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Abstract 

A novel iteration scheme, using boundary integral equations, is developed for error estimation in the boundary element method. The 
iteration scheme consists of using the boundary integral equation for solving the boundary value problem and iterating this solution with the 
hypersingular boundary integral equation to obtain a new solution. The hypersingular residual r is consistently defined as the difference in 
the derivative quantities on the boundary, i.e. 

O~ (1) 0(~ (2i 

r - - - -  
On On 

where ~b is the potential and (OfMOn) "), i = 1, 2, is the flux obtained by solution (i). Here, i = 1 refers to the boundary integral equation, and 
i = 2 refers to the hypersingular boundary integral equation. The hypersingular residual is interpreted in the sense of the iteration scheme 
defined above and it is shown to provide an error estimate for the boundary value problem. Error-hypersingular residual relations are 
developed for Dirichlet and Neumann problems, which are shown to be limiting cases of the more general relation for the mixed boundary 
value problem. These relations lead to global bounds on the error. Four numerical examples, involving Galerkin boundary elements, are 
given, and one of them involves a physical singularity on the boundary and preliminary adaptive calculations. These examples illustrate 
important features of the hypersingular residual error estimate proposed in this paper. © 1999 Elsevier Science S.A. All rights reserved. 

1. Introduction 

An intriguing feature of the theory of singular integral equations is that the problem for the boundary 
unknowns can be formulated in different ways, either by direct or indirect methods [1]. In engineering 
applications, one usually uses the direct method, which has its origin in Green's theorem. Thus, one may 
formulate two distinct boundary integral equations----~e standard boundary integral equation (BIE), and the 
hypersingular boundary integral equation (HBIE)--to represent the same boundary value problem (BVP). A 
unified derivation of both integral equations has been presented by Wendland [2]. Hypersingular boundary 
integrals have proven advantageous in a variety of applications (e.g. fracture mechanics and wave scattering), 
and these equations have opened possibilities of new solutions of various problems by the BEM (see the review 
articles by Krishnasamy et al. [3] and Tanaka et al. [4]). 

In particular, the use of HBIEs for error estimation is the focus of this work. A natural measure of the error in 
a boundary integral method, first proposed by Paulino [5] and Paulino et al. [6], rests on the use of both the 
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standard BIE and the HBIE. Suppose that an approximate solution, using one of the BIEs, has been obtained. 
Then, one might expect that the residual, obtained when this approximate solution is substituted in the other 
BIE, is related to the error. Numerical experiments have suggested that this is indeed the case [5-7]. In this 
work, our aim is to formalize and extend the error estimates obtained by the combined use of the BIE and the 
HBIE for solving a BVP and estimating discretization errors. 

The remainder of this paper is organized as follows. Initially, a brief literature survey and comments on 
previous related work are presented. Afterwards, the paper is developed in the context of two-dimensional 
potential theory. The error estimation method using two distinct BIEs is formally developed, the hypersingular 
residual is defined, and related to the actual error in the approximation. Interior Dirichlet and Neumann 
problems are considered first because a rigorous analysis is easier for these problems, and they illustrate well the 
central idea of the paper. The methodology is then extended to mixed BVPs. Four numerical examples using a 
Galerkin BEM are provided, and one of them involves a physical singularity on the boundary and adaptive 
calculations. It is worth mentioning that the ideas presented here are not tied down to potential problems. In fact, 
they extend very naturally to other linear elliptic problems, e.g. linear elasticity [5,7]. 

2. Related work 

In recent years, the boundary element method (BEM) has become established as a powerful numerical 
technique for solving certain elliptic BVPs that admit integral equation formulations. Yet, there are several 
aspects of the theory that are not as well established as in the finite element method (FEM). A particular strength 
of the FEM is the well developed theory of error estimation, and its use in adaptive methods [8,9]. In 
comparison, error estimation in boundary element methods is a subject that has attracted attention mainly over 
the past ten years, and much remains to be done. For recent surveys on error estimation and adaptivity in the 
BEM, see [10-13]. 

Many error estimates in BEM are essentially heuristic and, unlike the FEM, theoretical work in the field has 
been quite limited. Rank [14] proposed error indicators and an adaptive algorithm for the BEM using techniques 
similar to those in the FEM. Most notable are Yu and Wendland [15-18], who have presented local error 
estimates based on a linear error-residual relation that is very effective in the FEM. Their initial arguments 
required the restrictive assumption of uniform meshes [15,17,18], but this was relaxed later for Galerkin 
methods [16]. More recently, Carstensen et al. [19-22] have presented error estimates for the BEM in a mould 
similar to that outlined by Eriksson et al. [9] for the FEM. There are numerous stumbling blocks in the 
development of a satisfactory theoretical analysis of a generic BVE First, the theoretical analyses are easiest for 
Galerkin schemes, but (at the time of this writing) most engineering BEM codes use collocation-based meth- 
ods [1]. Though one may view collocation schemes as variants of Petrov-Galerkin methods, and in fact 
numerous theoretical analyses exist for collocation methods (see the references in [10]), the mathematical 
analysis is difficult. Theoretical analyses for mixed boundary conditions--which is the type of the most practical 
importance--are limited and involved [23]. Finally, the presence of comers and cracks has been a source of 
challenging problems for many years [10,24,25]. 

In the past few years, there has been a marked interest in extending analyses of BEM for singular integrals to 
hypersingular integrals among mathematicians in the field, e.g. [20,21,26,27]. For instance, Feistauer et al. [27] 
have studied the solution of the exterior Neumann problem for the Helmholtz equation formulated as an HBIE. 2 
Their paper is valuable for a rigorous analysis of hypersingular integral equations and for addressing the 
problem of non-computability of the residual norm, where additional hypothesis is needed to design a practical 
error estimate. Their work differs from ours in the sense that they use usual residuals to estimate the error, and 
they do not use the BIE and HBIE simultaneously, as we do. 

Recently, Golberg and Bowman [28] have used the superconvergence of the Sloan iterate [29,30] to show the 
asymptotic equivalence of the error and the residual. They have used Galerkin methods, an iteration scheme 
using the same integral equation for a first approximation and for the iterates, and usual residuals in their work. 

2 There is a mistake in E,q. (2.19) of the paper by Feistauer et al. [27], which should have o in the denominator instead of ~b. 
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In this paper we present a novel iteration scheme for integral equations and we use the hypersingular residuals 
for error estimation. 

In summary, the definition and analysis of hypersingular residuals (and singular residuals), and the use of a 
different integral equation for the iteration step is not present in any of the papers mentioned in this section. 
Theoretical analysis of hypersingular residual error estimates by means of an iteration scheme using both the 
BIE and the HBIE is the main focus of the present work. 

3. Boundary integral equations 

The basic notation and boundary integral formulation for two-dimensional potential problems are introduced. 
Linear operators are defined, and the BIEs are rewritten as linear equations. The properties of these linear 
operators are elucidated using elementary Fourier analysis. The particular case for the equations on a circular 
region is provided, and pseudodifferential operators are introduced. 

3.1. Governing equations 

Various approaches exist for the formulation of problems in potential theory as integral equations [31,32]. In 
engineering practice, BVPs typically have mixed boundary conditions. Consequently, the approach most suited 
to the derivation of integral equations for these problems is the use of Green's theorem. Using Green's theorem, 
one obtains the first BIE of potential theory (which is used here for the solution of Laplace equation) 3 

a(  p, Q) -~n d~( Q ) - finn 

where 4, is the potential; p is a point in the interior of the domain B (source point), i.e. p E B; Q is a point on 
the boundary OB (field point), i.e. Q E OB; the domain of the body is 12 -= B U OB (lower case letters denote 
points in B, and upper case letters denote points on OB); n is the unit outward normal at Q; ds o is a differential 
length element in two-dimensional problems; 

p = Iloll = Ila - N i l ;  

and G(p, Q) is the free space Green's function or fundamental solution: 

1 ( 1 )  
G(p, Q) = ~ -  log (2) 

o 1 p , n  
On G(p, Q ) -  - 2,rr p2 (3) 

It is clear that the kernels are singular as p ---> 0. Thus, as p ---> P, a singular integral equation results 

0 0 ] 
~b(P) = lim G(p, Q) -~n ~b(Q) - -~n G(p, Q)g)(Q) ds o (4) p--~P ll 

It may be shown that the resulting integral is well-defined under suitable assumptions on the smoothness of the 
boundary and the potential [32,33]. In the present analysis, domains with corners are not considered. 

One can obtain the gradient of the potential, for points p G B, by differentiation under the integral sign. In this 
case, the kernels are clearly differentiable, in fact they are C =. Using Eq. (1), one obtains 

Vpd/)(p)m foB [VpG(p ' O O 
] 

Q) ~n dp(Q) - ~n VpG(p, Qkb(Q)d dSQ (5) 

where Vp(. ) denotes the gradient with respect to the source point p. Here, the kernels are 

3 For the sake of clarity of notation, note that O(- )lOd refers to the 'directional derivative' of (.) in the direction d, i.e. O(. )lOd = V(. )~/. 
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l p 
VpG(p, Q) = 2--~ ~ (6) 

0 VpG(P,Q) 1 [ p  7 ] 0--n- = ~ - 2 ( )-------~P (7) 

Again, a singular integral equation results by taking the limit to the boundary 

( [ 0 3 
VpG(p, Q)~b(Q)] ds o (8) VP49(P) =~i~rnv J,~, L V"G(p' Q)-~n q~(Q)- -~n 

In this equation, the first integral is strongly singular, and the second one is hypersingular. This terminology is 
standard in the BEM literature [3]. One may view these integrals in the sense of suitable limits to the boundary 
[5,34,35]. Again, for these integrals to be well-defined, it is necessary that the potential, normal flux and 
boundary satisfy certain smoothness requirements. These are detailed by Krishnasamy et al. [36] and Martin and 
Rizzo [37]. A discussion of the self-regularized form of Laplace's equation, based on a 'limit from the interior' 
interpretation (as in Eq. (8) above) has been recently presented by Cruse and Richardson [38]. 

The boundary unknowns, or Canchy data, in a potential problem are the potential b and the normal flux 
Oq~/cgn. Equation (8) may be used to obtain a second description of the problem as a boundary integral equation. 
By taking the directional derivative in the particular direction D(P) = (D I, D~) at P E OB, and taking the limit, 
one obtains 

r [ 0  0 0 0  ] 
~ 0  ~b(P)=lim - ~ G ( P ' Q ) ~ n  fb(Q) On OD G(p,Q)fb(Q) dso (9) OD p-~e J~B 

This is an equivalent BIE, which is sufficient to solve the BVP. We shall refer to Eq. (4) as the boundary integral 
equation (BIE) and Eq. (9) as the hypersingular boundary integral equation (HBIE). Equations (4) and (9) result 
in well defined integral equations on the boundary, P E OB, by defining the singular integrals in a limit to the 
boundary sense (i.e. as p - ~  P) [5,34,35]. 

3.2. Linear operators 

A suitable analysis of the BIEs can be developed by viewing them as linear equations in a Hilbert space. The 
utility of this approach will become clear in the next section. A very readable account is given in the book by 
Kress [33]. Following Sloan [10], we shall assume that the boundary OB is a C ~ continuous closed Jordan curve 
given by the mapping 

z:[O, 1]--~OB, z E C  ~, Iz'l~O 

where z ~ C, the space of complex numbers. This analysis excludes domains with comers. Any integrable 
function v, on OB, may be represented in a Fourier series 

oc 

v ~ ~ 6(k) e z~ikx = a  o + ~] (ak cos 2"trkx + b  k sin 2rrkx) (10) 
k = - ° ~  k = l  

where i -- x/Zq - and 

f0' 6(k) -- e-Z~'ia v(x) dx, k E Z  (I1) 

in which Z denotes the space of integer numbers. To establish bounds on the error, it is necessary to ensure that 
the functions under study satisfy certain smoothness requirements. We shall use Sobolev spaces for this purpose. 
For any real number p, we define the Sobolev norm Ilvll~ as 

IIv]l~ = (  16(0)12 + k~O • Ikl2~16(k)le) ''2 (12) 

Correspondingly, we define the Sobolev space H~(OB) as the closure with respect to the norm ]1" II~ of the space 
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of 1-periodic C = functions. Specifying a higher value of ~ corresponds to requiring higher smoothness of the 
function. 

LEMMA I. I f  6~ : B~ --~ B~ is a continuous, linear operator between Banach spaces B~ and B 2 that has a 
contfinuous 'tnverse at& ~ x  =~ ,  then there ex'tst real flositive constants C., an& C2, ~uch ~hut 

where H" In  denotes the norm in the Banach space B r 

PROOF. The linearity and continuity of ~ '  and M -1 imply that I1~11 and I1~-'11 are finite. We have 

Ilyll = I1~¢~11 ~< I1~¢11 I~11 

1~11---I[~¢-'yll ~< 11~-'11 Ilyll 

The result follows by choosing C, = 1/11~11 and C: = I1~ '11. [] 

Returning to the problem at hand, we formally define the following linear operators associated with Eq. (4) 

(°l/'u)(P) := fob G(p,  Q)u(Q)  dsQ (13) 

f 
a G ( ffEu)(p) := - JaB -if-fin (p'  a ) u ( O )  dsQ (14) 

with the understanding that the operators are defined when the integrals exist. In the mathematical literature 7: is 
referred to as the single-layer operator, and J(  is termed the double-layer operator. Similarly, the directional 
con~onen~s oF Ea, ( ~  are defined as 

('/ffDu)(P) := B ~ a ( p ,  Q)u(Q) ds e (15) 

£oo 
( 2P~u)(p) :=  - G(p, O )u(Q ) ds o (16)  

B OD On 

In this work, D --= N, where N is the normal unit vector 4 on 0B at P. Theoretical and numerical work on error 
estimation involving the above operators with D --= S, where S is the tangent unit vector on OB at P, can be found 
in references [5,7]. Note that ~N iS the ~egafive of  ~he adjoir~t of ~.  

The one-to-one correspondence between the linear operators and the integrals is clear. The limit to the 
boundary of the integral equations has been used to obtain singular BIEs, and now the limiting value of the 
ass~D6~me6 o~ra'~ors are cong~fiere6. 5 e 5s com'm~ao~s trod a~oe ~Dnnfar.y, w~o~reas ~ zJoiJ ~ .  are Joo~ rzwYJ:o~nus 
[10], and give rise to additional bounded boundary terms in the limit. The hypersingular operator ~ gives rise 
to unbounded terms that vanish when the integral is considered, for example, in the limit to the boundary sense. 

Comers present difficulties, and for a discussion of this matter one may refer to [24]. Taking the limit to the 
boundary, and using the linear operators defined above, one may rewrite Eqs. (4) and (9) in compact notation as 

a4, 
4, = : ~ 4 ,  + v - -  0n (17) 

04, 04, _ ~v4, + ~ ,  (18) 
ON On 

respectively. Note that if D - - N  =--n(P), then 04,/0N =-04,~On. This notation is used later in the paper. 

4 For a proper interpretation of the direction vectors, recall that the integrals are defined in a limit to the boundary sense [5,34,35]. 
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3.3. Equat ions  on a circle 

As one may expect, the linear operators associated with singular integral equations are of a special nature. 
The singular kernels cause the operators to have some properties similar to differential operators, and they are 
thus known as pseudodif ferential  operators. One may refer to Friedrichs [39] for an introduction to the theory of 
pseudodifferential operators, and to Sloan [10] for an excellent introduction to their use in error analysis of 
BIEs. Potential problems in a circle are considered here. The investigation of these problems allows one to gain 
an intuitive understanding of pseudodifferential operators, and to identify the essential character of the operators. 

Consider a disk of radius a. Denote the source point P by 0 and the field point Q by 0. Let v be an integrable 
function on the boundary of the disk. The kernels take on a particularly simple form because of the geometry, 
and one may calculate 

if '  I - - -  a l o g  2 a s i n  o(e) de  (19) ( ~ v ) ( O )  := ,r 

if; (Y{v)(0) = -(J[/INv)(O) := ~ -  v(0) d0 (20) 

l f f  1 (oL,~'Nv)(0) : = v(0) dO (21) 

sin 2 

Let us consider the operators in more detail. First consider the logarithmic kernel in Eq. (19). It may be 
represented by the Fourier series: 

= ~-cos k ( 0 -  8) - log a (22) 

Using the convolution theorem, and the inverse discrete Fourier transform, one obtains 

(~v) (0)  = a - a  0 log a + ; [a k cos(k0) + b k sin(k0)] (23) 
k = l  

The effect of 7/" is to attenuate the higher harmonics ,  and hence smooth the function. That is, one may now 
show that 

~/ ' :H"--->H "+l,  V v E R  

where R is the space of real numbers. Next, consider if/" and s/~. From Eq. (20), note that these kernels are not 
singular. This is not what one would expect at first sight. These kernels arise from differentiation of the 
logarithmic kernel, and it is perhaps more natural that they be singular. Instead, for the circle, • and J/~N act as 
averaging operators. They are of rank one because every trigonometric monomial other than the constant 
function is in their nullspace (all sines and cosines with integer frequency have average zero). For a C ~ 
boundary we have [10] 

ffd : H~" --~ H ~ , V tz, u E R 

and similarly for s/( N. Smoothness of the boundary is critical here, and the operators are certainly not so well 
behaved if comers are present. 

Finally, consider the hypersingular operator in Eq. (21). We use the Fourier representation [40] 

_ 1 ~ ~ ]  kcos  k ( 0 -  0) (24) 
4 s i n 2 ( ~  - ~ )  k = l  

Hence, 

(~uv)(a)  = -~ ~ {k[a k cos(ke) + b k sin(k0)]} (25) 
k=l 
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The hypersingular operator amplifies higher frequencies, which makes a function less smooth. This may be 

restated as 

~ N : H ~ - - ~ H  ~-~, V v E R  

Note also, that it has a non-trivial nullspace--the constant function. This can be viewed as a manifestation of  the 
non-uniqueness in the Neumann problem. It will be helpful to keep this simplified picture of  the operators in 
mind when considering what follows. 

3.4. Pseudodifferential operators 

After having described the linear operators in the simplest setting, the main conclusions can now be 
generalized. For our purposes, a pseudodifferential operator ~I is a linear operator 

s~  : H~+C~I2"-)H ~-t~12 , V v E R  

The number fl is a characteristic of  the operator and is termed its order. The special case v = 0 is most natural. 
Then, M : H t3/2 -->H - ' /2 .  Typically, the operators encountered in applications have orders - 1, 0 and + 1 [2]. In 
potential theory, the log-singular operator 7/" is of  order - 1 ,  and is a once-smoothing operator. For smooth 
domains, J f  and ~/u are compact, and ( ~  - Jr)  and (5 ~ - ~/N) are of  order 0. The hypersingular operator, ~N is 
of  order + 1. Using pseudodifferential operators, one can restate the BVP as follows: 

Given a pseudodifferential operator ~I:H~/2---> H -~2  and boundary data f E H - ' / 2  on OB, find w E H ~/2 
that is a solution of  

d w  = f  

REMARK 1. One should note, however, that key properties of  the operators, such as continuity and invertibility, 
assume a certain regularity of  the boundary, for instance, no comers or cusps [10]. These assumptions are too 
restrictive for the solution of  a practical engineering problem, but we have made them, nevertheless, in order to 
obtain some mathematical understanding of  our error estimation process. 

4. Iterated H B I E  and error est imat ion 

The heuristic idea that is at the heart of  our error estimation procedure is simple [5,6]: the amount by which 
an approximate solution to the BIE fails to satisfy the HBIE is a measure o f  the error in the approximation. The 
main result of  our work is that this heuristic idea, when stated formally, immediately leads to a simple 
characterization of the error. In essence, the method reduces to finding a second approximation to the solution 
by iterating the first approximation with the HBIE. An interesting sidelight is a non-rigorous argument on 
accelerated convergence of  the hypersingular iterate in the Dirichlet problem. We first illustrate our idea in the 
two basic cases of  the interior Dirichlet and Neumann problems. 

4.1. Problem 1" lnterior Dirichlet 

The interior Dirichlet problem is stated as follows: Find 04,~On on OB such that 

A 4 , = 0  inS2 

4, = g on OB (26) 

The interior Dirichlet problem can be reformulated as an integral equation using the BIE (17), i.e. 

04, 
°U ~--nn = g - Yfg =:f~ (27) 

Similarly, using the HBIE (18), one obtains 

o4, 
( 5~ - J/N) ~ = Afug = : f2 (28) 
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The notation fi and f2 on the right-hand side of Eqs. (27) and (28) is arbitrary at this point, however, this will 
become clear in the section on the mixed BVP. Either Eqs. (27) or (28) may be used to solve the boundary 
problem. There is a question about existence and uniqueness though, which is discussed later, in Remark 2. 

It may be shown that the operators 7/" and (At - J'/u) have the following properties [2,10]: 
• 7 / : H ~ - - + H  ~+l, V u E R  

( A t - j / / u ) : H ~ - - > H  ~, V u E R  
• ~ and (5 t - +t/u) are continuous (see Theorem 2 of Wendland [2]). 
• In particular, if we choose u for each problem such that 

~t/" : H-I/2__+ H j/2 

(55 -- +[gN) : H°_...) H ° 
and if we assume a unique solution for  each problem, then it may be shown (see Lemma 3.1 of Wendland 
and Yu [15]) that the operators 7/" and (At - ~N) have continuous inverses. 

R E M A R K  2. Eq. (27) is Symm's equation. The solution to Symm's equation is non-unique if the geometric 
scale of the body is inappropriate, i.e. the capacity or transfinite diameter is 1 [10]. By assuming the existence 
of a unique solution, we do not consider such degenerate geometries. It is worth noting that the HBIE (28) has 
no such existence-uniqueness problems. 

The above formulations of the problem lead us to look for weak solutions [8,41] in distinct spaces, i.e. H -~/: 
for the BIE, and H ° for the HBIE. That is, the use of the hypersingular approach demands that we utilize a more 
restricted, smoother space. In what follows, we shall assume that the true solution is smooth enough to fit in 
both spaces, i.e. &gb/an E H ~ with /x > 0. Since both the formulations represent the same BVP, it is expected 
that they will have the same weak solution under this smoothness assumption. 

4.1.1. Error estimate for  the primary problem 
Our method of error estimation proceeds by first finding an approximate solution (aqb/an) (~ E H ° to the BIE, 

and then constructing a second approximation, (aqb/an) (2), by iterating (ad?/an) ~) using the HBIE. As 
mentioned before, the difference between the iterate and the initial approximation is expected to be a measure of 
the error. The iterate is defined by 

a4, (~) a4/1~ 
7n - + eNg 

The error in the approximation (acb/On) ~1) is 

e ( l )_  Oq~ (l) a~b 
q an an 

Note that by our assumptions, e<q~)~ H °. Now, the hypersingular residual is defined as 

r - -  
an an 

Then, starting with Eq. (31) and using Eqs. (28)-(30), one obtains 

a~b~') ( a~b (l) ) 

r =  a---n---  +tlu--~n +~LYug 

a4, ( a4, ) .. 
= an -- ~[IV-~n q - ~ N g  q-eq --J/[Neq 

= ( Y  -- /[~N)e(q 1) 

We now present one of the central new results in this paper. 

(29) 

(30) 

(31) 

(32) 

THEOREM 1. There are two real positive constants, such that 

c, Ilrll0 ~< [[eq I[o ~ c2l[rl[o 
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PROOF. The operators ( j r -  d//N) and ( j r -  fl//N) -1 are linear and continuous. The result now follows from 
Lemma 1 and Eq. (32). [] 

REMARK 3. Theorem 1 provides a global result. It does not say anything about local errors. Similar 
considerations, in a different context, can be found in [27]. 

4.1.2. Error estimate for the iterate and 'superconvergence' 
It is natural to question whether the iterate (aqb/On) (2) is more accurate than the primary approximation 

(O~b/On) ~). The use of iteration to improve convergence rates in integral equations of the second kind has been 
studied extensively and it is known that iteration for compact operators may often lead to 'super- 
convergence' [30]. Previous iteration schemes in the literature use the same integral equation both for  a first 
approximation and for the iterate. Note that the present iteration scheme uses the BIE for a first approximation 
and the HBIE for the iterate. We now present a non-rigorous argument, which suggests that the iterate will 
indeed be superconvergent. By superconvergence, we mean that the iterate has a higher order of convergence 
than the primary solution. The error in the primary solution is defined by Eq. (30), and the error in the iterate is 
defined as 

e(2) Oq~ (2) O~ 
q -  On On (33) 

Then, starting with Eq. (33) and using Eqs. (28)-(30), one obtains 

a~ ('> o~ 
(2) - 5(Ng eo = ~tN ~ + an 

,, { (,) a4)  a4 
= ~Nkeq + ~ _  + ~Ng On 

jj (l) 
= "/~Neq (34) 

In the special case of the circle, J/N is a rank one operator, and all the Fourier basis functions, except the 
constant function, lie in its nullspace. Thus, ./t/N filters out all the oscillatory components in e(q ~). Assume that the 
error e(q ~) is of the form 

e(q')(O)~ eo h~+~ + h" £ e k e d*°) 

where h is the maximum element size in the mesh, s is the order of the approximation, and 6 > 0 (e.g. 6 = 1). 
Note that the constant term in the solution converges faster than the oscillatory terms. Then, it is clear that 

lie(q2'1[ = ~(h -'-+~) 

and it is globally superconvergent. We should also mention that our numerical experiments suggest that it is 
reasonable to suppose that the oscillatory part of the error is of a lower order than the constant component. The 
averaging nature of d,/N depends on the smoothness of the boundary. For instance, if the boundary is C =, then 
the kernel of the integral operator d,/N is C =. For a domain that is sufficiently smooth (Cr), we expect ~¢/u to 
retain its averaging behaviour, and reduce the error, though not as dramatically. Further, this shows that the 
hypersingular residual, which is related to the error by Eq. (32), will track the error faithfully since the 
oscillatory components are lower than the constant component by C?(h a). 

4.2. Problem 2: Interior Neumann 

Another special case is now considered, the interior Neumann problem, which is stated as follows: Find ~b on 
0B such that 

A05=0 in /2  

a4, 
On - q on OB 

(35) 
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Additionally, we assume that the boundary conditions satisfy the consistency condition 

f0 q ds = 0 (36) 
B 

The BVP can be reformulated as an integral equation using the BIE (17), i.e. 

(5 t - Yd')~b = ~'q = : f l  (37) 

The identity operator 5 ~ is a pseudo-differential operator of  order 0 and the operator Y{ is compact (for C ~ 
boundaries). In particular, for the case of  a circle, Y{ is given by the definite integral in Eq. (20), and it smoothes 
the function. It can be shown that [10] 

( d ; -  Y{) :H"--~H ~ , V v E R  (38) 

The solution to the Neumann problem is arbitrary up to a constant, and to curtail this arbitrariness we work in 
the restricted Sobolev space 

1 4 " : = { v ~ H ~ , f ,  s d s = O  } (39) 

The operator (.# - Y{) is invertible in the space /~o [10], and its inverse is continuous. 
The HBIE for the Neumann problem is 

--~N~b = (dk/u -- 5~)q = : ~  (40) 

~N is a hypersingular operator of  order + 1 and 

~ N : H ~ - - > H  "-1,  V v ~ R  

~ u  has a non-trivial nullspace, and to make it invertible we need to restrict the space as above. It is most natural 
I:1,,2 WI-,,2 to consider v = 1/2, and thus ~ u  : continuously, with a continuous inverse. The notation f~ andfz 

on the right hand side of  Eqs. (37) and (40) is arbitrary at this point, however, this will become clear in the next 
Section on the mixed BVP. 

Assume that the solution is smooth enough to lie in the space /~1/2, and that an approximate solution 
~b ¢j) E / 4  Ij2 to the BIE (37) has been found. The error in the primary approximation to the unknown q9 is 
denoted by 

(1) = ~(~) 
e~ - ~b (41) 

An iteration scheme, similar to the one in the previous section, is employed here. Using the HBIE (18), one 
obtains 

On - Jtluq + ~'Wufb ~'~ (42) 

The hypersingular residual is again defined as in Eq. (31), and thus 

O~ (1) O~ (2) O~ (2) 

r =  On On q On (43) 

i.e. in the Neumann problem, the hypersingular residual is the error in the iterate. Starting with Eq. (43), and 
using Eqs. (40)-(42) ,  one obtains 

r = q - (~[Nq + ~uq b~l)) 

= ((5~ - db/u)q - ~N~b ) -- ..zNe~'~ (,),~ 

= -- 5fNe~ ) (44) 

An interesting alternative derivation of this equation is given in Appendix A. 
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THEOREM 2. There are two real positive constants, Ct and C 2, such that 

Clllrll-,,2 < Ile~"ll,,~ ~< Cdlrll_,,2 

PROOF. Clearly, the error lies i n / ~ z  Also, ~ u  : is linear and continuous, with a continuous 
inverse. Use Lemma 1 with Eq. (44). [] 

R E M A R K  4. It is necessary to point out that in the Neumann problem the unknown is the potential but the error 
estimator is a difference in flux. In a computer code one would need to scale the potential and flux appropriately 
lest the difference in scale between these two quantities dominate the error estimate. Moreover, one should not 
expect a phenomenon of accelerated convergence. This does not occur because the flux is known a priori as the 
given Cauchy data. The role of the iterate here is just error estimation. As we have seen, ~ u  has the effect of 
amplifying the high frequencies. Thus, we anticipate that it will indeed be a good error estimator. 

4.3. Problem 3: Mixed boundary value 

The previous analyses for the particular problems, namely the interior Dirichlet and Neumann problems, can 
be extended to a mixed BVP. This is stated as follows: Find ark~On on aB 1 and rk on 0B~ where OB =- OBI + OB~ 
and 

Ark = 0 in /2 

rk = gt on 0B t (45) 

ark 
On = g2 on OB 2 

There is a genuine difficulty in the mixed boundary value problem, even for a smooth domain with C a Cauchy 
data• This difficulty arises because of the change in boundary conditions from Dirichlet type to Neumann type 
for at least one point on the boundary, say z0 with z ~ C. This gives rise to a singularity of the form 
~r(z-Zo)  1/2, where f f  denotes the imaginary part of the function. This could necessitate the inclusion of 
singular functions in the approximating space (see [42] and the references cited therein), but this is not common 
in engineering practice. The mixed BVP has been studied by, among others, Wendland et al. [23] for smooth 
domains, and Costabel and Stephan [24] for domains with corners. A hard analysis of this problem is quite 
imposing• Our goal here is to show that a simple error-hypersingular residual relation still results. That is, Eqs. 
(32) and (44) are special cases of a more general relation. 

In the mixed BVP, the integral equations for the boundary unknowns are coupled because of the mixed 
boundary conditions. To rewrite the BIEs concisely, define the operators T" u and Ygu as 

~o G ( P ' Q ) ~ n  ( Q ) d s Q '  P E O B i  (46) 

0 c  
(~urk)(P) := - ~ (P, Q)rk(Q) ds e , P ~ OB i (47) 

~j 

Let (OrklOn)j and rk2 denote the boundary unknowns 0rk/0n on OB~ and rk on OB 2, respectively. Using the 
BIE (17) together with the operators defined in Eqs. (46) and (47), and imposing the boundary conditions on 
Eq. (45), one obtains 

[ ~ ,  ..;r~ .:, 11-~ l = [ ( ,_  ,,,, ) _ ~..,]tg,I (48) 
-~.,, (4  - ~ _ ) J l  rk2 J ;4, ~., Jlg2J 

The mixed BVP consists of determining w such that (see [23]) 

sfw =f~ (49) 

Note that s¢ is the system matrix on the left-hand side, and f~ is the known right-hand side of Eq. (48). 
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Moreover, 

w = [w,, w2] ~ 

where w 1 =- (Oqb/an)~, w 2 --- ~b z, and T denotes the transpose of a matrix. 
Similarly, to rewrite the HBIEs appropriately, define the operators "//¢uu and £°uu as 

JgNu (P) :=  - ~  (P, Q) ~ (Q) dso, P E OB i (50/ 
e, 

Jo 0 2 G 
(~Nij q~)(P) : =  - -  8N On (P' Q)q~(Q) dso' P EOB, (51) Rj 

Using the HBIE (18) together with the operators defined in Eqs. (50) and (51), and imposing the boundary 
conditions on Eq. (45), one obtains 

-~.,,,~, -z,,,~/L ,¢'-, J 
A brief specification of the problem, analogous to the BIE case, consists of determining w such that (see [2]) 

~ w  =f2 (53) 

where ~ is the system matrix on the left-hand side, and f2 is the known right-hand side of Eq. (52). 
The linear systems obtained using the BIE and the HBIE for the mixed BVP are given by Eqs. (49) and (53), 

respectively. With both problems in the setting of linear operators, we note that a¢ and ~ are continuous 
pseudodifferential operators of orders 0 and 1, respectively. 

Now, the a posteriori error estimate for the mixed BVP can be defined. The derivations proceed in two basic 
steps. The first step consists of finding an approximate solution w (~) to the BIE, 

W (1) = [W(111, W(21)] T 

where w] ') denotes the calculated flux on OB~, and w~ ~) denotes the calculated potential on 8B z. 
The next step consists of iterating w a) with the HBIE to find the corresponding approximation for the flux 

(O~lOn) (2~ 

0n 1 ~ =  ~'NII ~'NI2 g l -1- ~Nll "~//NI 2 W(I 1) 
O~b~2~ [ (54) 

.j  6,2, sr,,22 w;" .a<, .,tt :aj l j 

The error in the approximation w ~j) is given by 

e (') := [e(l '), e~')] v = w ( ' ) -  w (55) 

Once again, the hypersingular residual is defined by Eq. (31), which is consistent with the previous problems 
(i.e. interior Dirichlet and interior Neumann). Then, starting with Eq. (31 ) and using Eqs. (54)-(55), one obtains 

r = I r l l = l w ~  + e(li) / gl e/gN, 2 Wl 
[r2J 1. g2 J - [ ~ ; ' 2 :  ~v '2 ]~  ) } - [ ~ ; ' : ]  ,//gu=]{ +e{l' '~ ~N=J tw2  + e~' (56) 

g~ J 

Assuming that the solution w is smooth enough, we expect that the BIE and HBIE will have the same solution. 
Again, using the HBIE relations and substituting them in Eq. (56), one obtains 

r, [ 
= _ ~  l i e ( l ) /  (57) r =  re --J~N21 N22J/ 2 ) 
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which can be rewritten using Eqs. (52) and (53) as 

r -- ~ e  (1) 

where 

( Y - ~ N , ,  -~eN2~ ] 

(58) 

(59) 

As expected, the term ~ is the same as obtained with the Dirichlet problem (see Eq. (32)), and the term ~z2 is 
the same as obtained with the Neumann problem (see Eq. (44)). The off-diagonal block terms ~12 and ~21 are 
the usual coupling terms which are present in a mixed BVP. 

Equation (58) is the error-hypersingular residual relation for the mixed BVP. The operator ~ in this equation 
is the same system operator as in the HBIE (52). Although it has been demonstrated to be invertible in 
numerous numerical applications (e.g. [6,36,43,44]), a rigorous proof of its invertibility is difficult [10]. If  we 
assume invertibility of  ~ ,  then it is clear that the error is globally bounded by the hypersingular residual (see 
Lemma 1). Thus, Eqs. (32) and (44) are now seen to be the limiting cases of  Eq. (58). 

5. Global bounds  in a Galerkin scheme 

The purpose of  this section is to demonstrate the use of  a standard argument in the FEM to find a tighter 
global bound on the error. The present argument follows Eriksson et al. [9], and it will demonstrate the utility of 
the error-residual relation, r = ~ e  (1~, obtained in Eq. (58). 

For the sake of  simplicity, consider the Dirichlet problem reformulated as Symm's  equation. The continuous 
problem consists of  finding w E H -1/2 such that 

~ w  = (~¢ - Y{)g = :  fl  

We shall assume that there is in fact a smoother solution than this, so that w E H °. The continuous hypersingular 
problem consists of  finding w ~ H ° such that 

(o¢ - d,/u)w = 5(ug = :  f2 

From the smoothness assumption on w, both formulations have the same solution. Let us solve the BIE using a 
Galerkin rather than a collocation scheme. Denote the test space by S p C H °. Then, the discretized problem is 
formulated as follows: Find w (~) E S p such that 

( T ' w t l ) , v h ) = ( f l , v h ) ,  VVh ESPh 

where (- , . )  denotes the L~ inner product on OB. It can be easily shown that this implies 

(~'e~l~, vh) = 0 ,  V v h ~ S  ~ 

which is the Galerkin orthogonality relation. It is also common to represent the error in the solution using the 
solution to the dual problem, i.e. ~b such that ~'*~0 = e ~) [8,45]. 

THEOREM 3. Assume that the test space SPh satisfies an interpolation error estimate o f  the form 

[[h-e(~ 0 - ~'h J')ll0 ~< c, Iloe¢,llo (60) 

where h is a parameter that measures the level o f  discretization, 7rh ~b is the interpolant o f  ~b in SPh, and D e 
denotes derivatives o f  order p. Also, assume that we have a strong stability 5 estimate for  the dual problem of  the 
form 

Iloe~Ol[o ~< s, Ile"'[Io (61) 

s One may refer to Eriksson et al. [9] for a definition of strong stability. 
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Then, the solution to the Galerkin approximation satisfies 

[[w - w~[[0 ~< CllhPr[Io 

PROOF. The error is given by 

]le(1)]12 o : (e (I), e (')) = (e (') ~*~b) = (7~e('), ~) (62) 

The use of  the Galerkin orthogonality relation leads to 

(~ ' e  (]), ~) = (CUe (~), ¢ -  ~,~b) (63) 

Now, using the interpolation error estimate (60), and the strong stability estimate (61), one obtains 

[[e"'[IZo ~< ScC, flh" ~'e"'[Iolle<'>]lo (64) 

The only new idea consists of  using Eq. (32) and introducing the error-hypersingular residual relation 
e ~j) = (5~ - J//~v)-lr at this step. Now, using the Cauchy-Schwarz  inequality a couple of  times and discounting 
the trivial case when the error is zero, one obtains the inequality 

[[e(1)l[ 0 ~< C[[hPr[Io (65) 

with c : -  s,c, II III[( - :UN)-'I[. [] 

REMARK 5. The above proof shows that certain arguments used in earlier error-residual analyses may be 
extended with no difficulty to error-hypersingular residual relations. Ideally, we would have preferred to use the 
solution of the dual problem to the HBIE, to find a bound, but this is not possible since the Galerkin 
orthogonality that holds for the residual 7/'e ~), does not hold for the hypersingular residual ( ~ -  u///N)e (t). 

6. Properties of  the error estimates 

Three properties of  the present error estimation method are discussed below. These properties involve 
pseudolocality of pseudodifferential operators, symmetry of the basic error estimation process, and the use of  
iteration as a postprocessing technique in boundary integral methods. Moreover, the last two properties are 
inter-related, and indicate possible extensions of  the present iteration scheme. 

6.1. Pseudolocality 

At this stage, global bounds on the error have been provided, but not local error indicators. However,  
numerical experiments on potential problems [5,6] suggest that the residual is, in fact, an excellent measure of  
the local error. This is a result of  the pseudolocal property of  the pseudodifferential operators. This property has 
been rigorously used by Yu and Wendland [15-18] to develop adaptive boundary elements for Galerkin, and 
some collocation schemes. Because of the singular nature of  their kernels, the operators d and ~ have the 
property that when applied to a function peaked at a point P (think of a sharp Gaussian distribution around P), 
they cause it to decay sufficiently fast. The pseudolocal property is stronger for kernels of  higher order of  
singularity, as shown by Wendland and Yu [15,16]. This provides one of the principal justifications for 
preferring hypersingular residuals over the usual residuals. As a visual illustration of the pseudolocal property, 
Fig. 1 shows the effect of  a (hyper-)singular kernel on a peaked function with compact support. 6 The output is 
also seen to be predominantly local. However, it does not have local support, contrary to what is suggested in 
Fig. 1. On a log-scale plot, the entire boundary is seen to belong to the support of  the output, as illustrated by 
Fig. 2. 

In our context, the pseudolocal property is invoked in the sense that if the error has a local peak, then so does 
the residual. Nevertheless, what is truly important is the pseudolocality of  the inverse operators. Does a local 

6 The action of the hypersingular kernel on this function is obtained by computing the Fourier series of the function, and then using the 
Fourier  representat ion o f  the kernel.  
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Fig. 1. Demonstration of  pseudolocality--action of the hyper- 
singular kernel on a function with compact support. Here, the 
initial function ( 'error ' )  is f ( x ) -  1 - ( x / 6 )  2, where 8 = 7r/8; and 
f(x) = 0 if ~c] > 6. 
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Fig. 2. Demonstration of pseudolocali~--the operators are not 
local because the support of the output function is not contained in 
the support of the input function. 

peak in the residual mean that the error is local ? As stated above, a local error implies a local residual, but the 
converse is not clear. In a discretized setting, one could point out this difficulty by noting that the inverse of a 
tridiagonal matrix is not necessarily tridiagonal. At present, we do not have analytical justification for the 
converse argument, which is the most important result, but rely instead on numerical evidence. Several 
computational experiments [5,7] do suggest that the hypersingular residual is in fact a good local measure of the 
error as well. 

6.2. Symmetry of the formulation and iterated BIE 

The symmetry of the error estimation method was first realized by Paulino et al. [5,6]. In fact, as noted there, 
this is a very natural and appealing feature of the method. The method rests on the fact that the amount by which 
the approximate solution to the BIE fails to satisfy the HBIE is related to the discretization error in the primary 
approximate solution. Next, it is shown that the formulation is indeed symmetric, i.e. /f the primary 
approximation is found by solving the HBIE, and if this approximation is iterated with the BIE, then the residual 

(66) 

is an error indicator for the HBIE solution. Consider the mixed BVP given by Eq. (45), and the formulation 
given by Eq. (53). Let w (t) be an approximation to this solution. The following iterated approximation can be 
formed 

and it may be verified that 

; d g .  4¢1> _ ~h~2 > = s / e ~  

°//'22 J I. g2 
(67) 

(68) 

where ~ / i s  given in Eq. (49). If invertibility of ~¢ is assumed, then the error is globally bounded by the residual 
(see Lemma 1). 

While the symmetry property of the present error estimation method provides an alternative definition for the 
residuals as given by Eq. (66), it is essential for error estimation in the symmetric-Galerkin BEM. In this 
method, both the BIE (17) and the HBIE (18) are used in the solution of the BVP, the choice being dictated by 
the prescribed boundary condition [46,47]. Therefore, in the error estimation process, the use of either Eq. (31) 
or Eq. (66) is also dictated by the type of boundary condition. Error estimation and adaptive calculations using 
the symmetric-Galerkin BEM can be found in [48]. 
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6.3. Iteration as a postprocess ing step 

Iterated boundary integral methods can be found, for example, in [30,49-51]. As remarked earlier, iteration in 
Fredholm equations of the second kind, and some singular integral equations, has been known to result in 
superconvergence.  One may refer to the article by Sloan for an elegant exposition [30], where various iteration 
schemes are developed using the same integral equation both for a first approximation and for the iterate. In 
contrast, our iteration scheme is of a different nature, in the sense that it is a 'two-level' scheme, i.e. the 
equation used for the initial solution and the equation used for iteration are not the same. In the present work, 
the BIE has been used for the initial solution and the HBIE has been used for the iterate. In addition, the above 
property on symmetry of the formulation points out that the role of the two integral equations can be 
interchanged. To the authors' knowledge, our iteration scheme does not appear to have been studied 
theoretically earlier. 

Three examples from the literature on iterated integral equations are given next. 
• Golberg and Bowman [28] have used the superconvergence of the Sloan iterate [29] to show the asymptotic 

equivalence of the error and residual. They have used Galerkin methods, standard iteration schemes (i.e. 
using the same integral equation for a first approximation and for the iterates) and usual residuals in their 
work• 

• Tran [52] has used the K-operator and has shown how it can lead to superconvergence. Perhaps our present 
approach to the Dirichlet problem can also be viewed in this context• 

• Numerical results due to Guiggiani [44] show that for two-dimensional elasticity problems, one can obtain 
high pointwise convergence using the HBIE as a postprocessing step to calculate traction• This is surprising 
since the kernels in the elasticity HBIE are Cauchy singular and hypersingular. There is no obvious reason 
to expect that they would smooth out the error when used for postprocessing. 

7. Numerical  examples 

Four numerical examples are presented which demonstrate that the hypersingular residual tracks the local 
error effectively, and thus it can be used as a basis for an adaptive scheme. A Galerkin boundary element 
method on a circular domain has been implemented using the computer software MATLAB 7 For this simple 
geometry, the discretized kernels can be computed with arbitrarily high accuracy from their representations as 
infinite series, i.e. there are no errors in quadrature. Also, since the geometry is represented exactly, essentially 
all errors are due to discretization of the function space• The calculation of the hypersingular kernels follows a 
method due to Yu [40], and the implementation for the BIE can be considered a straightforward extension of this 
method. The partition of the boundary is uniform for most experiments, except in the last example where an 
h-adaptive scheme is considered• 

For the circular boundary, a uniform partition of the interval [0, 27r] in N elements is considered. Note that 
this partition also identifies the endpoints of the elements. The basis function employed here are the 'hat 
functions' //i defined by 

1 
H~0~ = - 3  ~0-  0~_,~, 0~_, ~< 0 ~< 0~ 

1 
= ~ (0,.+~- 0) ,  O~ ~< 0 ~< 0~+~ (69) 

where 

A = 2"tr/N (70) 

The approximations for the potential and flux are 

7 MATLAB is a registered trademark of The MathWorks Inc. 
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(b ~l)= ~ 6liHi and On = ~ iHi (71) 
i=l i=1 

respectively. 

R E M A R K  6. The iterate is not constrained to lie in the approximating subspace. In the present computations, the 
iterate has been calculated at numerous internal points. This has the advantage of revealing the oscillatory nature 
of  the error and hypersingular residual. 

7.1. Dirichlet problems 

The Galerkin approximation for the Dirichlet problem, in discretized form, is 

~"(°t/'I-Ii'lIj)--~nN 0~  ~ = i=l ~ ((~¢ - Jg')Hi'/-/J)~l~ ' j = 1 . . . . .  N (72) 
i=1 

As before, ( . , . )  refers to the L 2 inner product. The above can be rewritten as 

~ w ( l )  = f l  

where .~  ~ R u×N and fl E R N. 
Owing to the circular symmetry,  the matrices have a very special structure; they are Toeplitz and circulant, 

and can be represented using a single vector, i.e. 

( ~H~, ~ . )  = A~j = Aji = AI~_jl := ak,  where k = li - J l  (73) 

Using the Fourier representations of  the kernels and the integrals in Appendix B, one may show that 

tr I 1 6  ~_~ I 15 • 4 / /nA~ ] 
ak---- --Tr ~ --n sin ~--~-- ] cos nkA - A 2 log a (74) 

where A = 27r/N is the mesh width. One could use the 'fast Fourier transform' (FFr )  to solve this system, but 
this is unnecessary for the simple examples we consider. 

R E M A R K  7. The above discretization procedure illustrates two difficulties inherent in the direct BEM for the 
Dirichlet problem. One may write M in matrix form as 

AZa log a : (75) 
A = S -  ~r . . .  

where S has components Sij and it refers to the summation term in Eq. (74). The first difficulty arises when 
a = 1, in which case A - S is singular. This follows from Remark 2 on the transfinite diameter. This problem 
can be avoided by scaling the dimensions of  the body suitably. The second difficulty is the fact that M becomes 
nearly singular as the mesh is refined, i.e. as A = 2rr/N---)O. Thus, the linear system becomes ill-conditioned. 
This is often a problem with equations of  the first kind. 

7.1.1. Example 1 
Consider a circular domain and the harmonic function ~b = C r  2 sin 20, where (r, 0) denotes polar coordinates 

and C is a constant. The flux is given by Off~On = 2Crs in20 .  Here, r =  5 so that d' = 2 5 C s i n 2 0  and 
Orb~On = 10C sin 20. Choosing C = 1/5, one readily obtains ~b = 5 sin 20 and OqS/On = 2 sin 20. Thus, ~bma x = 5, 
and Oq~[Olllmax = 2, where t~max denotes the actual maximum potential, and O(b/Onlmax denotes the actual 
maximum flux (on the boundary). Consistent units are used. This is the reference solution which will be used in 
the first three examples. 

As described above, a circle of  radius 5 is considered with the analytic boundary conditions g = 5 sin 20. The 
exact solution for the boundary flux is O(b/On = 2 sin 20. In this case, the iterate is easily computed. Using the 
Fourier representation of &o N, one may show that ~Ng  = 2 sin 20. Fig. 3 shows the computed solution and the 
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Fig. 3. Comparison of primary and iterated solutions (8 nodes). 
The flux is normalized with respect to O~b/On[max = 2 units. 

Fig. 4. Error in the primary solution (Eq. (30)), error in the iterate 
(Eq. (33)), and hypersingular residual (Eq. (31)) considering 8 
nodes on the boundary. The 'relative error in flux' is the 
dimensionless quantity obtained by dividing the error (or residual) 
by the actual maximum value of the flux (here, O~blOn]ma, = 2 
units). Note that the 'Error in BIE' and 'Hyp residual' curves 
agree within plotting accuracy. 

iterate. Fig. 4 shows the comparison between the errors (in the BIE and in the iterate) and the hypersingular 
residual. The error in the iterate is near machine precision, indicating superconvergence. Consequently, the error 
and the hypersingular residual are practically identical, and therefore are indistinguishable on the plot. It is 
worth mentioning that the accuracy of  the iterate is mainly due to the fact that the computation of  
~YNg = 2 sin 20 is exact. If there are interpolation errors in the boundary conditions, then the operator o~? N 
increases them, counteracting the smoothing effect of  -//u, as shown in the next example. 

Z 1.2. Example 2 
It is rare that one knows the boundary conditions exactly, as in the previous example. Consider now the 

N 
discretized boundary conditions of  the form g = ~i=1 Hicb[i where ~b[~ = 5 sin 20.  The term 5Cug is computed 
using the Fourier representation. This is not a fast computation since one has to sum a series that behaves as 
l /n .  Figs. 5 and 6 show the exact solution, the primary approximation, and the iterate for different 
discretizations. It is clear from these figures that there is no superconvergence of  the iterate. The smoothing 
effect of  ,~/u is counteracted by ~ u ,  which amplifies the discretization errors in the boundary conditions. 
Nevertheless, because of the circular geometry and the uniform mesh, the errors in & and O&/On have the same 
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Fig. 5. Comparison of primary and iterated solution (8 nodes). Fig. 6. Comparison of primary and iterated solution (32 nodes). 
The flux is normalized with respect to od)/Onlmax = 2 units. The flux is normalized with respect to orb/Ontm.~ = 2 units. 
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Fig. 7. Error in the primary solution (Eq. (30)), error in the iterate 
(Eq. (33)), and hypersingular residual (Eq. (31)) considering 8 
nodes on the boundary. The error (or residual) is normalized with 
respect to ~/Onlma~ = 2 units. 

o,1 

0.06 

0o4 

~.os Hyp. r e s i d u a l  

i 
-° '10 o.s 1 1.5 2 2.5 3 

Polar  a n g l e  

Fig. 8. Error in the primary solution (Eq. (30)), error in the iterate 
(Eq. (33)), and hypersingular residual (Eq. (31)) considering 32 
nodes on the boundary. The error (or residual) is normalized with 
respect t o  Oq~/Onlm.~ = 2 units. 

harmonics, and hence the hypersingular residual tracks the primary error faithfully as shown by Figs. 7 and 8. 
Fig. 9 presents the information of  Fig. 8 on a log-scale and, because of  symmetry,  both of  these plots only show 
part of  the boundary. It is apparent that there is still superconvergence at the nodes. 

7.2. Neumann problems 

For a Neumann problem, the approximating space S~ C / ~ ] / 2 .  In the discretized setting, this leads to 

f_r i~_ ] viH i dO = 0 (76) 
7 r  _ 

~ /_~ l / 2  
i.e. E~u=] u~ = 0. This means that the constant term in the Fourier expansion of  any function o is zero. 
Also,  recall that the boundary condition must satisfy the consistency condition given by Eq. (36). Hence, 

dp dO = q( O ) dO = 0 (77) 

Noting these restrictions, one obtains the Galerkin approximation for the Neumann problem, 

07 
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Fig. 9. Error in the primary solution, error in the iterate, and hypersingular residual on a logarithmic scale (32 nodes). 
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N N oq~r 
E ( ( S t -  2g)H,,I-Ij)d~l ~ = ~'~ (°i/ 'H.,I-Ij)~n ~ j = 1 . . . . .  N (78) 
i=1 i=1 

As before, (., .) refers to the L 2 inner product. Since Y[" is simply the averaging operator, the use of the 
constraint on ~b (see Eq. (77)) leads to Y/'~b = 0. Thus, the Galerkin approximation of the BIE reduces to 

U N 04>i 
E (H i, l-Ij)~li = E ( ~PH i, IIj) ~ i '  j = 1 . . . . .  N (79) 
i=1 i=1 

which can be written as 

~ W ( I )  = f l  

Note that the boundary conditions have been discretized. Moreover, the matrix A is circulant, and for linear 
shape functions it is given by 

d 4 1 • • 
A = -  6- 

" ' "  l 

(80) 

The hypersingular iterate given by Eq. (42) becomes 

0 ~  (2) 

On = j ' lNq + ( ~ N ~ ( 1 ) =  ~ N ~ ( ' )  (81) 

Now the Fourier representation of ~N Can be used to calculate the iterate. As discussed before, in the 
error-hypersingular residual relation of Eq. (44), &e N has the effect of amplifying the higher frequencies, and the 
hypersingular residual is expected to track the error effectively. Indeed, this is what the numerical experiments 
reveal. 

Z2.1.  Example  3 
Consider the boundary conditions aqb/On = 2 sin 20 on a circle of radius 5. The unique solution in/_~]/2 is 

~b = 5 sin 20. Figs. 10 and 11 show the comparison between the iterated flux and the exact flux for different 
discretizations. It is clear that the iterate does not converge faster than the primary approximation, o~°N has the 
effect of amplifying errors instead of smoothing them, and one does not expect the iterate to converge faster. 
The residual does track the error as illustrated by Figs. 12 and 13. Note that in these figures, the error in 
potent ial  for the primary solution is being compared with the residual in f lux.  However, as shown in Appendix 
A, the same error-hypersingular residual relation of Eq. (44) also results by using the residual in potential (see 

1 2 3 4 5 
Polar angle 

Fig. 10. Exact and iterated flux (8 nodes). The flux is normalized 
with respect to OCb/Onlmax = 2 units. 

-1 
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Fig. 11. Exact and iterated flux (32 nodes). The flux is normalized 
with respect to ocb/onl,.~x = 2 units. 
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Fig. 12. Error in potential (Eq. (41)) and flux residual (Eq. (43)) 
considering 8 nodes on the boundary. The error in potential is 
normalized with respect to ~blm,x = 5 units and the hypersingular 
residual is normalized with respect to O~b/Onl,,, ~ = 2 units. 

Fig. 13. Error in potential (Eq. (41)) and flux residual (Eq. (43)) 
considering 32 nodes on the boundary. The error in potential is 
normalized with respect to q~lm,x = 5 units and the hypersingular 
residual is normalized with respect to OCb/onlmax = 2 units. 

Eq. (A.3)) to derive this relation. In summary, notice that although our analytical results provide only global 
bounds, the numerical experiments strongly suggest that the hypersingular residual and error are closely related 
locally. In the Neumann problem the hypersingular residual is related to the error through an operator of order 
+ l, and hence it has 'high' pseudolocality. 

7.2.2. Example 4 
This example is distinct from the previous ones in the sense that it has a physical singularity on the boundary. 

Consider a Neumann problem on the unit disk. The exact solution is ~ = 9t ~/z - 1, where .9l denotes the real 
part of  the function. The flux O~/On is singular at z -- 1 + 0i. Fig. 14 shows a comparison between exact and 
computed solutions for the potential. The computed solution matches the calculated one quite well, with a slight 
discrepancy near the singular point. Fig. 15 shows a comparison between the hypersingular iterate and the exact 
flux. The flux is singular at 0 = 0. As expected, the iterate is unable to capture the singularity and oscillates near 
the singularity. Moreover, for this specific problem, the effect of  the singularity seems to spread through the 
whole boundary and the iterated flux oscillates mildly even far from the singularity. The hypersingular residual 
has been observed to track the error locally, but this plot has not been included here. Instead, error indicators ~Tj 
on each boundary element OBj are defined as 

0.6 

) - -  E x a c t  p o t e n t i a l  

- C o m p u t e d  p o t e n t i a l  

0.2 

- 0 . 2  

-0'4 f~, 

"0"-0 1 2 0 4 5 6 
P o l a r  a n g l e  

1 

2o E 

-1 

-2 

-3 

- -  H y p e r a l n g u t a r  i t e r a t e  
- - -  F u x  

J J = 
1 2 3 4 5 

P o ~ r a n ~ e  

1 
i 

k 

6 

Fig. 14. Exact and computed potential (32 nodes). Fig. 15. Hypersingular iterate and exact flux (32 nodes). 
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Fig. 16. Element error indicators (16 nodes and 16 elements). Fig. 17. Performance of adaptive and uniform meshes. 

Fig. 16 shows the comparison between the element error indicators (using hypersingular residuals) and the error. 
These element error indicators may be used as the basis for an h-adaptive mesh refinement scheme. For instance, 
elements in which the error indicator is higher than some threshold value can be partitioned. In Fig. 17, the 
element with the highest error indicator is trisected. It is clear that the adaptive refinement leads to higher 
convergence rates than the uniform refinement. This simple example demonstrates that the hypersingular 
residual error estimates have potential applications in adaptivity. 

8. Conclusions and extensions 

A novel iteration scheme, using integral equations, has been used to assess discretization errors in the BEM. 
The basic iteration scheme consists of using the BIE for solving the BVP and iterating this solution with the 
HBIE. A residual is defined as the difference in the derivative quantities, and this residual is used as a BEM 
error estimate. Linear error-hypersingular residual relations have been developed for Dirichlet and Neumann 
problems, which are special cases of the general relation for the mixed boundary value problem. Four numerical 
examples, involving Galerkin boundary elements, have been presented. These examples illustrate important 
features of the error estimation method, e.g. they show that the iterate does not lie in the approximating space 
and that the hypersingular residual may also be used in adaptive calculations (e.g. [48]). 

There are limitations in the theory presented here in the sense that non-smooth domains have not been 
considered, and the mixed BVP does deserve a more rigorous analysis. The mathematical analysis of these 
problems is quite difficult, especially for collocation methods. As remarked by Sloan [10, p. 331], 'it is fair to 
say that even for plane problems comers still present many theoretical challenges.' It is only recently that error 
estimates for Galerkin boundary integral methods on non-smooth domains have begun to appear [19-21,24,25]. 
However, numerical results for the two-dimensional Laplace equation on mixed BVP with corners indicate that 
the hypersingular residuals do provide reliable error estimates [5]. 

Several interesting topics associated with this work deserve further study. For example, these topics include: 
(a) analysis of hypersingular residual error estimates for mixed BVP in both smooth and non-smooth domains; 
(b) investigation of the symmetry property of Section 6.2 for error estimation in collocation methods and in the 
symmetric-Galerkin BEM; (c) theoretical and computational investigation of the 'two-level' iteration scheme as 
a general postprocessing technique in the BEM; (d) generalization of the hypersingular residual error estimates 
to other elliptic partial differential equations which admit formulations in terms of boundary integral equations; 
and (e) investigation of three-dimensional problems and use of the error estimates as driving parameters for 
adaptive mesh refinement algorithms. We feel that the range of application of hypersingular residual error 
estimates in BEM is broad, and that these estimates, together with self-adaptive procedures, seem promising for 
applications to actual engineering problems. Finally, we hope that the new iteration scheme for boundary 
integral methods ('two-level' scheme), presented in this paper, will find further applications and use in both the 
mathematical and engineering fields. 
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Appendix A. Neumann problem revisited 

An alternative derivation of Eq. (44) is presented here. The derivation is carried out within the context of  
Section 4.2. By adding and subtracting the term #~b on the left-hand side of  Eq. (40), one obtains 

= (~Lf' s + # )qb  - ( ~  - J / l s )q  (A.1) 

The solution ~b ('), obtained with the BIE (37), can be iterated with the HBIE (A.1) to obtain the approximate 
solution &~2), i.e. 

tb(2) = (oL, fN + #)&(l )  _ (5~ -- ./t/N) q 

Now the 

r =  

which is 
meaning. 

r =  

= e~" + ~b - (~9~ N + # ) ( e~  ) + ~b) + (o¢ - J//N)q 

(A.2) 

h y p e r s i n g u l a r  re s idua l  is redefined in terms of the potential as 

O~ ( ' ' -  ~b (2~ (A.3) 

a different definition from the one in Eq. (31). Also note that Eqs. (66) and (A.3) have different 
Starting with Eq. (A.3) and using Eqs. (40), (41) and (A.2), one obtains 

(~(I)  __ ((~'N -~- ~ ) ( ~ ( 1 )  ~_ ( , ~  __ J~N)q 

(A.4) 

which is the same as Eq. (44). It is interesting to note that with two different definitions of  the hypersingular 
residual, Eqs. (43) and (A.3), the relationship between the residual and the error remains the same. 

Appendix B. Some useful integrals 

The following integrals are useful in discretizing the kernels for the Galerkin BEM on a circle. The parameter 
A has been defined in Eq. (70). 

f 4 . 2k~a Hi(0)  cos k(0 - 0) d0 = k2 d sin -~-  cos k(O i - O) 

f / H i ( 0 )  sin k ( 0 -  0) d0 = 4 2 k A  k2 d sin T sin k(0,. - 0) 

f , f ,  16 ,, H i ( O ) I - I j ( O ) c o s k ( O -  O ) d O d O = k - - g - ~ s i n a - - ~ - c o s k ( O g  - Oj) 

f,f  16 kA ~ H i ( O ) ~ . ( O )  sin k(t~ - 0) d0 dO = ~ sin 4 -~-  sin k(0, - 0j) 
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