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Abstract An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm 
for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are 
considered, The elasto-viscoplastic radial return algorithm (RRA) and the elasto-viscoplastic CTO and 
its related scheme are developed. In addition, the limit cases (e. g. elastoplastic problem) of vis- 
coplastic RRA and CTO are discussed. Finally, numerical examples, which are compared with the lat- 
est FEM results of Ibrahimbegovic et al. and ABAQUS results, are provided. 

Keywords: boundary element method, elasto-viscoplasticity, consistent tangent operator (CTO), implicit algo- 
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Since Simo and Taylor Ell first proposed the use of the consistent tangent operator (CTO) 
within the context of the elastoplastic finite element method (FEM),  the CTO concept has been 

widely used in various FEM applications E2-51 . It should be indicated that in the recent work of 

Ibrahimbegovic et al. Esl, classical plasticity and viscoplasticity models were further reformulated 
for BEM based on the work of Simo and Taylor. In 1996, Bonnet and Mukherjee developed for 

the first time the CTO in an implicit BEM for elastoplasticity E63 , but their code and examples are 
only suitable for one-dimensional problem. Later on Mukherjee and co-workers extended the work 

for 2D elastoplastic problems with isotropic hardening [7'83 The results obtained are accurate as 
compared with analytical solutions and the FEM code ABAQUS. Recently, Paulino and Liu pre- 
sented a comparison of both consistent and continuum tangent operators for the elastoplastic 

BEM [93 , and have shown by means of numerical examples, the superiority of the consistent over 
the continuum operator. As compared with the CTO scheme, use of the continuum operator leads 
to the loss of the quadratic rate of asymptotic convergence which characterizes Newton' s iteration 
method. This represents both more iteration steps and CPU time. However, all the previous work 
on CTO BEM was based on pure elastoplastic deformation ( i .  e. rate independent), the elasto- 
viscoplastic CTO BEM has not yet been studied. When viscoplastic deformation happens, the 
stress status in the nonlinear region is allowed to exceed the loading surface, and the deformation 
becomes more complicated as compared with elastoplasticity. This is the basic difference between 
elasto-viscoplasticity and plasticity. 

This paper investigates the viscoplastic problem with a viscoplastic CTO concept-based im- 
plicit BEM scheme. The aim is to develop CTO BEM for the elasto-v~scoplasticity. First, the ba- 
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sic implicit algorithm and the formulations of classical elasto-viseoplastie problem are introduced. 
Second, the elasto-viscoplastic RRA and CTO as well as their limit case are further investigated 
and discussed. Then the elasto-viscoplastic CTO-based BEM and related scheme with the numeri- 
cal examples are presented. 

1 Basic formulation 

1.1 The generalized implicit rule 
Let h be a smooth function, and consider the initial value problem 

x = h ( x ( t ) ) ,  x (O)  = xn; t E [O,T]. (1) 

We shall be concerned with the following one parameter class of integration algorithms which is 
referred to as the generalized implicit rule: 

Xn+ = X n + At  �9 h (xn+o) ,  
Xn+ 0 = 0 " Xn+ 1 4. ( 1  -- 0 ) X n ,  0 E [0,1], (2) 

where x ,  + 1 ~ x ( t, + 1 ) denotes the algorithmic approximation to the exact values x ( t, + 1 ) at 
time t, + 1 = t, + At .  This family of algorithm contains well-known implicit integration schemes : 
in particular, 0 = 0 represents explicit (forward Euler) scheme, 0 = 0 .5  is the so-called mid- 
point rule, and 0 = 1 stands for the implicit (backward Euler) algorithm. 

1.2 Implicit viseoplastie problem 
In classical formulations of viseoplastieity, the yield criterion is defined through a loading 

function f = f (  ~ ,  q ) ,  where ~" denotes the stress state and q denotes the internal variables. As 
elasto-viseoplastie deformation appears, the stress is permissible outside the closure of the loading 
surface, i . e .  

f ( ~ , q )  > 0. (3) 
However, in elastoplastieity, f (  o', q)~< 0, which is the basic difference between viscoplastieity 
and rate-independent plasticity. 

The evolution equations 

Perzyna' s El~ model: 

for elasto-viseoplastie problem are formulated in terms of 

f ~vp = ~ , 3 f ( : ~ q ) ,  
�9 �9 3 f ( ~ r , q )  (4) 

q = -  ) ' D  O q  ' 

~, = < g ( f ( a , q ) ) ) ,  
71 

where )' is the viseoplastie flow rate parameter, D is the matrix of generalized viseoplastic hard- 
ening moduli, g ( x ) is a monotone function with g ( x ) = 0, if and only if x ~< 0. < x ) = ( x + 
Ix I ) /2  is a ramp function, r /E (0 ,  ~ ) is a given viseoplastie material fluidity parameter. Fur- 
thermore, without loss of generality let g ( x ) = x. For metals, typical choices for the function g 
are exponential and power laws. 

The local constitutive equation for rate dependent viseoplastieity, on the other hand, de- 
scribes the elastic response 

o" = C : ( ~  - ~vp), (5)  
where C is the fourth-order tensor of elastic coefficients, : is the natural (Euclidean) inner prod- 
uct. If one considers the limit case of the viseoplastie fluidity parameter in eqs. (4)  and (5)  as 
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r/--~0, one would expect to recover the rate-independent plasticity formulation, i . e .  as r/--~0, 
states outside the loading surface become increasingly penalized and thus f---~0 in such a way that 

( g  ( f ) ) - " ? '  (f inite).  In this case, the viscoplastic equations (4)  and (5)  reduce to the rate-in- 
7/ 

( g ( f )  )--~O " dependent plastic problem. As the fluidity parameter r/--~ ~ , ~' = , q--~0, ~ vP--~0, 
7/ 

eq. (5)  collapses to the rate form of linear elasticity. 

2 The viscoplastic consistent tangent  opera tor  ( C T O )  

2.1  Elasto-viscoplastic RRA 
Let u ,  tr and E denote respectively the displacement, stress tensor and total strain tensor. 

Following Simo and Taylor Ill and considering the evolution problem for strain increment in any 
given finite time step At ,  the elasto-viscoplastic constitutive law reduces to giving a radial return 
algorithm rule which makes o'~ + ] finally consistent with f (  tr ,  q ) : 

O'n+l = ~r(e'n, fin, qn, Ae'n),  (6)  
where the notation tr symbolically denotes the action of the radial return algorithm ( R R A )  ; the 

internal variables q = { e vp, a f , in which a stands for back stress ; e vp is the cumulated equiva- 
lent viscoplastic strain: 

e vp = ( ( ~ v P : ~ V P ) d r ,  ( 7 )  
o 

where the viseoplastic strain rate t~ vp can be written as 

(8) = 9 q  = ' 

in which n is the unit vector normal to the yield surface, with tr(~ vp) -- 0. 
The Von-Mises yield condition is 

q- 
f ( ~ ,  x , a )  --- II ~ II (9)  

1 
where ~ = S - a stands for the deviatoric stress S = a - ~ - ( t r t r ) 1 ;  I is the second order unit 

tensor given by ! = 8ijei(~ ej,  where e i represents the basis vectors and (~) denotes the tensor 

product. Also, eVP-~x (e vv) is the hardening rule. 
A trial (Tr) deviatoric stress is introduced as 

~Tr+l = S .  + 2 G A e .  - a . ,  (10) 

1 
where e = t~ - ~ ( t r ~ ) l  and G is the shear modulus. 

,3 I f f ( ~ r + , , x ~ ,  a ~ ) =  II {~+~ II - , ~ ( ~ ) ~ 0 ,  i . e .  the elastic deformation, one has 

~r~+ 1 = ~ = KAs~:  ( l  @ l )  + 2GAe~ + ~ ,  (11)  

where K is the hulk modulus. This is the elastic constitutive equation in incremental form. If 

f (  ~ +  ~, x~, a , )  > O, i . e .  the viseaplastic deformation happens, ~r becomes 

tr.+, = tr = K~.+,:  ( l @ l ) +  S .+, ,  (12) 

where S,  , = a , + ~ ; ~ (  ~ ~ ' ) + x +  f +  H [? 'A t ]  n ,  H =  H(eVP) ,  H ( e  vp) is the plastic 
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modulus which characterizes the kinematic hardening response. Here, a superposed "prime" rep- 
resents differentiation with respect to the argument. 

On the other hand, from eqs. (2 ) ,  ( 4 ) - - ( 9 ) ,  and letting 0 = 1 in eq. (2 ) ,  one can ob- 
tain the following counterpart of the implicit backward-Euler difference scheme and viscoplastic 
RRA consistency equations 

, = )~;,,'.. 8"vP = ~ , 3 f ( a  q)  ( f ( t r , q  
3tr r 1 

fn+, ^ vp 6n+l = ~vp + At n , 
7? 

2 H' an+,  = an + ~ -  [ ~ ' A t ] n  ( 1 3 )  

_ ~ 3 2 _ [  
vp eZ1  = e n  + ~'At] ,  

1 
n _ 11 ~Tr 11 ~Tr+l' 

along with the condition 

II ~n+, II = 

From eq. (14) it further follows that 

[ ) ' A t ] _  (fn+l)At _ 
7/ 

II~(T~)II 2GE*A,t](I+~G.' ). ' t ,+, - (14) 

fT ' /2  G , ( 15 ) 
H' r] 

1 + f ~  + 2 G A t  

where fTr is the trial yield function. 
Eq. (15) and Von-Mises yield condition (9) solve the viscoplastic consistency equation: 

1/t(~At ) I I  Tr ~ ~ ( H' r/ ) 
- ~=+. II - ,~(e~0 + [~'AT]) - 2G[~'At] 1 + ~ + 2GAt = 0 (16) 

with tr = tf(e~P+l), H' = H'(e~P+l). 
From eq. (15) ,  one observes that 

[~ 'A t ]  - ( f n + l ) A t - - - ~  fTr 
7? 2G(1 + H ' / 3 G ) '  

~ 0, (17) as 

i .e.  eq. (15)  reduces to the rate independent 
plastic case eq. (17) .  This illustrates the fact that 

as rl--~0 one recovers the rate independent plastici- ~ ~  , / 
ty [21. Particularly, eq. (16) at this case is in a- ~ 
greement with the plasticity consistency equation, '" 
which agrees with the results of Bonnet and 

Mukherjee [63. The solution of eq. ( 1 6 )  from 
which the converged values of [~'At ] is deter- 
mined can be effectively accomplished by the local rig. 1. Illustration of the radial return algorithm (RRA) 

Newton iteration procedure. An illustration of RRA with both kinematic and isotropic hardening ( R = ,V/~" 

is given in fig. 1, where the actions take place on ~(~,p) ) . 
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the n-plane which illustrates a general viscoplastic case with isotropic and kinematic hardening. 
Note that as r/--~0, fn + V -~0, and it actually returns to the elasto-plastic case. 

The viscoplastic RRA scheme is summarized below: 

(i)  Compute trial elastic stress: ~Tr+I = Sn + 2GAen+l- an. 
 Tr+ 

^ 1 
(ii) Compute unit normal field : n - II  Tr+I I1" 
(iii) Use the above converged value of [ ) 'At ] to compute the equivalent viscoplastic strain: 

- - vp ~ / - ~ 2  2 , 
e ~ + l = e ,  + , .~ [ ) ' A t ]  and the back stress a n + l = a n + - ~ H  [ ) ' A t ] n .  

(iv) Compute the deviatorie stress: Sn + 1 = fn + l + ~ / ~  x ~, e n +1 ) ~ + an + 1. 

(V) Compute: o'n+l = Ke, n+l : ( l@l )  + Sn+]. 
~Tr(i) _ ( i )  It should be indicated that if the trial stress ~ n +1 and the final stress On +l at the i th itera- 

~ ( i - 1 )  tion are computed from the nonconverged stress ~,n +1 at the previous iteration (rather than from 

converged stress Sn as above), then the continuum viscoplastic tangent operator is obtained from 

the general scheme of CTO. 

2 .2  Elasto-viscoplastic CTO 
The CTO, which is defined in a fourth order tensor [1'6] 

3trn+l (18) 
C n +  1 -- 3 / ~ E  n ' 

which depends on the particular algorithm ~s  + 1 ( 6n, ~l'n, qn, ASh) chosen. For the RRA 
presented here, neglecting the deriving process, the CTO takes the form 

_ v p _  ( 1 ) 
Cn+l Cn+l KI (~ 1 + 2Gfl I - ~-!  (~) l - 2G~n (~) n ,  (19) 

where 

2 G [ ) ' / k t ]  ~ 1 - (1 - /3), 
/ ~ = 1 - - I ]  Tr ' = K t U t  ~ n + l  ]1 7] "4- 

- - + 1 +  
2GAt 3G 

I = (1/2)[~ik#jt + ~it~jk]ei (~ ej Q ek Q et. 

In the above equation when r/ --~0, the purely plastic CTO is recovered. When fl = 1.0 and 
' 2GAt 

[ ?'/k t ] does not guarantee to take the converged value, the viseoplastic continuum tangent opera- 
tor (CTO) is obtained. Its expression takes the form: 

c(Cont) /'wvp(Cont) K .  I (~ I + 2G( I _  1 ) n+l ---- ~'-'n+l = ~ l  @) 1 - 2G~'n Q n ,  (20) 

1 7/ 
K' + H' ' as --~0, the purely plastic continuum tangent operator is where ~'= ~ + 1 + - -  2G/kt 

2G/kt 3G 
obtained. Furthermore, in eq. (19 ) ,  f l~<l ,  and for a large time step ~Tr+l may lay far out of 
the loading surface so that fl may become significantly less than unity. In addition, since ~ = ~' 
+ f l -  1, we have the bound ?' - 1 < ~'<~ ~'. Hence, for large time steps, eq. (19) may differ 

significantly from eq. (20) .  As a result, use of eq. (20) leads to loss of the quadratic rate of 
asymptotic convergence which characterizes Newton's  iteration method, which represents both 
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more CPU time and iteration steps. It should be indicated that when trn + 1 = tr ( e.,, trn, qn, Ae.n) 
= vp C where C is the fourth-order tensor of elastic constants is elastic, one has C~+l C ~ + t =  , 

3 The elasto-viscoplastic CTO based BEM 

Without consideration of body force, the basic equation of BEM can be written as follows. 

3.1 Elasto-viscoplastic boundary integral equation 

f Eui(z)-ui(x)]Pki(x,z)dSz- I pi(z)Uki(X,z)dSz 
3~  a J2 

f �9 = a U k g d ( x , z ) C o a b , ~ ( z ) d L ,  (21) 

where x is a source point, z is a field point, Uki, Pki  denote the components of the Kelvin fun- 
damental displacement and traction, u is the displacement rate vector, p = t r .  n is the traction 
rate vector, and the fourth order tensor Cijab is elastic constant ( i .  e.  C ) .  

In matrix form, the above BIE symbolically reads: 

[ H ] l u t -  [G]{ /~ /  = [ Q ] { C :  ~vp}, (22) 
where [ H ] and [ G ] correspond to the matrices of elastic problem, [ Q ] relates to the matrix 
associated to nonlinear strain rate term. 

In the standard boundary element method, eq. (22) is discretized and then rewritten as 

[ A l l Y }  = If} + [ Q ] { C :  ~ 'P / ,  (23) 
where {Yt collects all the boundary unknowns, [ A ]  denotes the system matrix related to the 
boundary unknowns and {ft is the contribution of known boundary variables. 

3.2 Elastic-viscoplastic strain equation at internal points 
Differentiation of the interior displacement rate integral equation with respect to xl yields the 

representation formula for the displacement rate gradient 

izk,l(x) = fa u i ( z ) D k a ( x , z ) d S ~ -  fat2/gi[Jki'l(x'z)dSz 

f nl(z)Uka b(x ,z )dS~ - C~job ~ vp~i ( x ) ~,~ 

fauki,jt(x,z)Ciiab[~*P(z) ~V~(x) ]dV: (24) - -  a b  - -  ~1 

with the notation Dkil = CijabnjUka, bl" 
The strain rate equation at x is then readily obtained from eq. (24) .  In symbolic form, one 

has 

t,~} = [o ' ] t~ ,J  - [ H ' ] i u l  + [ Q ' ] { c : / " P t  = -  [ A ' ] J y l  + {,.f' t + [ Q ' ] I c :  ~'"Pl, 
(25) 

where [ H'  ] and [ G' ] are matrices related to displacement and traction rate terms, respectively ; 
[ A' ] is the system matrix related to boundary unknowns, [ {2' ] corresponds to the contributions 
of nonlinear strain term, and /./~ ' t depends on the prescribed terms of tractions and boundary 
displacements. 

Substituting I Y t from eq. (23) into eq. (25 ) ,  we have 
{t~} = {n} + [S]IC:EVV},  (26) 

where 
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/nt  = t j e ' t -  [A ' ]  [ A ] - ' E f ] ,  Is }  = {Q't- [A']EA]-'[Q]. 
From eqs. (26)  and ( 5 ) ,  removing {C:gvP},  the following can be obtained: 

[ S ] { a ' -  Ct~f - {n} + [ I ] { ~ t  = {0}. (27)  
Eq. (27) is the basic equation for developing CTO BEM. Actually it has implicitly included the 
equilibrium equation. 

3 .3  Elasto-viscoplastie CTO based boundary integral equation 
Consideringthe increment form of eq. (27)  in At .  = t .+ l  - t.  : 

[ S ] { A a . -  CAn.} - {An.} + [ l ] { A e . }  = {0}; (28) 

on the other hand, the viseoplastie RRA eq. ( 6 ) ,  combining the constitutive and equilibrium e- 
quations, can be written in the form 

{0"} = {a .+ l }  = {~r.} + {Atr .} .  (29)  

Inserting eq. (29) into eq. ( 2 8 ) ,  the following can be obtained: 
{G(Ae . ) }  - [ S ] { a . + l ( e . ,  O'n, q . ,  A * . ) -  o ' . -  CAe . }  - {An.} + [ I ] { A * . }  = {0}, 

(30) 
where G ( A g . )  is the residual of eq. (28) due to the RRA. The Newton method can also be ap- 
plied to this case for eq. (30)  

A,/+ '  = A s ' , -  G' ( A e ' . ) '  (31)  

where " ,"  is the differentiation of G(Aei , )  with respect to Aei,. 

Note the definition of CTO (18)  and introduce 3e/, = Aei, + 1 -  Aein. Finally, eq. (31 )  
solves 

(Es3 Ec  vp i>] Eli {3e'.t {G(Ae ' . ) t  (32) - -  t . . n +  1 - -  = , 

t, ' ,vp(i) _ / - v p ( i ) ]  [ I ]  is referred to as the global where " n  + 1 is the elasto-viscoplastic CTO, [ S ] [ C "-'n + 1 -- 
CTO [6] . 

, _ r v p ( i ) ]  between the elastic con- The Newton step, eq. (32) involves the difference [ C ,-- n + 1 
stitutive law and the local CTO, rather than the local CTO itself. This is consistent with the fact 

that eq. (28)  accounts for both equilibrium and elastic constitutive law, while for the FEM Ez] , 
only equilibrium is accounted for. It is convenient to solve the Newton step (32)  using a block 
decomposition method. Once the nonlinear eq. (32)  is solved for A s , ,  the total strain and stress 
fields can be obtained. 

r v p ( i )  ] Note that [ C - ,~r VP(n +/)1 ] = 0 for elastic problem , which means that there exists [ C - '~ n + 1 J 
only when the viscoplastic deformation happens. Hence, it is convenient to rewrite the Newton 
step, eq. (32)  using a block decomposition: 

r~p(i) q [ l])~p,~{ a , i  } = {G(mFi)}vp 
( [ S ] [ C -  . . .+ ,  j -  vp ' (33) 

{ algin[e = ([  S ] E C - CVnP(+~)!)evpl a6in[vp - { G ( ~ i n )  fe,  
where the subscripts e and vp indicate vectors and matrices restricted to the currently elastic or 
viseoplastie nodes and collocation points. This shows that the global CTO has to be set up and 

factored only at currently viseoplastic nodes, the currently elastic part { &~i / e being given explic- 

itly by the second equation of eq. ( 3 3 ) ,  after the first equation of (33)  is solved for { 3e/}vp. 
Moreover, 

-- / ' v p ( i ) ] ) v p e  ( E s ]  E c  f ' v p ( i ) ] ) e e  EO]  ( 3 4 )  ( [ S ] E C  w,.., n + 1 = i ,t., n+ 1 = �9 
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Eq. (34) shows that the dimension of the linear system in eq. (33) is directly associated to the 
size of the plastic deformation zone. The leads to an efficient solution scheme with savings in 
computing time, which is different from FEM. 

4 Algorithm 

The following algorithm based on the above sections is proposed for solving the incremental 
elasto-viseoplastie problem, from initial time to to final time tN,  NT is the total load steps. The 

initial time to is assumed to correspond to the first yield load. 
For n E [ 0 ,  N T - 1 ] :  
1. compute {Ann t (purely elastic internal strain). 

2. Initialize {AE~ (e .g .  to the elastic value). 
iterative solution : 
(a) i = 0. 

(b) Compute the residual { G(As i )  t from eq. (30) .  

(c) Convergence test: if II I G(As~)t  It  <Tol, Tol is given tolerance, then start new load 
increment (go to 3 ) .  

(d) i = i + 1 .  
r (e) Compute the converged [ ) 'A t ]  and the local CTO ,-,n+~ at all nodes; determine the 

sets of currently elastic (e)  and currently viscoplastic (vp) nodes. 
- -  - -  - -  ~ v p ( i )  ~ I] (f) Set up global CTO [ S ( C  "-'n+lC'vp(i)) I ]  and factor it into [ S ( C  "-'n+l ] - -  vpvp 

/'~vp(i) ~ -- l]evp" and I S ( C -  "n+ l  ' 

~t~n t e using the (g) Solve the first equation of eq. (33) for { ~6infvp and then compute / i 
second equation. 

(h) Update: {m~;in+l/--- IAeinl + I~Eint. 
(i) Start new iteration (at step ( b ) ) .  

,2 3. Update:  {eVP}n+l=  {eVP}n+ [ ) ' A t ] ,  /O'n+l} = {o" (A" in+ l ) /  , { s  = /"n} 

+ {Ae.t .  
Repeat the above process until the prescribed load, where the load is a generalized load, it may 
be the traction or displacement. 

5 Numerical examples 

A boundary element program has been developed to perrform general elasto-viscoplastic 
analysis of two-dimensional problems. Quadratic elements are used for both boundary and domain 
discretization. Corners have been modeled by means of double nodes. The following two examples 
have been investigated, one is a hollow specimen under uniform prescribed tension displacement. 
The other is a hollow cylinder subjected to internal pressure. All examples are computed at the 
$GI Work Station, University of California, Davis, USA. 

5.1 A hollow specimen under uniform prescribed displacement 

This example is taken from Ibrahimbegovic et al. [53. We try to make comparison of the vis- 
eoplastic CTO BEM formulations with the latest FEM results obtained by Ibrahimbegovic et al. 
The material constants are chosen with Young' s modulus E = 70, and Poisson' s ratio v = O. 2, 
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Fig. 2. BEM mesh for analysis of a hollow 

specimen under uniform prescribed displacement 

at the top. The boundary discretization consists of 
29 quadratic boundary elements and 63 nodes 

(including 5 double nodes for the comers) ; the 
domain discretization consists of 32 cells (T6)  

and 81 nodes. 

ness and accuracy of the viscoplastic 

the kinematic hardening with modulus H' = 0 . 1 5 ,  and the 

isotropic hardening rule of exponential type is taken from 

the saturation type of yield condition, x = (cr | - ay ) 

( 1 . 0 -  e -  # ~ )  + Ke ~P, and the yield function x = O'y 4- 

x ,  where the saturation stress a | and the initial yield 

stress Cry and related parameters are taken as 

a| = 0 .343 ,  ay = 0 .243 ,  K = 0 . 1 5 ,  p = 0 . 1 .  

(Note: Ref. [6 ] did not indicate the units in the ex- 

ample, that is the so-called unified dimension) 

Two different values of viscoplastic parameters are 

considered to be r / = 0 .1 and q -- 10 .0 .  The convergence 

tolerance is taken to be 5 .0  • 10- 10. The analysis is per- 

formed by imposing the prescribed displacement of U1 = 

0.1 (acts on the top side of the sample) .  The final dis- 

placement value is reached in ten time steps, each one be- 

ing equal to At = 0 . 0 1 .  Due to the symmetry of the sam- 

pie, only one quarter of the specimen is modeled by using 

29 quadratic boundary elements and 32 quadratic triangu- 

lar internal cells (T6)  (see fig. 2 ) .  It has a hole with in- 

ner radius 5 ,  length side is 18 and width side is 10. The 

calculated results are shown in fig. 3.  Fig. 3 gives the 

comparison of load-displacement diagrams for q = 0 .1  and 

~? = 10 .0 .  From fig. 3 we can see that the results of the 

two methods agree very well, which shows the effective- 

CTO BEM. 

5 .2  A thick walled cylinder under internal 

p r e s s u r e  

This example uses the results of 

ABAQUS for comparison sinee there is no 

analytical solution under the Von-Mises yield 

eondition. The related material constants are 

chosen as : 

shear modulus G--  1 . 0  Pa, v - - 0 . 3 ,  
H ' =  0 . 0 ,  r/ = 0 . 0 ,  10 -3, 10 -2, 10 -1, 
1 . 0 ,  102, 103(MPa �9 h ) ,  ~= = 2 G ( 0 . 0 0 1  + 

0.001 (e~P) m, in which m = 0 . 2 .  The con- 

verged tolerance is still taken to be 5 . 0  x 

10 -1~ p = 12 .0  x 1 0 - 4 ( M P a ) ,  is applied 

with one load step and At = 0 .1  ( h ) .  

The thick walled cylinder has inner ra- 

dius a = 1 m and outer radius b = 2 m. The 

sample is modeled with one quarter due to the 
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Fig. 3. Comparison of load-displacement diagrams for 7] (ETA) = 

0.1 and ~(ETA) = 10. ~ ,  ETA = 0.lEVI; + , ETA= 10153; 

[-1, E TA=0 .1 ;  x ,  E T A = I . 0 .  
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symmetry. The mesh is shown in fig. 4.  In FEM- 
ABAQUS, 100 8-noded quadrilateral ceils are in- 2�9 
troduced. The computed results are shown in figs. 
5 a n d 6  and table 1. Due to the lack of the vis- 

1.5 
coplastic material model in ABAQUS, only the e- 
lastic and elastoplastic solutions are presented as 
the comparison of limit cases in elasto-viscoplastic- 1.0 
ity. Fig. 5 gives the comparison of hoop stresses 
with different viscoplastic fluidity parameters along 
the radius and ABAQUS solutions in pure elasticity 05 

and plasticity. Fig. 6 shows the hoop stress at in- 
ner radius a = 1 m varies with time in three vis- 
coplastic fluidity parameters. Table 1 shows the it- o.0 

erations, CPU times and norm errors with different 
viscoplastic parameter r/. 

From fig. 5, one can see that as r/---~0, the 

0.5 1.0 1.5 2.0 

Fig. 4.  BEM mesh for analysis of the hollow cyclinder un- 

der pressure. The boundary discretization consists of 30 

quadratic boundary elements and 64 nodes (including 4 dou- 
result is very close to ABAQUS plastic solution ; as ble nodes for the corners) ; the domain discretization consists 

of 36 cells (T6) and 81 nodes. 

Table 1 Number of iterations, CPU time and residual norm for various viscoplastic parameters "q 

r//MPa" h A t / h  Iterations CPU t ime/s  Norm errors 

0 . 0  0 .1  3 41 .89  3 .030 x 1 0 - "  

10-3 0.1 3 41.84  3. 169 x 10-" 
10-2 0.1 3 41.83 3. 218 x 1 0 - "  

10 -I  0 .1  3 42 .70  3.674 x 10 - u  

1.0 0 .1  2 39.45 2. 554 x 10- ,l 

102 0 .1  1 39.93 2.697 x 1 0 - "  

l0  s 0 .1  0 33.31 1.999 x 10 - u  

e 

2~ 
1.9, 
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1.5 q 
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�9 ~ ETA=10" -,,- 
ETA= 105 .~..- 

;,  1'.2 ,.3 ;4 1'~ 1'.6 117 I'.g 1'.9 2 
xla 

Fig. 5. Comparison of hoop stresses with different 

viscoplastic fluidity parameters ( 71 = ETA) along ra- 

dius. 
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Fig. 6. Hoop stresses at inner radius 1 versus time in 

three viscoplastic fluidity parameters ( r/ = ETA) .  - - ,  

ABAQUS-plasticity; ~ ,  ETA = 0 .01  ; + , ETA = 0 .1  ; 

[[], ETA = 1 .0 .  
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r/--" ~ ( r / =  108 M P a ' h ) ,  the results reach the ABAQUS purely elastic solution, and all the re- 

suits with different r 1 = 10 -3 , 10 -2, 10 -1 , 1 .0 ,  102(MPa'h) are located within the limit solu- 

tions of r 1 = 0  (MPa 'h )  and 7? = 108(MPa 'h) .  From fig. 6, it can be seen that as t - - ~ w ,  all 
the three solutions approach the pure plastic solution. This limiting process is the so-called vis- 
coplastic steady state approaching solution. In addition, the viscoplastic fluidity parameter r/ af- 
fects the stress decaying properties. The larger the values of r/ are, the less the decaying the 
stresses appear to be. 

6 Conclusions 

This paper presents a CTO-based BEM for elasto-viscoplastic deformation problems. The vis- 
coplastic RRA and CTO are developed for nonlinear BEM. Both kinematic and isotropic strain harden- 
ing are considered. Two numerical examples with different viscoplastic fluidity parameters are present- 
ed and compared with the latest solutions (Ibrahimbegovic et al. ) and FEM code ABAQUS. The re- 
suits show that the computations of this paper and the FEM agree very well. Further, it is clearly ob- 
served that the viscoplastic fluidity parameter 7? affects the stress decaying properties. The larger the 
values of r/ are, the less the decaying the stress appears to have. 

The numerical results support the fact that the viscoplastic solutions approach two limit cases, i. 
e. the pure elastic solution as r/---" w and rate-independent plastic solution as r/--~0. In addition, as 
t --~ w ,  the viscoplastic steady state solution is reached, which is just the rate-independent plastic so- 
lution. These results agree with the theory of elasto-viscoplasticity. 

Acknowledgements The first author particularly thanks Dr. S. Mukherjee and Dr. H. Poon of Cornell University for their 
helpful discussion and help. This work was supported by the Zhejiang Natural Science Foundation Special Funds (Grant No. Re. 
9601) and US National Science Foundation (NSF) (Grant No. CNS-9713008). 

References 

1. Simo, J. C . ,  Taylor, R. L. ,  Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. 
Meth. Eng., 1985, 48: 101. 

2. Simo, J. C. , Hughes, T. J. R. , Computational Inelasticity, New York: Springer-Verlag, 1998. 
3. Vidal, C. A . ,  Lee, H. S . ,  Haber, R. B . ,  The consistent tangent operator for design sensitivity of history-dependent re- 

sponse, Comp. Syst. Eng.,  1991, 2: 509. 
4. Vidal, C. A. ,  Haber, R. B . ,  Design sensitivity analysis for rate-independent elasto-plasticity, Comput. Methods Appl. 

Mech. Eng.,  1993, 107: 393. 
5. Ibrahimbegovic, A . ,  Gharzeddine, F . ,  Chorfi, L . ,  Classical plasticity and viscoplastieity models reformulated: Theoretical 

basis and numerical implementation, Int. J. Numer. Methods Eng.,  1998, 42: 1499. 
6. Bonnet, M.,  Mukherjee, S . ,  Implicit BEM formulations for usual and sensitivity problems in elastoplasticity using the CTO 

concept, Int. J. Solids Struct., 1996, 33: 4461. 
7. Poon, H. ,  Mukherjee, S . ,  Bonnet, M.,  Numerical implementation of a CTO-based implicit approach for the BEM solution of 

usual and sensitivity problems in elastoplasticity, Eng. Anal. Boundary Elem., 1998, 22(4) : 267. 
8. Bonnet, M.,  Poon, H . ,  Mukherjee, S . ,  Hypersingular formulation for boundary strain evaluation in the context of a CTO- 

based implicit BEM scheme for small strain elastoplastieity, Int. J. Plasticity, 1998, 14(10-11): 1033. 
9. Paulino, G. H . ,  Liu, Y . ,  Implicit consistent and continuum tangent operators in elastoplastic boundary element formulations, 

Comput. Methods. Appl. Mech. Eng. (to be published). 
10. Perzyna, P . ,  Thermodynamic theory of viscoplasticity, Adv. Appl. Mech., 1971, 11: 313. 


