
implementation uses the routines provided in the paper by Al-Nasra and Nguyen2 with slight
modifications to improve performance. Moreover, to avoid an endless search for the minimum-
weighted node when domain splitting situations occur, Step (3) of the algorithm (see Table II) has
been modified as follows:

(3) Locate a node that has a non-zero minimal weight and is not located at the boundaries with
other subdomains. If all nodes in the current subdomain are not qualified, perform a search
among all unassigned nodes in the mesh.

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1029

Table III. Reduced bandwidth decomposition (RBD) algorithm3

(1) Reduce bandwidth of the matrix representing the nodal connectivities of the finite element mesh.
(2) Reorder elements in ascending sequence of their lowest numbered nodes.
(3) To each processor, assign the elements in order until the number of elements equals to the total number

of elements divided by the number of processors.

Table IV. Recursive spectral two-way (RST) algorithm5,6

(1) Construct the dual (DG), communication (CG), or node graph (NG) associated with the finite element
mesh.

(2) Compute the second eigenvector of the Laplacian matrix (called the Fiedler vector by Simon4) of the
graph using, for example, the Lanczos algorithm.

(3) Sort vertices of the graph according to the value of their associated components in the Fiedler vector.
(4) Compute the following integers:

p1"np/2 (discard remainder), p2"np!p1, and n"+p1
k/1

m
l (k)

Assign n vertices and the list of the first p1 components in l(k) to one subdomain, and set np"p1 for this
subdomain.
Assign the remaining vertices and the list of the remaining components in l(k) to the other subdomain,
and set np"p2 for this subdomain.

(5) Repeat recursively for each subdomain with np'1.

Reduced bandwidth decomposition (RBD) algorithm:3 The algorithm is summarized in Table III.
In Step (1), it is stated by Malone3 that a modified version of the Collins algorithm30 has been
used. The present implementation uses a modified version of the Collins algorithm developed by
the writers.

Recursive spectral two-way (RS¹) algorithm:5,6 This algorithm generalizes the RSB algorithm4

for an arbitrary number of partitions. Instead of using a bisection approach, the RST algorithm
uses a two-way partitioning approach which partitions the graph into two parts not necessarily
equal in size. The algorithm is given in Table IV. Use of this algorithm in association with the
Dual Graph (DG), Communication Graph (CG), and Node Graph (NG) representation of a finite
element mesh has been discussed in detail by Hsieh5 and Hsieh et al.6 and is not repeated here.
The number of vertices in each subdomain D

i
when the partitioning task is completed is denoted

by m
i
. It is computed in advance by sequentially employing the following equation for

i"1, . . . , N
1
:

m
i
"C

N!+ i~1
j/1

m
j

N
1
!(i!1) D (#1 if remainderO0) (1)

in which N
1

is the number of available processors and N is the total number of vertices of the
whole domain. The number of partitions desired in the intermediate subdomain in each two-way
partitioning step is denoted by n

1
(initially n

1
"N

1
for the whole domain). Each intermediate

subdomain maintains a list l of subdomain numbers associated with D
i
which has been assigned

to it (initially the list is M1, . . . , N
1
N for the whole domain). The kth component of this list is

denoted by l(k). As shown in Table IV, the implementation of the RST algorithm requires the
computation of the second eigenvector of the Laplacian matrix. The implementation by Hsieh5

and Hsieh et al.6 used the Lanczos algorithm presented by Simon4 for this eigenvector

1030 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

computation. The present implementation is based on the fast multilevel implementation of the
RSB algorithm provided by Barnard and Simon.31

2.1. Element-based vs. node-based partitioning

Different parallel solution methods used in the finite element analysis may require different
strategies for domain partitioning. Two types of partitioning strategies may be classified: ele-
ment-based partitioning and node-based partitioning. The element-based partitioning focuses on
partitioning elements in finite element meshes, while the node-based partitioning focuses on
partitioning nodes. For example, in parallel solutions of structural dynamics, implicit solution
methods often require element-based partitioning (see, for example, Reference 32), while explicit
methods may require either type depending on the parallel implementation (see, for example,
References 3 and 33).

In the partitioning algorithms discussed above, only the spectral partitioning algorithms with
the node graph approach have directly addressed the node-based partitioning. For those
algorithms which address only element-based partitioning, a simple extra step at the end of the
algorithms may be performed to assign common boundary nodes of two or more subdomains
uniquely to a subdomain so that the algorithms can also be used for node-based partitioning.34 In
this case, however, the results of the node-based partitioning would be highly dependent on those
of the element-based partitioning obtained before the extra step is performed. Therefore, in this
work the focus is placed on the comparative studies of element-based partitioning among
different algorithms.

3. EXAMINATION OF THE DOMAIN PARTITIONING ALGORITHMS

The strengths and weaknesses of the partitioning algorithms described in the previous section are
discussed below. The particular classification of the algorithms, presented in the introduction of
this paper, is employed here. Numerical evaluation and comparative study of the algorithms are
presented later, in Section 5.

3.1. ¹he GR algorithm

The GR algorithm is topology-based, non-spectral, and recursive. The algorithm is simple
because it uses mainly local element adjacency information recursively to perform partitioning
(see Table I). The GR algorithm tends to generate domainwise subdomains and appears effective
for fine-grained partitioning.

According to Farhat,1 the GR algorithm is ‘independent of both element and nodal point
numbering’ (Reference 1, p. 582) since only adjacency information of elements is utilized.
However, the decomposition obtained from the GR algorithm is actually not independent of
nodal numbering. In Step (1) (see Table I), there may be several nodes with the same minimal
weight, and the first node encountered with minimal weight is arbitrarily selected. In this case, the
initial nodal numbering determines which starting node is to be selected. It has been found that
the selection of the node with minimal weight in Step (1), especially the very first one in the
algorithm, greatly affects the decomposition results. In some cases, whether domain splitting
occurs in the decomposition may depend on the node selection in Step (1). For example, in the
transmission tower shown in Figure 1(a), the six vertices enclosed by a circle are nodes with
minimal weight for the first step of the GR algorithm. Figure 1(b) shows the partitioning results

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1031

Figure 1. Partitioning of a transmission tower using the GR and PGR algorithms: (a) transmission tower with
minimum-weighted vertices circled; (b) partitioning by the GR algorithm starting with the circled minimum-weighted

vertex; (c) partitioning by the PGR algorithm starting with the circled pseudoperipheral vertex

**A peripheral node corresponds to a vertex in the associated graph such that the eccentricity e(v
i
)"max d (v

i
,v

j
)

(j"1, . . . , n) for i"1, . . . , n, is equal to the diameter of the associated graph d"max e (v
i
) (i"1, . . . , n). Here n is the

number of vertices of the graph and d (v
i
, v

j
) is the distance between vertices v

i
and v

j
(i.e. the topological length of the

shortest path connecting v
i
and v

j
). A vertex v

i
is peripheral if e(v

i
)"d. For further explanation, see Reference 35.

for two subdomains with a splitting situation occurring in the second subdomain. In this case, the
algorithm uses the upper right minimum-weighted node as the starting point. If a different nodal
numbering is used which makes the algorithm start from any of the four support nodes
(minimum-weighted nodes), domain splitting will be avoided for this case.

One strategy to attack this problem is to run the GR algorithm trying all minimum-weighted
nodes found in Step (1) for the first subdomain, then to compare the partitioning results to select
the best. However, this strategy can be computationally expensive because a problem may have
many minimum-weighted nodes for the first subdomain.

A preconditioning technique seems to be more efficient in this case. The writers have some
evidence that a peripheral node** is a good alternative for the starting node in the GR algorithm.
Since finding a peripheral node is computationally expensive, the writers have, instead, used the
pseudoperipheral node finder presented by George and Liu.36 However, any other equivalent
algorithm can be used for this purpose, e.g. the one presented by Gibbs et al.37 or Paulino et al.35
The implemented Preconditioned GReedy (PGR) algorithm is given in Table V. As an example,
consider again the transmission tower of Figure 1(a). Figure 1(c) shows the partitioning results by
the PGR algorithm. One can observe that domain splitting does not occur. In addition, the

1032 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

Table V. Preconditioned GReedy (PGR) partitioning algorithm

(0) Find a pseudoperipheral node and use it as a starting node. Go to (2).
(1)— (3) Same as the GR algorithm (Table I).

Figure 2. An eight-bladed disk and its partitioning by the ANP algorithm: (a) eight-bladed disk model; (b) partitioning by
the ANP algorithm

partitions produced by the PGR algorithm have fewer total interface nodes than the GR
algorithm does (16 for the PGR algorithm and 23 for the GR algorithm). However, it should be
noted that, in general, the PGR algorithm does not guarantee the absence of domain splitting.

3.2. ¹he ANP algorithm

The ANP algorithm is both topology- and geometry-based, non-spectral, and recursive. The
geometrical information of the finite element mesh is incorporated into the algorithm as an
attempt to avoid domain splitting in subdomains. However, it will be shown by the writers that
the avoidance of domain splitting is still not guaranteed by the ANP algorithm. Moreover, the
algorithm tends to generate stripwise subdomains along the ‘overall long direction’ of the
structure.

Al-Nasra and Nguyen2 concluded in their paper that ‘In all the tested problems, domain-
splitting phenomena (an undesirable situation) do not occur’ (Reference 2, p. 284). However, for
some applications tested in the present work, splitting did occur. For example, Figure 2(a) shows
an 8-bladed turbine disk modelled by solid finite elements, and Figure 2(b) presents the partition-
ing results for two subdomains obtained by the ANP algorithm. It can be seen that splitting
occurs in the second subdomain. Moreover, when the splitting occurs in a subdomain other than
the last one, Step (3) of the original algorithm (see Table II) may go into an endless search for the
minimum-weighted node. As already described in the previous section, this problem has been
fixed in the present implementation.

In addition, the long and short dimensions defined in the algorithm are in terms of the
directions of global axes used to build the finite element model of the structure. This means that
different choices of the global axes and different ways of orienting the structure with respect to the

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1033

Figure 3. Partitioning of a space station by the RBD(Col) algorithm: (a) space station model; (b) partitioning by the
RBD(Col) algorithm

chosen global axes may result in different partitioning results. Therefore, to obtain good results,
caution is needed in preparation of input data for this algorithm.

3.3. ¹he RBD algorithm

The RBD algorithm is topology-based, non-spectral, and non-recursive. The algorithm is
based on the well-established concept of matrix bandwidth reduction in finite element analysis.
As the number of partitions increase, this algorithm tends to generate stripwise subdomains
which often result in longer subdomain boundaries but fewer neighbours.

In Step (1) of the RBD algorithm (see Table III), it is stated by Malone3 that a modified version
of the Collins’ automatic nodal renumbering algorithm for bandwidth reduction30 is used. The
present implementation uses a modified version of the Collins algorithm developed by the writers.
However, Collins’ algorithm is not ‘effective for most meshes’ as stated by Malone (Reference 3,
p. 42), who presented only meshes with Constant Strain Triangles (CST). This algorithm was
reported to be unsuccessful for meshes with eight-noded quadrilateral elements.30 Moreover, all
the examples presented by Collins30 are too small when compared to large meshes that demand
parallel analysis. Therefore, if a more efficient and effective heuristic algorithm is used in Step (1)
to reduce the bandwidth of the system matrix, better partitioning results may be obtained.
Possible candidate algorithms are the ones presented by Cuthill and McKee38 (see Reference 39
for an efficient implementation), Gibbs et al.37 and Puttonen.40 Some researchers11,16,25 have
unnecessarily used the Reverse Cuthill—Mckee (RCM) algorithm39 for this purpose. Since the
purpose is bandwidth reduction, the plain Cuthill—Mckee (CM) algorithm suffices. The extra step
for the reverse numbering is not necessary because both the CM and RCM algorithms give
exactly the same bandwidth (see explanations in Reference 41). In the present work, the algorithm
presented by Gibbs et al.37 is selected for the purpose of bandwidth reduction. The resulted
partitioning algorithm is therefore denoted as the RBD(GPS) algorithm, while the original one
presented by Malone3 is now denoted as the RBD(Col) algorithm.

There is no guarantee in RBD-type algorithms that domain splitting does not occur in the
subdomains created. For example, the space station of Figure 3(a) is partitioned by the RBD(Col)

1034 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

algorithm into four subdomains, as shown in Figure 3(b). It can be seen that splitting occurs in
subdomains 2 and 4.

3.4. ¹he RS¹ algorithm

The RST algorithm is topology-based, spectral, and recursive. Being a spectral method, the
RST algorithm has the advantage over most non-spectral algorithms of using global information
about the associated graph in the partitioning process. However, because the finite element
meshes of engineering structures may be large and generic, the eigensolutions required by the
spectral analysis in the recursive loop of the algorithm (see Table IV) can be difficult to treat and
computationally expensive.

To alleviate the problems mentioned above, the fast multilevel implementation by Barnard and
Simon31 is used in this work for the eigensolution required by the RST algorithm. They have
reported that for large problems, their fast multilevel implementation achieves about an order-
of-magnitude improvement in run time over the previous single-level implementation by Simon.4
In the present work, the RST algorithm generalizes the multilevel implementation of the RSB
algorithm for an arbitrary number of partitions (see Table IV).

The multilevel technique to find the Fiedler vector of a graph adds three additional steps to the
single-level technique: contraction, interpolation, and refinement. These steps are briefly sum-
marized below. For more details, see Reference 31.

Contraction: Construct a series of smaller graphs which in some sense retain the global
structure of the original (large) graph.

Interpolation: Given a Fiedler vector of a contracted graph, interpolate this vector to the next
larger graph in such a way that it provides a good approximation to the next Fiedler vector.

Refinement: Given an approximate Fiedler vector for a graph, compute a more accurate vector
efficiently. A combination of Rayleigh Quotient Iteration (RQI)42 and the SYMMLQ algo-
rithm43 (for solution of indefinite systems) are used to refine the coarse grid approximate of the
eigenvector being sought.

There are several parameters involved in the multilevel implementation that may affect the
performance of multilevel recursive spectral algorithms, such as the present version of the RST
algorithm. These parameters are listed below and their default values used in this work are noted
within the parentheses.

(a) Maximum Lanczos iteration number (400).
(b) Convergence tolerance for the Lanczos solver (0·0001).
(c) Minimum number of equations, which determines the size of the smallest mesh in the

contraction step (750).
(d) Maximum number of vertices for Kernighan—Lin algorithm44 used to improve the parti-

tion after each bisection (300).
(e) Convergence tolerance for the SYMMLQ solver (0·01).
(f) Convergence tolerance for the SYMMLQ version of RQI (0·05).
(g) Maximum number of iterations for the SYMMLQ version of RQI (100).

The writers’ experience shows that an adequate tuning of some of these parameters (especially
the minimum number of equations for the contraction step) is, in general, necessary for the
success of multilevel partitioning algorithms. In addition, the partitioning results are generally
dependent on the accuracy of the eigensolutions although only modest accuracy is required for
obtaining reasonably satisfactory results. Furthermore, the RST algorithm, as implemented in the
present work, does not guarantee that splitting problems do not occur.

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1035

Figure 4. Regular grids problems used in the present study: (a) 2-D m]n grids; (b) 3-D l]m]n grids

4. EVALUATION METHOD FOR DOMAIN PARTITIONING

This section presents the evaluation method used in this work to study the overall performance
and the sensitivity properties (as discussed earlier) of partitioning algorithms. In addition,
interactive graphics tools used in this work to facilitate the evaluation and comparative studies of
various partitioning algorithms are presented.

4.1. General strategy

There is no established method for evaluating partitioning algorithms based on purely
theoretical arguments. Therefore, the evaluation is generally done empirically on a computer.
A simple and effective evaluation methodology is presented here. It uses a set of test problems to
evaluate and compare various partitioning algorithms. These test problems can be divided into
two general groups: one with both 2-D and 3-D regular grid problems, and the other with
realistically irregular meshes found in a wide variety of finite element applications. Test problems
in the first group are important for studying the characteristic behaviour and sensitivity proper-
ties of partitioning algorithms as the mesh is refined or the number of partitions varies in
a systematic way. Test problems in the second group, which represent real problems to be solved
in engineering practice, are also necessary for assessing the performance of partitioning algo-
rithms. The test problems in this group are those that require parallel finite element analysis for
their practical solutions. They are usually ‘large’ and may have complicated geometry.

In the present study, only a set of rectangular 2-D and 3-D grids with grid points equally
spaced (see Figures 4(a) and 4(b), respectively) are used as the first group of test problems to
demonstrate the proposed evaluation method. However, regular grids of other shapes, such as
triangular, cylindrical, and spherical grids, may also be included in the evaluation method.

The second group of test problems should include a wide variety of practical examples.
However, it is beyond the scope of this work to collect a set of standard test problems with all the
desired features for comparative studies of partitioning algorithms. The model provided by the
Harwell—Boeing sparse matrix collection45 could be followed in future research to accomplish
this task. In the present study, only two examples in the writers’ library are used to demonstrate
the proposed evaluation method. Although the mesh sizes of these examples cannot be considered
large, their non-linear dynamic analyses do require parallel processing (see References 5 and 34).
Furthermore, because the major interest in this work is to study the characteristic behaviour and

1036 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

sensitivity properties of partitioning algorithms using the proposed evaluation method, the
characteristics of the meshes (such as multiply connected and/or branched domains) are more
important than the sizes of the meshes, except for studying the efficiency of the partitioning
algorithms. As will be discussed later in this section, the efficiency of the partitioning algorithms is
not the major interest of this work.

4.2. Sensitivity properties explored

Some algorithms perform better in fine-grained partitioning than in coarse-grained partition-
ing, while some do just the opposite. To investigate how sensitive an algorithm is to the
granularity of partitions, both small and large values of N

1
(relative to the problem size) should be

used in partitioning the same test problems. Furthermore, in coarse-grained partitioning, a slight
variation of N

1
on a given test problem may significantly affect the performance of some

algorithms. To investigate the sensitivity of an algorithm to the variation of N
1
, the present study

uses the following values of N
1
: 7, 8, 9, 32, and 128.

It is also necessary to vary the mesh density of a test problem to study its effect on the
performance of an algorithm. The 2-D regular grid problems used in the present study include
10]20, 20]20, 30]20, 40]20, and 50]20 meshes, while the 3-D regular grid problems used
include 5]10]10, 10]10]10, 15]10]10, and 20]10]10 meshes. However, based on the
results obtained from the 2-D test problems, only a few 3-D test problems may be required for
further investigation and/or verification.

In addition, as discussed earlier, performance of some algorithms may be affected by the nodal
or element numbering of the finite element mesh. To study this effect, test problems used in the
evaluation method should include the same meshes but with different nodal and/or element
numbering. In the present study, 20]10 (vs. 10]20) and 10]5]10 (vs. 5]10]10) meshes are
added in 2-D and 3-D test problems, respectively. In 2-D problems, for example, the nodes are
numbered across the y direction, which provides a regular numbering pattern. In this case, the
10]20 and 20]10 meshes are meshes of same topology and density but with different nodal and
element numbering. Moreover, because the most natural numbering for bandwidth reduction is
across the x direction, the initial numbering (which is done across y direction) ensures that
algorithms depending on a good initial numbering would not have advantage over the others.

Furthermore, the effects of using finite elements of different interpolation order on the perfor-
mance of an algorithm should be investigated. The present study uses Q4 and Q8 (eight-noded
quadrilateral) elements for 2-D test problems, and B8 (eight-noded brick) and B20 (20-noded
brick) elements for 3-D test problems. These elements have been selected because they are
commonly used in finite element practice. However, different types of elements, such as triangular
elements of 3 and 6 nodes for 2-D meshes, and tetrahedral elements of 4 and 10 nodes for 3-D
meshes, could also be studied in the evaluation method.

4.3. Quantitative performance assessment

As discussed earlier in Section 2, different parallel solution methods may require different load
balancing strategies to maximize their efficiencies. The focus of this work is on the element-based
partitioning. Some commonly used evaluation criteria are considered in this work for assessing
overall performance of partitioning algorithms in the following aspects: (a) balance of computa-
tional load among processors, (b) minimization of interprocess communication, (c) balance of
interprocess communication, and (d) time required for partitioning algorithms. Specific evalu-
ation parameters used in the numerical study are discussed below. It should be noted that

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1037

additional criteria may be needed if evaluation of partitioning algorithms for a specific parallel
solution method is required.

f Balance of computational load among processors: All of the partitioning algorithms con-
sidered in this study are implemented assuming that the balance of computational load among
processors is achieved by balancing the element distributions among subdomains before the
partitioning process takes place (only meshes with elements of same type are considered here). As
a result, the number of elements in any two subdomains differs at most by one for all cases. Since
all algorithms perform equally well in balancing element distributions, no evaluation parameter is
used for this aspect in the numerical study. However, it should be noted that although the above
assumption may be appropriate for some parallel solution methods (see, for example, Reference
3), many parallel solution methods often require different element distribution schemes to achieve
load balance. In this work, the focus is on the general framework of an evaluation method. The
framework can then be tailored to meet the specific needs of a specific parallel solution algorithm.
It can be seen later in Section 5 that the above assumption has little effect on the illustration of the
evaluation methodology as well as the sensitivity studies of the partitioning algorithms.

f Minimization of interprocess communication: Tot(N
"
), total number of boundary interface

nodes in the domain, indicates total volume of message passing. Ave(N
!
), average number of

adjacent subdomains, shows the average number of messages needed for a process to communic-
ate with its neighbours. N

$
is the number of subdomains that have disconnected regions.

Intuitively, N
$
is a significant parameter because fragmented subdomains usually result in longer

subdomain boundaries and more communication overhead. However, Hsieh and Abel34 have
shown that having non-fragmented subdomains (i.e. N

$
"0) is not sufficient in itself to obtain

shorter subdomain boundaries.
f Balance of interprocess communication: The parameter used to evaluate the balancing of

communication loads among processors is Max(N
"
)/Min(N

"
), the ratio between the maximum

and minimum number of subdomain boundary nodes among all subdomains.
f ¹ime required for partitioning algorithms: The CPU time (s) required for partitioning on

a single Sun SPARC 10/40 GX workstation is denoted as ¹
#16

in this work. ¹
#16

includes time
spent in data preparation for the algorithm, execution of the algorithm, and setting results into
the database. This is different from timing only execution of the core partitioning algorithm as
usually adopted in the field of computer science but also by many other researchers. Different
algorithms often have different input data requirements and produce partitioning results in
different formats. Depending on the algorithm as well as the size and characteristics of the mesh,
these pre- and post-processing phases may demand a dominant portion of the total CPU time
required to obtain partitioning results for a parallel finite element program from conventional
input data of a finite element mesh. Therefore, the CPU time presented in this work is a more
practical measure of the complete partitioning task. However, because the partitioning algo-
rithms studied are implemented by different researchers with different standards for efficiency
optimization, it should be noted that the CPU time reported in this work might not reflect
accurately the efficiency of the actual partitioning algorithms. In addition, the CPU time spent in
partitioning is usually negligible compared to the execution time of parallel analysis.

4.4. Interactive graphics tools

An interactive graphics program called PSAINT5, 46 is used to facilitate the evaluation and
comparative studies conducted in this work. All of the automatic domain partitioning algorithms
compared in this paper have been implemented in PSAINT. A set of graphics tools is also
provided in PSAINT for examination of partitioning results. For example, upon completion of

1038 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

partitioning, the program displays subdomains in different colours. The users are then allowed
to turn on and off display of any subdomain, to display subdomains individually, or to display
them in a sequential order for better examination of partitioning results. In addition, message
boxes containing statistics of partitioning results are automatically generated and displayed.
Plate 1 shows the partitioning results of a 24-bladed disk model evaluated using PSAINT.

5. TEST PROBLEMS, RESULTS, AND DISCUSSIONS

Finite element problems of different types have been used to evaluate and compare the GR, PGR,
ANP, RBD(Col), RBD(GPS), RST(DG), and RST(CG) partitioning algorithms. They include
both 2-D and 3-D regular grid problems of different sizes and practical problems modelled by
3-D elements.

5.1. 2-D regular grid problems

The type of 2-D regular grid problems considered in the present study is shown in Figure 4(a).
The test problems include 20]10, 10]20, 20]20, 30]20, 40]20, and 50]20 meshes. The
nodes are numbered across the y direction. The values of N

1
studied are 7, 8, 9, 32, and 128. All

meshes use either Q4 or Q8 elements. All of the numerical results have been summarized in
Appendix B of Reference 47. Interested readers are welcome to obtain a copy of the results from
the writers.

Based on the numerical results and graphical examination of these results in PSAINT, the
following observations are made:

(1) The ANP, RBD(Col), and RBD(GPS) algorithms tend to produce stripwise partitions with
longer boundaries but fewer neighbours, while the GR, PGR, RST(DG), and RST(CG)
algorithms often generate domainwise partitions with smaller aspect ratios, shorter bound-
aries, but more neighbours. Furthermore, the GR and PGR algorithms often tend to
generate a non-connected or stripwise subdomains in the last few partitions. The general
characteristics of these partitioning algorithms are illustrated in Figure 5 using a 50]20 Q4
mesh with N

1
"32 (the partitioning result of the PGR algorithm is not shown because it is

almost the same as that of the GR algorithm).
(2) The 10]20 and 20]10 meshes are meshes of same topology and density but with different

nodal and element numbering. If the partitioning results of an algorithm are different on
these two meshes, the algorithm is sensitive to the initial nodal and/or element numbering
(from a numerical point of view). Therefore, from the results obtained for 10]20 and
20]10 meshes with Q4 or Q8 elements, it can be found that the GR and PGR algorithms
are sensitive to the initial nodal and/or element numbering (see, for example, Figure 6)
except for the case of N

1
"8. The results of the ANP algorithm is only affected by the initial

nodal and/or element numbering for the case of N
1
"32 (see, for example, Figure 6(b)). The

results of the RBD(Col) algorithm is also affected (see Figure 6) because the Collins
algorithm fails to improve the initial nodal numbering of the 20]10 meshes for bandwidth
reduction (in these cases, the initial numbering is kept) to be as good as the initial nodal
numbering of the 10]20 mesh. Based on the results obtained for 10]20 and 20]10
meshes with Q4 or Q8 elements, the RBD(GPS) seems to be insensitive to the initial nodal
numbering. However, problems similar to those discussed above for the RBD(Col) algo-
rithm may also arise with the RBD(GPS) algorithm. In Figure 7, an example using 20]30
and 30]20 Q4 meshes with N

1
"7 is used to demonstrate this point. Theoretically, the

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1039

Figure 5. Partitioning of a 50]20 Q4 mesh (Np"32) using: (a) GR; (b) ANP; (c) RBD(Col); (d) RBD(GPS); (e) RST(DG);
(f) RST(CG) algorithms

RST algorithms should not be sensitive to the initial nodal or element numbering (or
equivalently, to the initial vertex numbering of the associated graph). However, for the cases
of N

1
"32 (see Figure 6(b)) and 128, their results are affected by element numbering. This

may be due to the use of iterative solvers for approximating the eigensolutions, which are
sensitive to the initial vertex numbering of the associated graph.

(3) Only the ANP algorithm is found to be sensitive to the element interpolation order as is
seen from the results of the Q4 and Q8 meshes. In addition, the RST(DG) and RST(CG)
algorithms become relatively less expensive (in terms of ¹

#16
) comparing with the non-

spectral algorithms, such as the GR, PGR and RBD(GPS) algorithms, when higher-order
elements are used. This is because the cost of the RST algorithms is a function of the
number of elements in the mesh instead of the number of the nodes.

(4) The GR and PGR algorithms are sensitive to slight variations of N
1
(in this study, N

1
"7,

8 and 9). For example, consider the partitioning of the 40]20 Q4 mesh shown in Figure
8(a) using the GR algorithm. As shown in Figure 8(b), the algorithm produces optimal
partitions when N

1
"8. However, for the cases of N

1
"7 and 9 (see Figures 8(c) and 8(d),

respectively), one of the subdomains produced by the algorithm either is split into two parts

1040 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

Figure 6. Comparison of partitioning results on 20]10 and 10]20 Q4 meshes for the cases: (a) N
1
"7; (b) N

1
"32

Figure 7. Partitioning results of the RBD(GPS) algorithm on: (a) 20]30; (b) 30]20 Q4 meshes (N
1
"7)

(for N
1
"7) or has a long boundary (for N

1
"9). Other algorithms seem to be less sensitive

to this effect.
(5) The ANP and RBD algorithms are more likely to encounter domain-splitting problems

for fine-grained partitioning (in this study, N
1
"32 and 128) than for coarse-grained

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1041

Figure 8. Partitioning of a 40]20 Q4 mesh using the GR algorithm: (a) 40]20 Q4 mesh; (b) N
1
"8; (c) N

1
"7; (d)

N
1
"9

Table VI. Partitioning results (N
1
"128) on the 2-D 20]20 Q4 regular

mesh (400 elements and 441 nodes)

RBD RST

Parameter GR PGR ANP (Col) (GPS) (DG) (CG)

¹
#16

0·9 1·0 5·2 1·0 0·8 2·3 2·5
Tot(N

"
) 381 381 409 409 409 396 395

Max(N
"
) 8 8 12 10 10 10 10

Min(N
"
) 5 5 5 5 5 5 5

Ave(N
!
) 5·7 5·7 7·0 5·8 5·8 5·9 6·2

N
$

0 0 16 11 11 0 0

partitioning (in this study, N
1
"7, 8 and 9). In addition, the GR and PGR algorithms

sometimes outperform all other algorithms in the cases of fine-grained partitioning (see, for
example, Table VI), but this is not the case for coarse-grained partitioning.

(6) All algorithms show some degree of sensitivity to the variation of mesh density. For
example, the GR algorithm produces optimal solutions for the case of N

1
"8 on the

20]10, 10]20, and 40]20 meshes. However, it fails to do the same on the 20]20 meshes
of Figure 9(a), as shown in Figure 9(b). This is not the case for both the RST(DG) and
RST(CG) algorithms (see Figure 9(c)). In addition, for the 20]20 meshes having equal
dimensions in x and y directions, the ANP algorithm does not utilize the geometrical
information (i.e. no extra weight is added to the nodes) and produces the relatively poor
results shown in Figure 9(d).

(7) The PGR algorithm does not always produce better results than the GR algorithm.
However, it is a good alternative when the GR algorithm does not give satisfactory

1042 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

Figure 9. Partitioning of a 20]20 Q4 mesh (N
1
"8): (a) 20]20 Q4 mesh; (b) GR; (c) RST; (d) ANP

partitions. The comparison of results between the GR and PGR algorithms also suggest
that the GR-type algorithms are sensitive to the selection of the very first node in the
algorithm.

(8) The RST algorithms seem to perform the best among all those studied in terms of
reducing both Tot(N

"
) and Ave(N

!
) in a balanced fashion. In addition, the RST algorithms

are the only algorithms that do not have domain-splitting in this entire set of test
problems.

5.2. 3-D regular grid problems

The type of 3-D regular grid problems considered in the present study is shown in Figure 4(b).
The test problems include 10]5]10, 5]10]10, 10]10]10, 15]10]10, and 20]10]10
meshes. The nodes in the same x—y plane are numbered across the y direction and the nodes in the
x—y planes with smaller z values are numbered before those with larger z values. As in the 2-D
cases, the values of N

1
studied are 7, 8, 9, 32 and 128. All meshes use B8 elements, while only the

5]10]10, 10]10]10, and 20]10]10 meshes also use B20 elements. As in the 2-D cases, all of
the numerical results are summarized in Appendix B of Reference 47. Interested readers are
welcome to obtain a copy of the results from the writers.

The numerical results and graphical examination of these results in PSAINT further
support the observations made in the 2-D regular grid problems. However, in this set of
test problems, the RST(DG) algorithm also experiences domain-splitting situations in the
cases of 20]10]10 meshes with either B8 or B20 elements for N

1
"128. The RST(CG) thus

becomes the only algorithm that does not have domain-splitting in both sets of regular grid
problems.

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1043

Figure 11. A finite element model of a 24-bladed disk with 720 B20 elements and 5688 nodes

Figure 10. A finite element model of a turbine blade with 944 B20 elements and 6427 nodes48

5.3. Practical problems

The performance of the partitioning algorithms is further evaluated here using two practical
examples consisting of solid elements. The first one, shown in Figure 10, is a turbine blade model
with 944 B20 solid elements and 6427 nodes, while the second one, shown in Figure 11, is
a 24-bladed turbine disk model with 720 B20 solid elements and 5688 nodes. In addition, other
practical examples, such as those already shown in Figures 1—3, have been used in the examina-
tion of the GR, PGR, ANP, and RBD algorithms. Further numerical partitioning results of the

1044 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

Table VII. Partitioning results on the turbine blade model (944 elements and 6427 nodes)

RBD RST

N
1

Parameter GR PGR ANP (Col) (GPS) (DG) (CG)

¹
#16

65·3 79·1 177·1 197·8 68·9 60·5 61·6
Tot(N

"
) 1093 1113 1258 1204 1144 823 846

7 Max(N
"
) 372 519 429 448 412 322 359

Min(N
"
) 184 193 214 184 184 129 144

Ave(N
!
) 4·3 4·0 4·6 1·7 1·7 3·4 3·4

N
$

0 1 1 0 0 0 0

¹
#16

65·0 78·3 190·4 203·3 68·6 59·9 60·5
Tot(N

"
) 1255 1164 1477 1487 1419 1004 955

8 Max(N
"
) 491 468 539 524 484 363 308

Min(N
"
) 174 197 197 174 174 128 138

Ave(N
!
) 4·5 4·5 4·8 1·8 1·8 3·5 3·3

N
$

1 2 2 0 0 0 0

¹
#16

64·1 78·5 191·3 196·7 71·4 60·4 60·9
Tot(N

"
) 1213 1197 1466 1651 1510 1017 1107

9 Max(N
"
) 420 452 397 549 477 353 340

Min(N
"
) 159 178 185 194 159 113 143

Ave(N
!
) 4·2 4·7 5·1 1·8 1·8 4·7 4·2

N
$

0 2 1 0 0 0 0

¹
#16

68·7 81·3 208·3 196·8 70·2 62·1 64·0
Tot(N

"
) 2370 2265 2596 4227 4121 2035 2134

32 Max(N
"
) 223 205 247 330 326 198 199

Min(N
"
) 79 79 68 83 81 79 78

Ave(N
!
) 7·8 8·2 7·9 3·9 3·9 6·9 6·5

N
$

2 3 3 27 22 1 0

¹
#16

71·6 83·5 316·6 202·9 75·0 66·0 67·6
Tot(N

"
) 3827 3805 4343 4967 4783 3509 3801

128 Max(N
"
) 104 109 120 125 110 98 92

Min(N
"
) 33 43 33 49 33 33 33

Ave(N
!
) 8·8 8·8 9·3 9·2 8·2 8·9 8·3

N
$

6 4 16 105 77 1 0

RST(DG) and RST(CG) algorithms on several practical finite element examples can be found in
the recent work by Hsieh et al.6

The partitioning results for the turbine blade problem are summarized in Table VII. It can be
seen that the RST algorithms outperform all others and the RST(CG) algorithm is the only one
that does not produce disconnected subdomains. Plates 2—4 show the partitioning results of the
turbine blade problem with N

1
"7 for the GR, ANP, and RST(CG) algorithms, respectively.

These plates use different views which, in the writers’ judgment, illustrate each partitioning result
in the best possible way.

The partitioning results for the 24-bladed turbine disk problem are summarized in Table VIII.
Note that N

1
for this problem only includes 24 rather than 32 due to the 24-fold symmetry of this

particular problem. It can be seen that the all algorithms including the RST(CG) algorithm have
domain-splitting problems. However, the RST(CG) algorithm is the only algorithm that is able to
furnish an optimal solution for the cases of N

1
"8 and 24 (see Plate 5 for the N

1
"24 case) for

which it captures all the symmetries in the problem. Although the optimal partitioning solutions

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1045

Table VIII. Partitioning results on the 24-bladed turbine disk (720 elements and 5688 nodes)

RBD RST

N
1

Parameter GR PGR ANP (Col) (GPS) (DG) (CG)

¹
#16

43·9 54·5 118·4 125·7 47·2 41·7 40·1
Tot(N

"
) 409 413 895 646 632 293 274

7 Max(N
"
) 139 151 412 226 238 95 87

Min(N
"
) 86 97 114 97 95 66 66

Ave(N
!
) 2·6 2·9 2·3 1·7 1·7 2·3 2·0

N
$

4 5 1 6 7 3 2

¹
#16

43·3 53·9 118·7 127·6 48·4 42·5 41·9
Tot(N

"
) 425 412 876 770 695 327 296

8 Max(N
"
) 131 136 327 220 228 103 74

Min(N
"
) 79 79 135 110 71 58 74

Ave(N
!
) 3·0 3·3 3·3 1·8 1·8 2·5 2·0

N
$

6 3 1 7 8 2 0

¹
#16

44·1 54·9 122·9 126·2 47·6 42·2 41·7
Tot(N

"
) 462 464 1025 802 784 395 309

9 Max(N
"
) 123 162 363 207 220 113 74

Min(N
"
) 84 79 111 97 79 66 66

Ave(N
!
) 3·6 3·3 3·1 1·8 1·8 2·7 2·0

N
$

7 4 2 8 9 3 0

¹
#16

45·0 56·3 145·7 127·2 48·5 43·8 42·6
Tot(N

"
) 1169 1·72 1570 2500 2303 984 888

24 Max(N
"
) 151 111 292 220 228 138 74

Min(N
"
) 71 52 39 85 84 52 74

Ave(N
!
) 3·8 3·5 4·1 1·9 1·9 3·1 2·0

N
$

17 12 4 23 24 7 0

¹
#16

49·0 59·2 204·2 130·1 52·0 47·1 45·6
Tot(N

"
) 2734 2647 2817 3819 3906 2463 2483

128 Max(N
"
) 80 70 79 91 90 71 63

Min(N
"
) 13 13 13 26 13 13 13

Ave(N
!
) 5·1 4·6 6·1 5·0 5·7 4·5 4·4

N
$

21 13 12 87 101 8 4

in these two cases seem to be a trivial task for humans, this is obviously not the case for automatic
partitioning algorithms. In addition, Plates 6—8 show the partitioning results of the 24-bladed
turbine disk problem with N

1
"9 for the PGR, ANP, and RST(CG) algorithms, respectively.

Examples like the one displayed in Figure 11 with partitioning results in Plate 5 provide useful
benchmarks for comparing partitioning algorithms. It is desirable that partitioning algorithms be
able to cope with this type of mesh, which is branched and presents many symmetries.

6. CONCLUSIONS AND FUTURE DIRECTIONS

Based on the discussions and the numerical comparative studies presented above, the conclusions
of this work are summarized as follows:

(1) The ANP, RBD(Col), and RBD(GPS) algorithms tend to produce stripwise partitions
with longer boundaries but fewer neighbours, while the GR, PGR, RST(DG), and

1046 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

RST(CG) algorithms often generate domainwise partitions with better aspect ratios,
shorter boundaries, but more neighbours. Very recently, Farhat et al.49 have discussed
that most domain-decomposition-based parallel iterative solution schemes require parti-
tions with low aspect ratios. Therefore, the ANP, RBD(Col) and RBD(GPS) algorithms
are not suitable for those types of parallel solution schemes.

(2) The GR and PGR algorithms often tend to generate disconnected or stripwise subdo-
mains in the last few partitions.

(3) From a numerical point of view, all algorithms studied in this work are sensitive to the
initial nodal and/or element numbering. Therefore, preprocessing with a simple and
efficient nodal-reordering algorithm is recommended for improved performance of the
automatic partitioning algorithms.

(4) Only the ANP algorithm is found to be sensitive to the finite element interpolation order
(e.g. Q4 vs. Q8 meshes).

(5) The GR and PGR algorithms are sensitive to slight variations of N
1
(in this study, N

1
"7,

8 and 9), while other algorithms seem to be less sensitive to this effect.
(6) The ANP and RBD algorithms are more likely to encounter domain-splitting problems

for fine-grained partitioning (in this study, N
1
"32 and 128) than for coarse-grained

partitioning (in this study, N
1
"7, 8 and 9). In addition, the GR and PGR algorithms

sometimes outperform all other algorithms in the cases of fine-grained partitioning, but
this is not the case for coarse-grained partitioning.

(7) In general, the RBD(GPS) algorithm is more effective than the RBD(Collins) algorithm
because the GPS algorithm is more effective for bandwidth reduction than the Collins
algorithm.

(8) The PGR algorithm is a good alternative when the GR algorithm does not give satisfac-
tory partitions, and vice versa. Furthermore, both algorithms are sensitive to the selection
of the very first node in the algorithm.

(9) All algorithms show some degree of sensitivity to the variation of mesh density.
(10) For problems where the longest and shortest Cartesian dimensions are equal, the ANP

algorithm does not utilize the geometrical information, i.e. no extra weight is added to the
nodes. For this special case, the ANP is not recommended, even for coarse-grained
partitioning, because it often generates non-connected subdomains.

(11) For the GR, PGR, ANP and RBD algorithms, the domain-splitting situations occur
mostly when the current partition reaches the boundary of the whole domain. This
particular occurrence of domain splitting is typical for algorithms which use only local
information in the mesh.

(12) Domain splitting is a common problem to all the domain-partitioning algorithms that
have been investigated. Amongst the algorithms examined, the RST algorithm is the one
with the least-frequent occurrence of splitting problems. The spectral approach to this
problem is promising because of existing theoretical support.22, 23, 50

(13) The RST algorithms seem to perform the best among all those studied in terms of reducing
both the total number of subdomain boundary nodes and the average number of adjacent
subdomains in a balanced fashion. For fine-grained partitioning, the GR and PGR
algorithms can sometimes be very effective and efficient in terms of minimizing both
Tot(N

"
) and Ave(N

!
) although N

$
is often not zero.

(14) The evaluation method proposed in this work is useful and effective in evaluating different
types of automatic domain partitioning algorithms. The test problems and results shown
in this work also serve as benchmark examples for other researchers to evaluate both new
and existing automatic partitioning algorithms. Furthermore, interactive graphics

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1047

Table IX. Proposed modified PGR (MPGR) partitioning algorithm

(1) Use the adjacency structure of the non-zero weighted boundary nodes of the previously defined
subdomain (for the first time, use the adjacency structure of the whole domain) to find
a pseudoperipheral node.

(2) Assign unassigned elements that are connected to this node to the current subdomain.
Recursively, assign unassigned elements that are adjacent to the elements in the current
subdomain to the current subdomain until the number of elements equals to the total number
of elements divided by the number of processors.

(3) Repeat (1) and (2) until all subdomains are defined.

programs such as PSAINT are essential for examination of partitioning results, especially
for 3-D problems.

There are still several related issues that need to be addressed or further investigated and have
not been done in this work. These issues are briefly discussed below:

(a) A standardized evaluation method with a set of standard but expandable benchmark
examples will be useful for evaluation and comparative studies of partitioning algorithms.
Work is needed in standardization of evaluation methods and especially in collecting
benchmark test problems.

(b) The time required for the partitioning algorithms, as reported here, provides a measure of
the total time spent in the complete mesh partitioning process, which includes some
pre-processing (e.g. building appropriate graph data structure), actual partitioning, and
some post-processing (e.g. setting results into the database). This timing is useful from
a practical and qualitative points of view. However, in order to evaluate time complexity of
the partitioning algorithms themselves, the pre- and post-processing stages should not be
considered. Probably, the best metric for evaluating partition quality is the run-time of
a parallel application. Nevertheless, this raises a number of issues associated with imple-
mentation details and machine/architecture selection. Development of appropriate metrics
for partition quality is an important topic in the field of parallel computing. This is
currently under investigation.

(c) Other important classes of domain partitioning algorithms that have not been evaluated in
this work should be investigated. For example, the recent work by Hendrickson and Leland
at Sandia National Laboratories is worth noting. They have developed a software package
called Chaco,51 which implements several algorithms for graph partitioning (e.g. spectral,
inertial, Kernighan-Lin, and multilevel algorithms). In Reference 52, they have shown that
the multilevel algorithm53 can produce high-quality partitions similar to those obtained
from the spectral algorithms, but at a much lower cost. The partitioning algorithms in
Chaco, especially the multilevel one, should be further evaluated. More recently, Karypis
and Kumar54 have experimented with a class of multilevel algorithms. After investigating
the effectiveness of many different choices for all three partitioning phases, they propose
a new multilevel algorithm. In Reference 54, they have shown that their algorithm is faster
than the multilevel algorithm in Chaco and produce partitions of similar high quality.
Evaluation of this new algorithm should be included in the future study. In addition, the
genetic algorithm by Topping and Khan,55~57 and the Neural Networks algorithm by
Fox26 should be investigated.

(d) Greedy-type algorithms (e.g. the GR and PGR algorithms) are sensitive to the selection of
the starting node (cf. Figures 1(b) and 1(c)). Therefore, it may be advantageous to use the

1048 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

*The ERB and RSB algorithms are essentially the same
sPresent work
tNote that the RCM reordering algorithm also has the same abbreviation

pseudoperipheral node concept during each stage of the iterative process of the PGR
algorithm. Table IX presents the Modified PGR (MPGR) algorithm for this approach. The
MPGR algorithm needs to be implemented and evaluated.

APPENDIX

Abbreviations of the partitioning algorithms

Abbreviations of the partitioning algorithms used in this paper are summarized here. Refer-
ences for the algorithms are also indicated.

1DTF 1D Topology Frontal algorithm25

ANP Al-Nasra and Nguyen Partitioning algorithm2

ERB* Eigenvector Recursive Bisection algorithm27

GR GReedy algorithm1

MPGR Modified Preconditioned GReedy algorithms

ORB Orthogonal Recursive Bisection algorithm26, 27

PGR Preconditioned GReedy algorithms

PI Principal Inertia algorithm11,16, 25

RBD(Col) Reduced Bandwidth Decomposition (Collins) algorithm3

RBD(GPS) Reduced Bandwidth Decomposition (GPS) algorithms

RCB Recursive Coordinate Bisection algorithm4, 24

RCMt Reverse Cuthill—McKee-based algorithm25

RGB Recursive Graph Bisection algorithm4,24

RPI Recursive Principal Inertia algorithm11, 16,25

RRCM Recursive Reverse Cuthill—McKee algorithm25

RSB* Recursive Spectral Bisection algorithm4,24

RSO Recursive Spectral Octasection algorithm14, 15

RSQ Recursive Spectral Quadrisection algorithm14, 15

RSS Recursive Spectral Sequential-cut algorithm5, 6

RST Recursive Spectral Two-way algorithm5, 6

SA Simulated Annealing algorithm9,10, 26,27

ACKNOWLEDGMENTS

The writers wish to thank Dr. Sanjeev Srivastav of Stress Technology Inc. and formerly of Cornell
University for help in the development of the program PSAINT, Dr. Horst D. Simon of NASA
Ames Research Center for kindly providing the source code of the fast multilevel implementation
of the RSB algorithm, Prof. Charbel Farhat of University of Colorado at Boulder for providing
corrections to the published version of the GR algorithm, and Dr. Charles Lawrence of NASA
Lewis Research Center for providing a sample mesh model for creation of the turbine disk
example of Figure 11. The support of NASA Lewis Research Center under Grant No. NAG
3-1063 has been essential to this work and is appreciated. In addition, Shang-Hsien Hsieh would

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1049

like to acknowledge the partial support of U.S. Department of Energy under Award No.
DE-FG02-93ER25169. Glaucio H. Paulino would like to acknowledge the partial financial
support provided by the Brazilian agency CNPq (National Council for Research and Develop-
ment). Finally, the writers acknowledge an anonymous reviewer for helpful comments.

REFERENCES

1. C. Farhat, ‘A simple and efficient automatic FEM domain decomposer’, Comput. Struct., 28, 579—602 (1988).
2. M. Al-Nasra and D. T. Nguyen, ‘An algorithm for domain decomposition in finite element analysis’, Comput. Struct.,

39, 277—289 (1991).
3. J. G. Malone, ‘Automatic mesh decomposition and concurrent finite element analysis for hypercube multiprocessor

computers’, Comput. Methods Appl. Mech. Eng., 70, 27—58 (1988).
4. H. D. Simon, ‘Partitioning of unstructured problems for parallel processing’, Comput. Systems Eng., 2, 135—148 (1991)
5. S. H. Hsieh, ‘Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk

assemblies’, Ph.D. Dissertation, Cornell University, Ithaca, New York, 1993.
6. S. H. Hsieh, G. H. Paulino and J. F. Abel, ‘Recursive spectral algorithms for automatic domain partitioning in parallel

finite element analysis’, Comput. Methods Appl. Mech. Eng., 121, 137—162 (1995).
7. P. Le Tallec, ‘Domain decomposition methods in computational mechanics’, Comput. Mech. Adv., 1, 121—140 (1994).
8. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to ¹he ¹heory and NP-Completeness, W. H.

Freeman and Company, New York, 1979.
9. J. Flower, S. Otto and M. Salama, ‘Optimal mapping of irregular finite element domains to parallel processors’, in

A. K. Noor (ed.), Parallel Computations and their Impact on Mechanics, AMD-Vol. 86, ASME, New York, 1987, pp.
239—252.

10. B. Nour-Omid, A. Raefsky and G. Lyzenga, ‘Solving finite element equations on concurrent computers’, in A. K. Noor
(ed.), Parallel Computations and their Impact on Mechanics, AMD-Vol. 86, ASME, New York, 1987, pp. 209—228.

11. C. Farhat and M. Lesoinne, ’Automatic partitioning of unstructured meshes for the parallel solution of problems in
computational mechanics’, Int. j. numer. methods eng., 36, 745—764 (1993).

12. F. Harary, Graph ¹heory, Addison-Wesley, Reading, MA, 1969.
13. J. G. Malone, ‘Parallel nonlinear dynamic finite element analysis of three-dimensional shell structures’, Comput.

Struct., 35, 523—539 (1990).
14. B. Hendrickson and R. Leland, ‘An improved spectral partitioning algorithm for mapping parallel computations’,

Sandia Report SAND92-1460, Category UC-405, Sandia National Laboratories, Albuquerque, NM 87185, 1992.
15. B. Hendrickson and R. Leland, ‘Multidimensional spectral load balancing’, Sandia Report SAND93-0074, Category

UC-405, Sandia National Laboratories, Albuquerque, NM 87185, 1993.
16. C. Farhat and M. Lesoinne, ‘Mesh partitioning algorithms for the parallel solution of partial differential equations’,

Appl. Numer. Math., 12, 443—457 (1993).
17. J. Rodriguez and J. Sun, ‘A domain decomposition study for a parallel finite element code’, in: G. A. Gabriele (ed.),

Computers in Engineering, Vol. 2, ASME, New York, 1992, pp. 83—90.
18. J. Padovan and A. Kwang, ‘Hierarchically parallelized constrained nonlinear solvers with automated substructuring’,

Comput. Struct., 41, 7—33 (1991).
19. G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis, ‘Automatic mesh partitioning’, ¹echnical Report

C¹C92¹R112, Cornell Theory Center, Cornell University, Ithaca, New York, 1992.
20. E. R. Barnes, ‘An algorithm for partitioning the nodes of a graph’, SIAM J. Algebraic Discrete Methods, 3, 541—550

(1982).
21. A. Pothen, H. D. Simon and K.-P. Liou, ‘Partitioning sparse matrices with eigenvectors of graphs’, SIAM J. Matrix

Anal. Appl., 11, 430—452 (1990).
22. W. N. Anderson Jr. and T. D. Morley, ‘Eigenvalues of the Laplacian of a Graph’, ¸inear Multilinear Algebra, 18,

141—145 (1985) (originally published as ºniversity of Maryland ¹echnical Report ¹R-71-45, October 1971).
23. M. Fiedler, ‘Algebraic connectivity of graphs’, Czechoslovak Math. J., 23, 298-305 (1973).
24. V. Venkatakrishnan, H. D. Simon and T. J. Barth, ‘A MIMD implementation of a parallel Euler solver for

unstructured grids’, J. Supercomput., 6, 117—137 (1992).
25. C. Farhat and H. D. Simon, ‘TOP/DOMDEC: a software tool for mesh partitioning and parallel processing’, Report

Cº-CSSC-93-11, Center for Space Structures and Controls, College of Engineering, University of Colorado, Boulder,
CO 80309, 1993.

26. G. C. Fox, ‘A review of automatic load balancing and decomposition methods for the hypercube’, in M. Schultz (ed.),
Numerical Algorithms for Modern Parallel Computer Architectures—¹he IMA »olumes in Mathematics and its
Applications, Vol. 13, Springer, New York, 1988, pp. 63—76.

27. R. D. Williams, ‘Performance of dynamic load balancing algorithms for unstructured mesh calculations’, Concur-
rency: Practice Experience, 3, 457-481 (1991).

28. S. H. Hsieh and G. H. Paulino, ‘An evaluation methodology for automatic mesh partitioning algorithms’, in B. H. V.
Topping (ed.), Advances in Computational Structures ¹echnology, Civil-Comp Press, Edinburgh, 1996, pp. 247—252.

1050 S.-H. HSIEH, G. H. PAULINO AND J. F. ABEL

29. C. Farhat, personal communication, 1992.
30. R. J. Collins, ‘Bandwidth reduction by automatic renumbering’, Int. j. numer. method eng., 6, 345—356 (1973).
31. S. T. Barnard and H. D. Simon, ‘A fast multilevel implementation of recursive spectral bisection for partitioning

unstructured problems’, in: R. F. Sincovec et al. (eds.), Parallel Processing for Scientific Computing, SIAM, Philadel-
phia, 1993, pp. 711—718.

32. J. F. Hajjar and J. F. Abel, ’Parallel processing for transient nonlinear structural dynamics of three-dimensional
framed structures using domain decomposition’, Comput. Struct., 30, 1237—1254 (1988).

33. J. F. Hajjar and J. F. Abel, ‘Parallel processing of central difference transient analysis for three-dimensional nonlinear
framed structures’, Commun. Appl. Numer. Methods, 5, 39—46 (1989).

34. S. H. Hsieh, and J. F. Abel, ‘Use of networked workstations for parallel nonlinear structural dynamic simulations of
rotating bladed-disk assemblies’, Comput. Systems Eng., 4, 521—530 (1993).

35. G. H. Paulino, I. F. M. Menezes, M. Gattass and S. Mukherjee, ‘A new algorithm for finding a pseudoperipheral
vertex or the endpoints of a pseudodiameter in a graph’, Commun. Numer. Methods Eng., 10, 913—926 (1994).

36. J. A. George and J. W.-H. Liu, ‘An implementation of a pseudoperipheral node finder’, ACM ¹rans. Math. Software,
5, 284—295 (1979).

37. N. E. Gibbs, W. G. Poole Jr. and P. K. Stockmeyer, ‘An algorithm for reducing the bandwidth and profile of a sparse
matrix’, SIAM J. Numer. Anal., 13, 236—250 (1976).

38. E. Cuthill and J. McKee, ‘Reducing the bandwidth of sparse symmetric matrices’, Proc. 24th National Conf., ACM
Publication P-69, 1969, pp. 157—172.

39. W. M. Chan and A. George, ‘A linear time implementation of the reverse Cuthill—Mckee algorithm’, BI¹, 20, 8—14
(1980).

40. J. Puttonen, ‘Simple and effective bandwidth reduction algorithm’, Int. j. numer. methods eng., 19, 1139—1152 (1983).
41. W. H. Liu and A. H. Sherman, ‘Comparative analysis of the Cuthill—Mckee and the reverse Cuthill—Mckee ordering

algorithms for sparse matrices’, SIAM J. Numer. Anal., 13, 198—213 (1976).
42. B. N. Parlett, ¹he Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, N.J., 1980.
43. C. C. Paige and M. A. Saunders, ‘Solution of sparse indefinite systems of linear equations’, SIAM J. Numer. Anal., 12,

617—629 (1974).
44. B. Kernighan and S. Lin, ‘An efficient heuristic procedure for partitioning graphs’, Bell System ¹ech. J., 29, 291—307

(1970).
45. I. S. Duff, R. G. Grimes and J. G. Lewis, ‘Sparse matrix test problems’, ACM ¹rans. Math. Software, 15, 1—14 (1989).
46. S. H. Hsieh, ‘A mesh partitioning tool and its applications to parallel processing’, Proc. 1994 Int. Conf. on Parallel and

Distributed Systems, Hsinchu, Taiwan, R.O.C., 19—21 December, 1994, pp. 168—173.
47. S. H. Hsieh, G. H. Paulino and J. F. Abel, ‘Evaluation of automatic domain partitioning algorithms for parallel finite

element analysis’, Structural Engineering Report 94-2, School of Civil and Environmental Engineering, Cornell
University, Ithaca, New York, 1994.

48. P. A. Wawrzynek, ‘Discrete modeling of crack propagation: theoretical aspects and implementation issues in two and
three dimensions’, Ph.D. Dissertation, Cornell University, Ithaca, New York, 1991.

49. C. Farhat, N. Maman, and G. W. Brown, ‘Mesh partitioning for implicit computations via domain decomposition:
impact and optimization of the subdomain aspect ratio’, Report Cº-CAS-94-02, Center for Aerospace Structures,
College of Engineering, University of Colorado, Boulder, CO 80309, 1994.

50. M. Fiedler, ‘A property of eigenvectors of non-negative symmetric matrices and its application to graph theory’,
Czechoslovak Math. J., 25, 619—633 (1975).

51. B. Hendrickson and R. Leland, ‘The Chaco user’s guide, version 1.0’, ¹echnical Report SAND93-2339, Sandia
National Laboratories, Albuquerque, NM 87185, 1993.

52. R. Leland and B. Hendrickson, ‘An empirical study of static load balancing algorithms’, Proc. Scalable High-
Performance Computing Conference, Knoxville, Tennessee, 23—25 May, 1994, pp. 682—685.

53. B. Hendrickson and R. Leland, ‘A multilevel algorithm for partitioning graphs’, ¹echnical Report SAND93-1301,
Sandia National Laboratories, Albuquerque, NM 87185,1993.

54. G. Karypis and V. Kumar, ‘A fast and high quality multilevel scheme for partitioning irregular graphs’, ¹echnical
Report 95-035, Department of Computer Science, University of Minnesota, Minneapolis, MN 55455, 1995.

55. B. H. V. Topping and A. I. Khan, ‘An optimization-based approach to the domain decomposition problem in parallel
finite element analysis’, in M. P. Bendsøe and C. A. M. Soares (eds.), ¹opology Design of Structures, Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1993, pp. 535—546.

56. A. I. Khan and B. H. V. Topping, ‘Subdomain generation for parallel finite element analysis’, Comput. Systems Eng., 4,
473—488 (1993).

57. B. H. V. Topping and A. I. Khan, ‘Sub-domain generation method for non-convex domains’, in B. H. V. Topping and
A. I. Khan (eds.), Information¹echnology for Civil and Structural Engineers, Civil-Comp Press, Edinburgh, U.K., 1993,
pp. 219—234.

.

AUTOMATIC DOMAIN PARTITIONING ALGORITHM 1051

